JPH05154349A - Method and catalyst for removing nitrogen oxide in combustion exhaust gas - Google Patents

Method and catalyst for removing nitrogen oxide in combustion exhaust gas

Info

Publication number
JPH05154349A
JPH05154349A JP3144209A JP14420991A JPH05154349A JP H05154349 A JPH05154349 A JP H05154349A JP 3144209 A JP3144209 A JP 3144209A JP 14420991 A JP14420991 A JP 14420991A JP H05154349 A JPH05154349 A JP H05154349A
Authority
JP
Japan
Prior art keywords
catalyst
gas
exhaust gas
nitrogen oxide
combustion exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3144209A
Other languages
Japanese (ja)
Inventor
Hidekazu Kikuchi
英一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3144209A priority Critical patent/JPH05154349A/en
Publication of JPH05154349A publication Critical patent/JPH05154349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To decompose nitrogen oxide at relatively low temp. and to make a process compact by catalytically reacting nitrogen oxide in combustion exhaust gas with an iron silicate catalyst and a hydrocarbon reducing agent to decompose and remove the same. CONSTITUTION:Nitrogen oxide such as nitrogen monoxide or nitrogen dioxide, oxygen gas or sulfur dioxide is usually contained in the combustion gas of a gas turbine. At the time of the decomposition of this combustion gas, iron silicate used as a catalyst has a crystalline structure wherein an iron atom is substituted within a silicate skeleton in the form of a solid solution and the Si/Fe ratio thereof is 10-60. As a hydrocarbon reducing agent, propylene, ethylene, methane, ethane, propane, butane or the like are disignated. Combustion exhaust gas containing nitrogen oxide, oxygen and, if necessary, sulfur dioxide is catalytically reacted with the iron silicate catalyst and the hydrocarbon reducing agent to decompose and remove nitrogen oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼排ガス中の窒素酸
化物の除去方法および該方法に用いられる鉄シリケート
触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing nitrogen oxides in combustion exhaust gas and an iron silicate catalyst used in the method.

【0002】[0002]

【従来の技術およびその課題】特開昭63−10091
9号公報には、酸化雰囲気中、炭化水素の存在下、銅触
媒に、窒素酸化物を含有する、自動車等の内燃機関等か
ら排出される排ガスを接触させることにより排ガス中の
窒素酸化物を除去する方法、および該方法に用いられる
銅触媒として銅をゼオライト等に担持してなる触媒が開
示されているが、さらに亜硫酸ガスを含有する排ガスに
適用することおよびその場合の効果についても、該銅触
媒を300℃前後の比較的低温度の排ガスに適用した場
合の効果についても、また銅触媒に代えて鉄シリケート
触媒を用いることについても、何ら具体的に教示されて
いない。
2. Description of the Related Art JP-A-63-10091
No. 9 discloses that the nitrogen oxide in the exhaust gas is removed by contacting the exhaust gas discharged from an internal combustion engine such as an automobile containing nitrogen oxide with a copper catalyst in the presence of hydrocarbons in an oxidizing atmosphere. A method of removing, and a catalyst obtained by supporting copper on zeolite etc. as a copper catalyst used in the method is disclosed, but also for applying to exhaust gas containing sulfurous acid gas and the effect in that case, There is no specific teaching about the effect when the copper catalyst is applied to the exhaust gas at a relatively low temperature around 300 ° C., or the use of the iron silicate catalyst in place of the copper catalyst.

【0003】特開平2−265649号公報には、結晶
性の銅シリケート触媒に、自動車等の内燃機関などから
排出される、少くとも炭化水素と窒素酸化物とを含有す
る酸化性排気ガスを接触させて該窒素酸化物を除去する
方法および該方法に用いられる結晶性の銅シリケート触
媒が開示されているが、さらに亜硫酸ガスを含有する排
ガスに適用することおよびその場合の効果についても、
該銅シリケート触媒に代えて鉄シリケート触媒を用いる
ことおよびその効果についても何ら具体的に教示されて
おらず、該銅シリケート触媒を300℃前後の比較的低
温度で用いた場合には400℃前後の比較的高温度で用
いた場合に比べてNOxの浄化率が著しく低下する旨教
示されているに過ぎない。
In Japanese Patent Laid-Open No. 2-265649, a crystalline copper silicate catalyst is contacted with an oxidizing exhaust gas containing at least hydrocarbons and nitrogen oxides discharged from an internal combustion engine such as an automobile. Disclosed is a method for removing the nitrogen oxides and a crystalline copper silicate catalyst used in the method, but also for applying to an exhaust gas containing a sulfurous acid gas and the effect in that case,
There is no specific teaching about the use of an iron silicate catalyst in place of the copper silicate catalyst and its effect. When the copper silicate catalyst is used at a relatively low temperature of around 300 ° C, it is around 400 ° C. It is merely taught that the purification rate of NOx is remarkably lowered as compared with the case of using at a relatively high temperature.

