JPH0442064B2 - - Google Patents

Info

Publication number
JPH0442064B2
JPH0442064B2 JP63049074A JP4907488A JPH0442064B2 JP H0442064 B2 JPH0442064 B2 JP H0442064B2 JP 63049074 A JP63049074 A JP 63049074A JP 4907488 A JP4907488 A JP 4907488A JP H0442064 B2 JPH0442064 B2 JP H0442064B2
Authority
JP
Japan
Prior art keywords
catalyst
silver
oxide
metal
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63049074A
Other languages
Japanese (ja)
Other versions
JPH01224047A (en
Inventor
Hideaki Hamada
Yoshiaki Kindaichi
Tatsuhiko Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63049074A priority Critical patent/JPH01224047A/en
Publication of JPH01224047A publication Critical patent/JPH01224047A/en
Publication of JPH0442064B2 publication Critical patent/JPH0442064B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、各種排気ガス中の健康に有害な窒素
酸化物(一酸化窒素以下NOという。)を直接分
解し低減する触媒に関するものである。 従来、触媒を用い排気ガス中のNOを低減する
方法は知られている。例えば、ガソリンエンジン
からの排気ガスのNOを同じに存在する一酸化炭
素、炭化水素との反応により還元し除去する方法
は三元触媒方としてすでにガソリン自動車で実用
されている。また、ボイラーなどの大型定置式排
出源からの排気ガスについてはアンモニアを外部
から添加しNOを低減する選択的NO還元法が稼
働しておりある程度の効果をあげている。しかな
がら、前者の方法は酸素濃度の極めて低いガソリ
ンエンジンからの排気ガスにのみ適用可能であ
り、また後者の方法はアンモニアを用いるため小
型定置式排出源や移動発生源に使用することは取
扱上困難である。従つて、小型デイーゼルエンジ
ンなどの排気ガス中のNOを除去することは技術
的に不可能であつた。 これに対してNOを直接触媒により無害な窒素
あるいは亜酸化窒素と酸素に分解する方法はどの
ような排出源に対しても適用できる点で理想的で
ある。NO直接分解触媒としてはすでに白金など
の貴金属担持触媒やいくつかの金属酸化物触媒が
活性であることは公知である(J.W.
Hightpwer,”Catalytic Chemistry of Oxides”
(Edit.by R.L.Klimisch and J.G.Larson).
Plenum Press,New York(1975),p.63)。更
に、ある種のペロブスカイト系複合酸化物触媒
(新重光、化学技術研究所報告、75,83(1980))
や金属担持ゼオライト触媒(岩本正和,J.Chem.
Soc.,chem.Commun.,1986,1272)がNO分解
活性を示すことも知らせている。しかしながら、
実際の排気ガスの浄化に使用するためには触媒活
性が低く実用化の見通しがない状況であつた。 本発明者らはNOを分解する高活性触媒を開発
するために酸化物系触媒に対する各種助触媒の効
果について鋭意研究を重ねた結果、銀を助触媒と
することによつてNO分解活性が大幅に向上する
ことを見い出し本発明を成すに至つた。 すなわち、本発明方法は各種排気ガス中のNO
を分解低減する触媒として、助触媒として銀を含
有する金属酸化物触媒を用いる方法である。NO
の分解のために通常不活性とされる前述の元素を
助触媒として用いるという事情は極めて驚くべき
ことであり予見されなかつたことであつた。 本発明で用いる酸化物触媒の主触媒金属として
は通常NO分解活性を有する金属の酸化物であれ
ばどのようなものであつてもよく、例えば第1、
第2、第3周期の遷移金属酸化物をあげるこがで
きる。なかでも本来比較的高い触媒活性を有する
コバルト、鉄、ニツケルの酸化物が好ましい。 本発明のための触媒は銀を含有する酸化物系触
媒であればいかなる方法で調製したものであつて
も用いることができる。例えば、主触媒金属酸化
物の銀の塩を含浸し処理して調製する含浸法、両
成分を含む化合物を混練して処理し調製する混練
法、両成分を含む溶液に沈殿剤を加えて得られる
固形物を処理し調製する共沈法などが用いられる
が、共沈法が最も適当である。また場合によつて
は反応に不活性な担体を用いてよい。触媒中の助
触媒金属である銀の主触媒金属に対する比率は広
い範囲で変えることができる。一般的には0.1〜
50%、好ましくは1〜30%の値である。 共沈法で本発明方法の触媒を作るための主触媒
金属及び助触媒の銀の出発物質は水に可溶なもの
であればいかなる種類の化合物であつてもよく、
例えば硝酸塩、有機酸塩、ハロゲン化物、各種錯
化合物が用いられる。触媒製造のためには主触媒
金属と銀を含む混合水溶液に沈殿剤の水溶液を滴
下してまず固形物を得る。水溶液の金属濃度はい
かなる値でもよい。沈殿剤としてはアルカリ性物
質が適当で例えば炭酸ナトリウム、炭酸水素ナト
リウム、炭酸カリウム、炭酸水素カリウム、水酸
化ナトリウム、水酸化カリウム、炭酸アンモニウ
ムなど用いられる。沈殿剤の量は沈殿が完全に生