【0004】「触媒」(Vol.32 No.6、19
90年、平成2年9月10日発行、430〜433頁)
には、O2 およびSO2 存在下での炭化水素および銅イ
オン交換ZSM−5によるNOの選択還元反応について
報告されているが、該銅イオン交換ZSM−5に代えて
鉄シリケートを用いることおよびその効果については何
ら教示されておらず、微量のSO2 が共存すると、30
0℃前後の比較的低温度ではNOの転化率が著しく低下
する旨および共存O2 の濃度が10%程度と比較的高く
なるとNOの転化率が低下する旨教示されているに過ぎ
ない。該銅イオン交換ZSM−5を用いた場合、耐久性
に乏しいことなどの欠点がある。
"Catalyst" (Vol. 32 No. 6, 19)
(Published September 10, 1990, pages 430-433)
Describes a selective reduction reaction of NO by hydrocarbons and copper ion exchange ZSM-5 in the presence of O 2 and SO 2, but using iron silicate in place of the copper ion exchange ZSM-5 and There is no teaching about its effect, and if a small amount of SO 2 coexists,
It merely teaches that the conversion rate of NO decreases remarkably at a relatively low temperature around 0 ° C. and that the conversion rate of NO decreases when the concentration of coexisting O 2 increases to about 10%. When the copper ion exchange ZSM-5 is used, there are drawbacks such as poor durability.

【0005】従来、例えばコージェネレーション用ガス
タービンにおいて、ガスタービン排ガスにアンモニアを
注入し、触媒上でアンモニアとNOxを反応させてNO
xを除去する方法および該方法に用いられるTiO2
2 5 −WO3 触媒やゼオライト触媒が知られている
が、危険なアンモニアを必要とする点、高価な触媒を用
いなければならない点などの欠点がある。
Conventionally, for example, in a gas turbine for cogeneration, ammonia is injected into the exhaust gas of the gas turbine, and ammonia and NOx are reacted on the catalyst to generate NO.
method for removing x and TiO 2 − used in the method
V 2 O 5 -WO 3 catalysts and zeolite catalysts are known, but they have drawbacks such as requiring dangerous ammonia and having to use expensive catalysts.

【0006】従来、例えば自動車用ガソリンエンジン、
コージェネレーション用ガスエンジンなどには、厳密な
空燃比制御により、酸素濃度を0%とした排ガス中のN
Oxを、白金、ロジウム等の有効成分からなる三元触媒
上で接触分解除去する方法および該方法に用いられる前
記三元触媒が知られているが、酸素雰囲気では適用でき
ないこと、厳密な空燃比制御が必要となること、効率が
低下することなどの欠点がある。
Conventionally, for example, a gasoline engine for automobiles,
Strict air-fuel ratio control for gas engines for cogeneration, etc.
A method of catalytically decomposing and removing Ox on a three-way catalyst composed of active ingredients such as platinum and rhodium and the three-way catalyst used in the method are known, but they cannot be applied in an oxygen atmosphere, and a strict air-fuel ratio is required. There are drawbacks such as the need for control and reduced efficiency.

【0007】本発明は、ガスタービン排ガス、ガスエン
ジン排ガス、ガソリンエンジン排ガス、ディーゼルエン
ジン排ガスなどの窒素酸化物、酸素ガスおよび必要に応
じて亜硫酸ガスおよび炭化水素を含有する燃焼排ガス中
の該窒素酸化物を除去する方法であって、上記した従来
技術における問題点が解消され、かつ排ガス中に微量の
亜硫酸ガスが共存する場合でも、300℃前後の比較的
低温度の接触温度で効率よく窒素酸化物を分解除去する
方法および該方法に用いられる安価で、製造が容易であ
り、選択性にすぐれ、長期にわたって安定した高活性を
保持しうる触媒を提供することを目的とするものであ
る。
The present invention is directed to the nitrogen oxidation in the combustion exhaust gas containing nitrogen oxides, oxygen gas and, if necessary, sulfur dioxide and hydrocarbons such as gas turbine exhaust gas, gas engine exhaust gas, gasoline engine exhaust gas and diesel engine exhaust gas. As a method of removing substances, the above-mentioned problems in the prior art are solved, and even when a small amount of sulfurous acid gas coexists in the exhaust gas, nitrogen oxidation is efficiently performed at a relatively low contact temperature of about 300 ° C. It is an object of the present invention to provide a method for decomposing and removing a substance and a catalyst used in the method, which is inexpensive, easy to produce, excellent in selectivity, and capable of maintaining stable and high activity for a long period of time.

【0008】[0008]

【問題点を解決するための手段】本発明は、窒素酸化
物、酸素ガスおよび必要に応じて亜硫酸ガスを含有する
燃焼排ガスを、鉄シリケート触媒および炭化水素還元剤
の存在下に接触反応させて該窒素酸化物を分解除去する
ことを特徴とする燃焼排ガス中の窒素酸化物の除去方
法、および該方法に用いられる鉄シリケート触媒を提供
するものである。
According to the present invention, a combustion exhaust gas containing nitrogen oxide, oxygen gas and optionally sulfurous acid gas is catalytically reacted in the presence of an iron silicate catalyst and a hydrocarbon reducing agent. The present invention provides a method for removing nitrogen oxides in combustion exhaust gas, characterized by decomposing and removing the nitrogen oxides, and an iron silicate catalyst used in the method.

【0009】本発明における燃焼排ガスは、通常一酸化
窒素、二酸化窒素などの窒素酸化物50〜5000pp
m、好ましくは100〜3000ppm、酸素ガス0.
1〜15%、好ましくは0.1〜10%、必要に応じて
ディーゼルエンジンやガソリンエンジンの場合亜硫酸ガ
ス0〜600ppm、好ましくは0〜300ppm、お
よびバランスが窒素ガスよりなる燃焼排ガスである。
The combustion exhaust gas in the present invention is usually 50 to 5000 pp of nitrogen oxides such as nitric oxide and nitrogen dioxide.
m, preferably 100 to 3000 ppm, oxygen gas of 0.
1 to 15%, preferably 0.1 to 10%, and in the case of a diesel engine or a gasoline engine, a sulfur dioxide gas of 0 to 600 ppm, preferably 0 to 300 ppm, and a combustion exhaust gas having a balance of nitrogen gas as necessary.

【0010】本発明において用いられる鉄シリケート触
媒は、塩化鉄(FeCl3 ・6H2 O)、硫酸、塩化ナ
トリウム、テトラプロピルアンモニウムブロマイド
[(C3 7 4 NBr]および蒸留水よりなるA液
と、水ガラスおよび蒸留水よりなるB液と、食塩水、硫
酸、テトラプロピルアンモニウムブロマイドおよび水酸
化ナトリウムよりなるC液との3種の溶液を混合後、1
90℃付近で加熱保持し、洗浄後540℃で焼成して、
この焼成体をNH4 NO3 に浸漬し、アンモニウム型に
変換して水洗し乾燥後、540℃で焼成する方法により
製造されたものであって、その構造上シリケート骨格中
に鉄原子を置換固溶させた結晶性の構造を有することに
特徴があり、Si/Fe比は通常10〜60、好ましく
は25〜50の範囲にある。
The iron silicate catalyst used in the present invention is a liquid A comprising iron chloride (FeCl 3 .6H 2 O), sulfuric acid, sodium chloride, tetrapropylammonium bromide [(C 3 H 7 ) 4 NBr] and distilled water. And a solution B composed of water glass and distilled water and a solution C composed of saline solution, sulfuric acid, tetrapropylammonium bromide and sodium hydroxide were mixed, and then 1
It is heated and kept at around 90 ° C, and after washing it is baked at 540 ° C.
This fired body was manufactured by a method of immersing this fired body in NH 4 NO 3 , converted to an ammonium type, washed with water, dried and fired at 540 ° C. It is characterized by having a dissolved crystalline structure, and the Si / Fe ratio is usually in the range of 10 to 60, preferably 25 to 50.

【0011】本発明において用いられる炭化水素還元剤
としては、プロピレン、エチレン、メタン、エタン、プ
ロパン、ブタンなどがあげられるが、NOx除去率の点
でプロピレンが好ましい。その使用量は、通常500〜
4000ppm、好ましくは、1000〜2000pp
mの範囲である。上記炭化水素還元剤が、上記燃焼排ガ
ス中に内在している場合は、そのまま以降の接触反応に
おける還元剤として利用することが可能である。
Examples of the hydrocarbon reducing agent used in the present invention include propylene, ethylene, methane, ethane, propane, butane and the like, and propylene is preferable from the viewpoint of NOx removal rate. The amount used is usually 500-
4000 ppm, preferably 1000-2000 pp
The range is m. When the hydrocarbon reducing agent is present in the combustion exhaust gas, it can be used as it is as a reducing agent in the subsequent catalytic reaction.

【0012】本発明における接触反応は、通常250〜
350℃、好ましくは280〜320℃の反応温度で、
従来公知の装置を用いて行なうことができる。該反応温
度が250℃未満では、窒素酸化物の転化率が低すぎて
好ましくなく、該反応温度が350℃を超えると窒素酸
化物の転化率が低下して好ましくない。
The catalytic reaction in the present invention is usually 250 to
At a reaction temperature of 350 ° C, preferably 280-320 ° C,
It can be performed using a conventionally known device. When the reaction temperature is less than 250 ° C, the conversion rate of nitrogen oxides is too low, which is not preferable, and when the reaction temperature exceeds 350 ° C, the conversion rate of nitrogen oxides is decreased, which is not preferable.

【0013】[0013]

【作用および発明の効果】本発明によれば、第1に液体
アンモニアなどの有害物質を用いることなく、安価な触
媒を用いて、酸素ガスおよび微量の亜硫酸ガスの共存下
でも、300℃前後の比較的低温度で効率よく、ガスタ
ービン排ガスなどの燃焼排ガス中の窒素酸化物を分解除
去することができる。
According to the present invention, firstly, without using a harmful substance such as liquid ammonia, an inexpensive catalyst is used and the temperature of about 300 ° C. is maintained even in the presence of oxygen gas and a slight amount of sulfurous acid gas. It is possible to decompose and remove nitrogen oxides in combustion exhaust gas such as gas turbine exhaust gas efficiently at a relatively low temperature.

【0014】本発明によれば、第2に厳密な空燃比制御
により、排ガス中の酸素濃度を0%とする必要がなく、
安価な触媒を用いて、酸素ガスおよび微量の亜硫酸ガス
の共存下でも、300℃前後の比較的低温度で効率よ
く、ガスエンジン排ガスなどの燃焼排ガス中の窒素酸化
物を分解除去することができる。
According to the present invention, secondly, by strictly controlling the air-fuel ratio, it is not necessary to set the oxygen concentration in the exhaust gas to 0%,
Using an inexpensive catalyst, nitrogen oxides in combustion exhaust gas such as gas engine exhaust gas can be decomposed and removed efficiently at a relatively low temperature of around 300 ° C. even in the coexistence of oxygen gas and a slight amount of sulfurous acid gas. ..