成する以上の量であればよい。沈殿を得るための
温度は何度であつもよいが室温が望ましい。得ら
れた固形物は濾過し水でよく洗浄、乾燥し、最後
に空気気流中で焼成して触媒が得られる。空気焼
成温度は200℃〜900℃の間、好ましくは300℃〜
700℃である。 本発明方法の実施のためには、NOを含むガス
を触媒上に導く。反応温度は一般に300℃〜900℃
の間、好ましくは400℃〜700℃である。 温度は高いほどNOの分解率が高いが、温度が
高すぎると触媒の劣化が起こり好ましくないので
この両者の因子を考慮して決めるのが合理的であ
る。 本発明の方法によれば、従来のNO分解触媒の
活性を大きく上回る触媒を調製することによつて
触媒による低減が困難であつた種々の排気ガス中
のNOを分解除去することができ、大気の浄化に
与える影響は極めて大きい。 次に実施例により、本発明を更に詳細に説明す
る。 実施例 1 硝酸コバルト(Co(No32・6H2O)20.37gと
硝酸銀(AgNO3)0.60gを純水に溶解して100ml
とし、マグネチツクスターラーで攪拌しながら炭
酸ナトリウム(Na2Co3)8.50gの50ml水溶液を
1時間で滴下し沈殿を生成させた。更に1時間攪
拌した後、遠心分離機で沈殿を分離した。得られ
た固形物は純水で5回以上洗浄した後、乾燥器中
100℃で終夜乾燥して粉砕し、空気気流中で焼成
して触媒を調製した。焼成条件は100℃〜300℃ま
で毎分1℃、300℃〜400℃まで毎分4.3℃で昇温
し、400℃に4時間保つた。この場合の銀のコバ
ルトに対するモル比は1/20である。 このようにして調製した酸化コバルト−銀触媒
を1gとり常圧流通式反応装置に充填し、温度を
上げながらNO3.13%を含むヘリウムガスを毎分
30ml流してNOの窒素への分解率を調べた。反応
ガスの分析はガスクロマトグラフを用いた。その
結果は、実施例1として表1に示した。 比較例 1 市販の99.9%三二酸化コバルトを3gとつてこ
れを触媒とし実施例1と同様にしてNOの分解率
を調べた結果を比較例1として表1に示した。触
媒量を考慮すると実施例1のコバルト−銀触媒の
活性が高いことが明らかである。 比較例 2 実施例1と同様にして銀を含まない酸化コバル
ト単独触媒を調製し、1gとつて反応を行なつた
結果を比較例2として表1に示した。実施例1と
比べると銀を複合させることにより活性が大きく
向上していることがわかる。
The present invention relates to a catalyst that directly decomposes and reduces nitrogen oxides (nitrogen monoxide, hereinafter referred to as NO) that are harmful to health in various exhaust gases. Conventionally, methods for reducing NO in exhaust gas using catalysts have been known. For example, a method of reducing and removing NO in exhaust gas from a gasoline engine by reacting with carbon monoxide and hydrocarbons that are also present is already in practical use in gasoline-powered automobiles as a three-way catalyst method. In addition, for exhaust gas from large stationary sources such as boilers, a selective NO reduction method that reduces NO by adding ammonia externally is in operation and has achieved some degree of effectiveness. However, the former method is only applicable to exhaust gas from gasoline engines with extremely low oxygen concentrations, and the latter method uses ammonia, so it is difficult to use it for small stationary or mobile sources. Have difficulty. Therefore, it has been technically impossible to remove NO from exhaust gas from small diesel engines and the like. On the other hand, the method of directly decomposing NO into harmless nitrogen or nitrous oxide and oxygen using a catalyst is ideal because it can be applied to any emission source. It is already known that noble metal supported catalysts such as platinum and some metal oxide catalysts are active as NO direct decomposition catalysts (JW
Hightpwer,”Catalytic Chemistry of Oxides”
(Edit.by RLKlimisch and JGLarson).