【0015】本発明によれば、第3に安価で、製造が容
易であり、選択性にすぐれ長期にわたって、安定した高
活性を保持することが可能である、ガスータービン排ガ
ス、ガスエンジン排ガス、ガソリンエンジン排ガス、デ
ィーゼルエンジン排ガスなどの燃焼排ガス中の窒素酸化
物を除去するのに好適な触媒が提供される。
According to the present invention, thirdly, gas-turbine exhaust gas, gas engine exhaust gas, and gasoline, which are inexpensive, easy to manufacture, excellent in selectivity, and capable of maintaining stable high activity for a long period of time. A catalyst suitable for removing nitrogen oxides in combustion exhaust gas such as engine exhaust gas and diesel engine exhaust gas is provided.

【0016】本発明によれば、第4に300℃前後の比
較的低温度でガスタービン排ガス、ガスエンジン排ガ
ス、ガソリンエンジン排ガス、ディーゼルエンジン排ガ
スなどの燃焼排ガス中の窒素酸化物を分解除去できるた
め、プロセスのコンパクト化、低廉化などの効果が得ら
れる。
According to the present invention, fourthly, nitrogen oxides in combustion exhaust gas such as gas turbine exhaust gas, gas engine exhaust gas, gasoline engine exhaust gas, diesel engine exhaust gas can be decomposed and removed at a relatively low temperature of around 300 ° C. The advantages are that the process is compact and the cost is low.

【0017】[0017]

【実施例】以下実施例および比較例により本発明をさら
に詳しく説明する。
The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0018】実施例1 塩化鉄 FeCl3 ・6H2 O 5.39g、硫酸(純
度98%)10.1ml、塩化ナトリウムNaCl 3
5.85g、テトラプロピルアンモニウムブロマイド
(C3 7 4 NBr17.25gおよび蒸留水180
gよりなるA液と、水ガラス(SiO2 :28.93重
量%,Na2 O:9.28重量%)207gおよび蒸留
水135gよりなるB液と、16.3重量%の食塩水7
45g、硫酸(純度98%)4.63ml、テトラプロピ
ルアンモニウムブロマイド6.48g、水酸化ナトリウ
ム7.2gよりなるC液との3種の溶液を用意した。前
記C液を1000mlのビーカーにいれ、室温下でpHを1
1に保ち、激しく撹拌しながらA液とB液とを滴下して
混合した。滴下終了後、混合液をオートクレーブに移
し、撹拌をおこなわずに、1.5℃/分の昇温速度で1
60℃まで加熱昇温させ、その後0.2℃/分の昇温速
度で210℃まで加熱昇温させた。冷却後、生成物を塩
素イオンが検出されなくなるまで水で洗浄し、その後1
10℃で一昼夜乾燥した。ついで、540℃で3.5時
間空気中で焼成した。続いてこの焼成体を濃度が1モル
のNH4 NO3 溶液に入れ80℃で1時間浸漬後水洗し
た。この操作を3回行いアンモニウム型に変換した。そ
の後室温で水洗した後、110℃で一昼夜乾燥し、さら
に空気中で540℃で3.5時間焼成する方法により、
H−Fe−シリケート(Si/Fe=50)(以下プロ
トン型鉄シリケート50あるいは単に鉄シリケート50
と略称することがある)触媒を得た。かくして得られた
鉄シリケート50触媒を常圧固定床流通式反応装置に充
填し、NOガス1000ppm 、プロピレン1000ppm
、酸素ガス10vol %およびN2 バランスの混合ガス
を、反応温度300℃、およびW/F(触媒重量/ガス
流量比)0.3g・sec・cm-3の条件下に、該触媒上
で接触反応を行ない、NOガスの転化率の経時変化を求
めた。反応ガスの分析には、化学発光式NOX分析計お
よびガスクロマトグラフィーを用いた。得られた結果を
図1に示す。約1時間後に定常活性が得られた。
Example 1 5.39 g of iron chloride FeCl 3 .6H 2 O, 10.1 ml of sulfuric acid (purity 98%), sodium chloride NaCl 3
5.85 g, tetrapropylammonium bromide (C 3 H 7 ) 4 NBr 17.25 g and distilled water 180
Solution A consisting of g, water glass (SiO 2 : 28.93% by weight, Na 2 O: 9.28% by weight) 207 g, and solution B consisting of 135 g of distilled water, and 16.3% by weight of saline 7
Three kinds of solutions were prepared: 45 g, sulfuric acid (purity 98%) 4.63 ml, tetrapropylammonium bromide 6.48 g, and sodium hydroxide 7.2 g. Add the solution C to a 1000 ml beaker and adjust the pH to 1 at room temperature.
The solution A and the solution B were added dropwise with vigorous stirring. After completion of dropping, the mixed solution was transferred to an autoclave, and was stirred at a temperature rising rate of 1.5 ° C./min for 1 hour.
The temperature was raised to 60 ° C and then to 210 ° C at a rate of 0.2 ° C / min. After cooling, the product is washed with water until no chlorine ions are detected, then 1
It was dried overnight at 10 ° C. Then, it was baked in air at 540 ° C. for 3.5 hours. Subsequently, the fired body was placed in a NH 4 NO 3 solution having a concentration of 1 mol, immersed at 80 ° C. for 1 hour and washed with water. This operation was repeated 3 times to convert to ammonium type. After that, after washing with water at room temperature, it is dried at 110 ° C for a whole day and night, and further baked in air at 540 ° C for 3.5 hours.
H-Fe-silicate (Si / Fe = 50) (hereinafter referred to as proton type iron silicate 50 or simply iron silicate 50
The catalyst was obtained. The iron silicate 50 catalyst thus obtained was charged into an atmospheric fixed bed flow reactor, and NO gas 1000 ppm, propylene 1000 ppm.
, 10% by volume of oxygen gas and a mixed gas of N 2 balance on the catalyst under the conditions of a reaction temperature of 300 ° C. and W / F (catalyst weight / gas flow rate ratio) of 0.3 g · sec · cm −3. The reaction was carried out and the change with time of the conversion rate of NO gas was obtained. The analysis of the reaction gas was used chemiluminescent NO X analyzers and gas chromatography. The obtained results are shown in FIG. Steady activity was obtained after about 1 hour.