Plenum Press, New York (1975), p.63). Furthermore, certain perovskite-based composite oxide catalysts (Shinjumitsu, Chemical Technology Research Institute Report, 75, 83 (1980))
and metal-supported zeolite catalysts (Masakazu Iwamoto, J.Chem.
Soc., chem.Commun., 1986, 1272) has also been reported to exhibit NO decomposition activity. however,
The catalytic activity was too low to be used for actual purification of exhaust gas, and there was no prospect of practical use. In order to develop a highly active catalyst that decomposes NO, the present inventors conducted intensive research on the effects of various co-catalysts on oxide catalysts, and found that the use of silver as a co-catalyst significantly increased NO decomposition activity. The present invention has been completed based on the discovery that this can be improved. In other words, the method of the present invention reduces NO in various exhaust gases.
This method uses a metal oxide catalyst containing silver as a co-catalyst to reduce the decomposition of silver. NO.
The situation of using the above-mentioned elements, which are normally inert for the decomposition of , as co-catalysts, was quite surprising and unforeseen. The main catalyst metal of the oxide catalyst used in the present invention may be any metal oxide that normally has NO decomposition activity, such as the first,
Examples include transition metal oxides of the second and third periods. Among these, oxides of cobalt, iron, and nickel, which inherently have relatively high catalytic activity, are preferred. The catalyst for the present invention may be any silver-containing oxide catalyst prepared by any method. For example, the impregnation method involves impregnating and treating a silver salt of the main catalyst metal oxide, the kneading method involves kneading and treating a compound containing both components, and the preparation method involves adding a precipitant to a solution containing both components. The coprecipitation method is the most suitable method, but the coprecipitation method is the most suitable. In some cases, an inert carrier may be used for the reaction. The ratio of promoter metal silver to main catalyst metal in the catalyst can vary within a wide range. Generally 0.1~
50%, preferably 1-30%. The starting materials for the main catalytic metal and co-catalyst silver for preparing the catalyst of the method of the present invention by a coprecipitation method may be any type of compound as long as it is soluble in water.
For example, nitrates, organic acid salts, halides, and various complex compounds are used. To produce a catalyst, a solid substance is first obtained by dropping an aqueous solution of a precipitant into a mixed aqueous solution containing the main catalyst metal and silver. The metal concentration of the aqueous solution may be of any value. As the precipitant, an alkaline substance is suitable, such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide, ammonium carbonate, and the like. The amount of precipitant may be an amount that is sufficient to completely form a precipitate. The temperature for obtaining the precipitate may be any temperature, but room temperature is preferable. The obtained solid substance is filtered, thoroughly washed with water, dried, and finally calcined in a stream of air to obtain a catalyst. Air firing temperature is between 200℃~900℃, preferably 300℃~
The temperature is 700℃. To carry out the process of the invention, a gas containing NO is passed over the catalyst. Reaction temperature is generally 300℃~900℃
between 400°C and 700°C. The higher the temperature, the higher the rate of NO decomposition, but if the temperature is too high, the catalyst will deteriorate, which is undesirable, so it is reasonable to decide by taking both of these factors into consideration. According to the method of the present invention, by preparing a catalyst that greatly exceeds the activity of conventional NO decomposition catalysts, it is possible to decompose and remove NO in various exhaust gases, which has been difficult to reduce with catalysts. The impact it has on purification is extremely large. Next, the present invention will be explained in more detail with reference to Examples. Example 1 20.37 g of cobalt nitrate (Co(No 3 ) 2.6H 2 O) and 0.60 g of silver nitrate (AgNO 3 ) were dissolved in 100 ml of pure water.