【0019】実施例2 A液中の塩化鉄の量を10.8gとした以外、実施例1
と同様にして、H−Fe−シリケート(Si/Fe=2
5)(以下プロトン型鉄シリケート25あるいは単に鉄
シリケート25と略称する)触媒を用いた以外、実施例
1と同様の実験を行なった。得られた結果を図1に示
す。約1時間後に定常活性が得られた。
Example 2 Example 1 was repeated except that the amount of iron chloride in the liquid A was changed to 10.8 g.
In the same manner as in H-Fe-silicate (Si / Fe = 2
5) The same experiment as in Example 1 was carried out except that a catalyst (hereinafter referred to as "proton-type iron silicate 25 or simply iron silicate 25") was used. The obtained results are shown in FIG. Steady activity was obtained after about 1 hour.

【0020】比較例1 Na−ZSM−5型ビオライト(東ソー製、Si/Al
=25)5gを1モルのNH4 NO3 溶液に入れ80℃
で1時間浸漬・水洗した。この操作を3回行い室温で水
洗した後、110℃で一昼夜乾燥し、さらに空気中で5
40℃で3.5時間焼成する方法により、H−ZSM−
5(Si/Al=25):プロトン型のZSM−5触媒
を得た。該H−ZSM−5触媒を用いる以外、実施例1
と同様の実験を行なった。得られた結果を図1に示す。
失活した触媒を500℃で酸素処理したところ、CO2
が生成し、触媒活性が完全に復活した。このことから、
触媒の失活は炭素析出によると考えられる。
Comparative Example 1 Na-ZSM-5 type biolite (manufactured by Tosoh Corporation, Si / Al
= 25) 5g was put in a 1 molar NH 4 NO 3 solution and the temperature was 80 ° C.
It was soaked in water for 1 hour and washed with water. This operation was repeated 3 times, washed with water at room temperature, dried at 110 ° C for 24 hours, and then dried in air.
By the method of firing at 40 ° C. for 3.5 hours, H-ZSM-
5 (Si / Al = 25): A proton type ZSM-5 catalyst was obtained. Example 1 except that the H-ZSM-5 catalyst was used.
The same experiment was performed. The obtained results are shown in FIG.
When the deactivated catalyst was treated with oxygen at 500 ° C., CO 2
Was generated and the catalytic activity was completely restored. From this,
The deactivation of the catalyst is considered to be due to carbon deposition.

【0021】比較例2 A液中の塩化鉄のかわりにホウ酸(H3 BO3 )1.2
32gを使用した以外、実施例1と同様にしてH−B−
シリケート(Si/B=50):プロトン型ホウ素シリ
ケート触媒を得た。該H−B−シリケート触媒を用いる
以外、実施例1と同様の実験を行なった。得られた結果
を図1に示す。
Comparative Example 2 Boric acid (H 3 BO 3 ) 1.2 was used instead of iron chloride in the liquid A.
H-B- in the same manner as in Example 1 except that 32 g was used.
Silicate (Si / B = 50): A proton type boron silicate catalyst was obtained. The same experiment as in Example 1 was conducted except that the HB-silicate catalyst was used. The obtained results are shown in FIG.

【0022】比較例3 A液中の塩化鉄のかわりに硫酸ガリウム〔Ga2(SO4)
3〕・nH2 O4.2gを使用した以外実施例1と同様
にしてH−Ga−シリケート(Si/Ga=50):プ
ロトン型ガリウムシリケート触媒を得た。該H−Ga−
シリケート触媒を用いた以外実施例1と同様の実験を行
なった。得られた結果を図1に示す。触媒の失活は、比
較例1と同様、炭素析出によるものと考えられる。
Comparative Example 3 Instead of iron chloride in the liquid A, gallium sulfate [Ga 2 (SO 4 )
3 ] · nH 2 O was used in the same manner as in Example 1 except that 4.2 g of H-Ga-silicate (Si / Ga = 50): proton-type gallium silicate catalyst was obtained. The H-Ga-
The same experiment as in Example 1 was conducted except that a silicate catalyst was used. The obtained results are shown in FIG. The deactivation of the catalyst is considered to be due to carbon deposition as in Comparative Example 1.

【0023】実施例3 H−Fe−シリケート−25触媒を用い、反応温度とN
O転化率との関係について実施例1と同様の実験を行な
い、定常活性の温度依存性を図2に示す。300℃前後
の比較的低温度で良好な定常活性が得られた。300℃
を超えて反応温度が上昇すると共にNO除去率は低下す
るが、600℃の活性試験後に再びそれ以下の温度で測
定すると、NO除去活性が再現した。このことから高温
での活性低下は触媒の劣化によるものではないことは明
らかである。
Example 3 Using H-Fe-silicate-25 catalyst, reaction temperature and N
The same experiment as in Example 1 was conducted for the relationship with the O conversion rate, and the temperature dependence of the stationary activity is shown in FIG. Good steady activity was obtained at a relatively low temperature around 300 ° C. 300 ° C
The NO removal rate decreased as the reaction temperature exceeded the above range, but the NO removal activity was reproduced when measured again at a temperature lower than that after the activity test at 600 ° C. From this, it is clear that the decrease in activity at high temperature is not due to the deterioration of the catalyst.

【0024】比較例4 H−ZSM−5触媒を用いた以外、実施例3と同様の実
験を行なった。得られた結果を図2に示す。約475℃
以上では定常な活性を示したが、それよりも低い温度域
では失活した。
Comparative Example 4 The same experiment as in Example 3 was conducted except that the H-ZSM-5 catalyst was used. The obtained results are shown in FIG. About 475 ° C
The above activity showed steady activity, but it was deactivated in the lower temperature range.

【0025】実施例4 NOガス1000ppm 、酸素ガス10容量%およびバラ
ンスN2 ガスよりなる原料ガスをプロピレン1000pp
m およびH−Fe−シリケート(Si/Fe=25)触
媒の存在下、反応温度300℃およびW/F=0.3g
・sec・cm-3の条件下に、プロピレンによるNOガス
の接触分解反応を行ない、該反応におけるプロピレンに
ついて、式: CO+CO2 収率(CO×収率)= ([CO]+[CO2 ])/([C3 6 ]×3)×100% (式中[CO]は触媒層出口のCOガス量(モル)であ
り、[CO2 ]は触媒層出口のCO2 ガス量(モル)で
あり、[C3 6 ]は触媒層入口のプロピレン量(モ
ル)を表わす)で表わされるCOX 収率、すなわちカー
ボンバランスを求めた。得られた結果を図3に示す。プ
ロピレンが完全にガス化され、カーボンの生成が全くな
く、本触媒はカーボンで被毒されることがないことを示
している。
Example 4 A raw material gas consisting of 1000 ppm NO gas, 10% by volume oxygen gas and balanced N 2 gas was used as propylene 1000 pp.
m and H-Fe-silicate (Si / Fe = 25) catalyst in the presence of a reaction temperature of 300 ° C. and W / F = 0.3 g
A catalytic decomposition reaction of NO gas with propylene is carried out under the condition of sec · cm −3 , and propylene in the reaction is expressed by the formula: CO + CO 2 yield (CO × yield) = ([CO] + [CO 2 ] ) / ([C 3 H 6 ] × 3) × 100% (where [CO] is the amount of CO gas (mol) at the catalyst layer outlet, and [CO 2 ] is the amount of CO 2 gas (mol) at the catalyst layer outlet. ) And [C 3 H 6 ] represents the amount (mol) of propylene at the catalyst layer inlet), and the CO x yield, that is, the carbon balance was determined. The obtained results are shown in FIG. Propylene is completely gasified and no carbon is formed, indicating that the catalyst is not poisoned by carbon.

【0026】比較例5 Na−ZSM−5型ゼオライト(東ソー製、Si/Al
=25)4gを水洗し、0.1モル/lの酢酸銅水溶液
400ccに浸漬後再び水洗した。この操作を3回行なっ
た後、室温で一昼夜乾燥し、さらに空気中で540℃で
3.5時間焼成する方法で得られたCu−ZSM−5
(Si/Al=25)触媒を用いた以外、実施例4と同
様の実験を行なった。得られた結果を図3に示す。添加
されたプロピレンの1部は、触媒活性の低下の原因とな
るカーボンを生成しているものと考えられる。
Comparative Example 5 Na-ZSM-5 type zeolite (manufactured by Tosoh Corporation, Si / Al
= 25) 4 g was washed with water, immersed in a 0.1 mol / l copper acetate aqueous solution 400 cc, and then washed again with water. After performing this operation 3 times, Cu-ZSM-5 obtained by a method of drying at room temperature for one day and then calcining in air at 540 ° C. for 3.5 hours.
The same experiment as in Example 4 was performed except that a (Si / Al = 25) catalyst was used. The obtained results are shown in FIG. It is considered that a part of the added propylene produces carbon which causes a decrease in catalytic activity.

【0027】比較例6 H−ZSM−5(Si/Al=25)触媒を用いた以
外、実施例4と同様の実験を行なった。得られた結果を
図3に示す。添加したプロピレンの大部分が触媒活性の
低下の原因となるカーボンを生成しているものと考えら
れる。
Comparative Example 6 The same experiment as in Example 4 was carried out except that H-ZSM-5 (Si / Al = 25) catalyst was used. The obtained results are shown in FIG. It is considered that most of the added propylene is producing carbon which causes a decrease in catalytic activity.

【0028】比較例7 比較例5と同様の方法で得られたCu−ZSM−5(S
i/Al=25):銅イオン交換ZSM−5触媒を用い
た以外、実施例4と同様の実験を行なった。得られた結
果を実施例4の結果と共に図4に示す。300℃前後の
比較的低温度では両方共ほぼ同等のNO転化率を示し
た。
Comparative Example 7 Cu-ZSM-5 (S obtained by the same method as in Comparative Example 5
i / Al = 25): The same experiment as in Example 4 was performed except that a copper ion exchange ZSM-5 catalyst was used. The obtained results are shown in FIG. 4 together with the results of Example 4. At relatively low temperatures around 300 ° C., both showed almost the same NO conversion rate.

【0029】実施例5 亜硫酸ガス240ppm を共存させた以外、実施例4と同
様の実験を行なった。得られた結果を図5に示す。亜硫
酸ガスの共存しない場合と実質上同様な結果が得られ、
特に300℃前後の比較的低温度で良好なNO転化率を
示した。
Example 5 The same experiment as in Example 4 was carried out except that 240 ppm of sulfurous acid gas was allowed to coexist. The obtained results are shown in FIG. The result is substantially the same as when sulfurous acid gas does not coexist,
Particularly, at a relatively low temperature around 300 ° C., a good NO conversion rate was shown.

【0030】比較例8 亜硫酸ガス240ppm を共存させた以外、比較例7と同
様の実験を行なった。得られた結果を図5に示す。40
0℃程度の比較的高温においては良好なNO転化率を示
したが、300℃程度の比較的低温でNO転化率が著し
く低下し、亜硫酸ガスの共存の影響を受けることがわか
った。
Comparative Example 8 The same experiment as in Comparative Example 7 was conducted except that 240 ppm of sulfurous acid gas was allowed to coexist. The obtained results are shown in FIG. 40
It was found that the NO conversion was excellent at a relatively high temperature of about 0 ° C., but the NO conversion was remarkably reduced at a relatively low temperature of about 300 ° C., and it was found to be affected by the coexistence of sulfurous acid gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例における各種メタ
ロシリケート触媒について、NO転化率の経時変化を示
すグラフである。
FIG. 1 is a graph showing changes in NO conversion with time for various metallosilicate catalysts in Examples and Comparative Examples of the present invention.

【図2】本発明の実施例および比較例における触媒の定
常活性を示すNO転化率と反応温度との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the NO conversion showing the steady activity of the catalyst and the reaction temperature in Examples and Comparative Examples of the present invention.

【図3】本発明の実施例および比較例における各種触媒
について、添加プロピレンに対するCO+CO2 収率の
経時変化を示すグラフである。
FIG. 3 is a graph showing changes with time in CO + CO 2 yield with respect to added propylene for various catalysts in Examples and Comparative Examples of the present invention.

【図4】本発明の実施例および比較例における触媒につ
いて、亜硫酸ガスが共存しない場合のNO転化率と反応
温度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the NO conversion rate and the reaction temperature in the case where sulfurous acid gas does not coexist for the catalysts of Examples and Comparative Examples of the present invention.

【図5】本発明の実施例および比較例における触媒につ
いて、亜硫酸ガスが共存する場合のNO転化率と反応温
度との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the NO conversion rate and the reaction temperature when sulfurous acid gas coexists in the catalysts of Examples and Comparative Examples of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物、酸素ガスおよび必要に応じ
て亜硫酸ガスを含有する燃焼排ガスを、鉄シリケート触
媒および炭化水素還元剤の存在下に接触反応させて該窒
素酸化物を分解除去することを特徴とする燃焼排ガス中
の窒素酸化物の除去方法。
1. A method for catalytically removing combustion oxides containing nitrogen oxides, oxygen gas and sulfurous acid gas in the presence of an iron silicate catalyst and a hydrocarbon reducing agent to decompose and remove the nitrogen oxides. A method for removing nitrogen oxides in combustion exhaust gas, comprising:
【請求項2】 窒素酸化物、酸素ガスおよび必要に応じ
て亜硫酸ガスを含有する燃焼排ガスを、鉄シリケート触
媒およびプロピレンの存在下、250〜350℃の反応
温度で反応させて該窒素酸化物を分解除去することを特
徴とする請求項1記載の燃焼排ガス中の窒素酸化物の除
去方法。
2. A flue gas containing nitrogen oxides, oxygen gas and optionally sulfurous acid gas is reacted at a reaction temperature of 250 to 350 ° C. in the presence of an iron silicate catalyst and propylene to remove the nitrogen oxides. The method for removing nitrogen oxides from combustion exhaust gas according to claim 1, characterized in that the method is carried out by decomposition and removal.
【請求項3】 該反応温度が280〜320℃の範囲に
ある請求項2記載の燃焼排ガス中の窒素酸化物の除去方
法。
3. The method for removing nitrogen oxides in combustion exhaust gas according to claim 2, wherein the reaction temperature is in the range of 280 to 320 ° C.
【請求項4】 該鉄シリケート触媒が、シリケート骨格
中に鉄原子を置換固溶させた構造を有し、10〜60の
Si/Fe比を有する請求項1記載の燃焼排ガス中の窒
素酸化物の除去方法。
4. The nitrogen oxide in the combustion exhaust gas according to claim 1, wherein the iron silicate catalyst has a structure in which iron atoms are substituted and solid-solved in a silicate skeleton and has a Si / Fe ratio of 10 to 60. Removal method.
【請求項5】 請求項1〜3の何れかの方法に用いられ
る鉄シリケート触媒。
5. An iron silicate catalyst used in the method according to claim 1.
JP3144209A 1991-05-21 1991-05-21 Method and catalyst for removing nitrogen oxide in combustion exhaust gas Pending JPH05154349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3144209A JPH05154349A (en) 1991-05-21 1991-05-21 Method and catalyst for removing nitrogen oxide in combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3144209A JPH05154349A (en) 1991-05-21 1991-05-21 Method and catalyst for removing nitrogen oxide in combustion exhaust gas

Publications (1)

Publication Number Publication Date
JPH05154349A true JPH05154349A (en) 1993-06-22

Family

ID=15356770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3144209A Pending JPH05154349A (en) 1991-05-21 1991-05-21 Method and catalyst for removing nitrogen oxide in combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPH05154349A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039393A2 (en) * 2007-09-19 2009-03-26 Comrie Douglas C Methods and devices for reducing hazardous air pollutants
EP2072128A1 (en) 2007-12-18 2009-06-24 Tosoh Corporation Catalyst for reducing nitrogen oxides and process for reducing nitrogen oxides
US7906086B2 (en) 2006-03-10 2011-03-15 Comrie Douglas C Carbon dioxide sequestration materials and processes
WO2011078149A1 (en) 2009-12-22 2011-06-30 東ソー株式会社 Novel metallosilicate, production method thereof, nitrogen oxide purification catalyst, production method thereof, and nitrogen oxide purification method making use thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906086B2 (en) 2006-03-10 2011-03-15 Comrie Douglas C Carbon dioxide sequestration materials and processes
US8105558B2 (en) 2006-03-10 2012-01-31 C-Quest Technologies, LLC Carbon dioxide sequestration materials and processes
US8367025B2 (en) 2006-03-10 2013-02-05 C-Quest Technologies LLC Carbon dioxide sequestration materials and processes
WO2009039393A2 (en) * 2007-09-19 2009-03-26 Comrie Douglas C Methods and devices for reducing hazardous air pollutants
WO2009039393A3 (en) * 2007-09-19 2009-10-22 Comrie Douglas C Methods and devices for reducing hazardous air pollutants
US7993616B2 (en) 2007-09-19 2011-08-09 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
US8246727B2 (en) 2007-09-19 2012-08-21 C-Quest Technologies, L.L.C. Methods and devices for reducing hazardous air pollutants
US8506916B2 (en) 2007-09-19 2013-08-13 C-Quest Technologies LLC Methods and devices for reducing hazardous air pollutants
EP2072128A1 (en) 2007-12-18 2009-06-24 Tosoh Corporation Catalyst for reducing nitrogen oxides and process for reducing nitrogen oxides
US7794680B2 (en) 2007-12-18 2010-09-14 Tosoh Corporation Nitrogen oxide-reducing catalyst and method for reducing nitrogen oxide
WO2011078149A1 (en) 2009-12-22 2011-06-30 東ソー株式会社 Novel metallosilicate, production method thereof, nitrogen oxide purification catalyst, production method thereof, and nitrogen oxide purification method making use thereof
US9675935B2 (en) 2009-12-22 2017-06-13 Tosoh Corporation Metallosilicates, processes for producing the same, nitrogen oxide removal catalyst, process for producing the same, and method for removing nitrogen oxide with the same

Similar Documents

Publication Publication Date Title
US5879645A (en) Method for removing nitrogen oxides in exhaust gas by selective catalytic reduction and catalyst for reduction of nitrogen oxides
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP2529739B2 (en) Exhaust gas purification catalyst and method
JPH05154349A (en) Method and catalyst for removing nitrogen oxide in combustion exhaust gas
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2605956B2 (en) Exhaust gas purification catalyst
AU2003244103A1 (en) Catalyst and method for clarifying exhaust gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3298133B2 (en) Method for producing zeolite containing cobalt and palladium and method for purifying exhaust gas
JPH01247710A (en) Purifying device for automobile exhaust
JPH0679140A (en) Method for purifying combustion exhaust gas and catalyst using the method
JP2601018B2 (en) Exhaust gas purification catalyst
JP3110921B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3298115B2 (en) Method for producing exhaust gas purifying catalyst
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
KR100408503B1 (en) Catalyst for purifying exhaus gas of vehicle
JPH08117558A (en) Formation of nitrogen dioxide
KR0183620B1 (en) Nitrogen oxide reducing catalyst
JP3579745B2 (en) Exhaust gas purification method
JPH04193348A (en) Catalyst for purification of exhaust gas
JPH06210171A (en) Denitration catalyst
JP3366342B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3087320B2 (en) Exhaust gas purification method
JPH06262039A (en) Method for purification of exhaust combustion gas and catalyst used for the method