Then, while stirring with a magnetic stirrer, 50 ml of an aqueous solution of 8.50 g of sodium carbonate (Na 2 Co 3 ) was added dropwise over 1 hour to form a precipitate. After stirring for an additional hour, the precipitate was separated using a centrifuge. The obtained solid material is washed with pure water at least 5 times and then placed in a dryer.
The catalyst was prepared by drying at 100° C. overnight, grinding, and calcining in a stream of air. The firing conditions were as follows: temperature was raised at 1°C/min from 100°C to 300°C, 4.3°C/min from 300°C to 400°C, and kept at 400°C for 4 hours. In this case, the molar ratio of silver to cobalt is 1/20. 1 g of the cobalt oxide-silver oxide catalyst thus prepared was charged into a normal pressure flow reactor, and helium gas containing NO3.13% was added every minute while increasing the temperature.
The decomposition rate of NO to nitrogen was examined by flowing 30 ml. A gas chromatograph was used to analyze the reaction gas. The results are shown in Table 1 as Example 1. Comparative Example 1 The NO decomposition rate was investigated in the same manner as in Example 1 using 3 g of commercially available 99.9% cobalt sesquioxide as a catalyst. The results are shown in Table 1 as Comparative Example 1. Considering the amount of catalyst, it is clear that the cobalt-silver catalyst of Example 1 has high activity. Comparative Example 2 A silver-free cobalt oxide single catalyst was prepared in the same manner as in Example 1, and 1 g was used to carry out a reaction. The results are shown in Table 1 as Comparative Example 2. As compared with Example 1, it can be seen that the activity is greatly improved by combining silver.

【表】 実施例 2 硝酸鉄(Fe(No33・9H2O)28.28gと硝酸銀
0.60gを純水に溶解して150mlとし、マグネチツ
クスターラーで攪拌しながら炭酸ナトリウム
13.50gの100ml水溶液を1時間で滴下し沈殿を生
成させた。更に1時間攪拌した後、遠心分離機で
沈殿を分離した。得られた固形物は純水で5回以
上洗浄した後、乾燥器中100℃で終夜乾燥して粉
砕し、空気気流中で焼成して酸化鉄−銀触媒を調
製した。焼成条件は実施例1と同様である。 このようにして調製した触媒を2gとり常圧流
通式反応装置に充填し、温度を上げながら3.13%
のNOを含むヘリウムガスを毎分30ml流して反応
させNOの分解率を調べた。その結果は、実施例
2として表2に示した。 比較例 3 市販の99.9%の酸化第2鉄を2gとつてこれを
触媒とし実施例2と同様にしてNOの分解率を調
べた結果を比較例3として表2に示した。
[Table] Example 2 28.28g of iron nitrate (Fe(No 3 ) 3・9H 2 O) and silver nitrate
Dissolve 0.60g in pure water to make 150ml, and add sodium carbonate while stirring with a magnetic stirrer.
A 100 ml aqueous solution of 13.50 g was added dropwise over 1 hour to form a precipitate. After stirring for an additional hour, the precipitate was separated using a centrifuge. The obtained solid was washed with pure water five times or more, dried overnight at 100° C. in a drier, pulverized, and calcined in an air stream to prepare an iron-silver oxide catalyst. The firing conditions were the same as in Example 1. 2g of the catalyst prepared in this way was charged into a normal pressure flow reactor, and while increasing the temperature, 3.13%
The decomposition rate of NO was investigated by flowing 30 ml of helium gas containing NO per minute. The results are shown in Table 2 as Example 2. Comparative Example 3 The NO decomposition rate was investigated in the same manner as in Example 2 using 2 g of commercially available 99.9% ferric oxide as a catalyst, and the results are shown in Table 2 as Comparative Example 3.

【表】 実施例 3 硝酸ニツケル(Ni(No32・6H2O)20.36gと
硝酸銀0.60gを純水に溶解して100mlとし、マグ
ネチツクスターラーで攪拌しながら炭酸ナトリウ
ム8.50gの50ml水溶液を1時間で滴下し沈殿を生
成させた。更に1時間攪拌した後、遠心分離機で
沈殿を分離した。得られた固形物は純水で5回以
上洗浄した後、乾燥器中100℃で終夜乾燥して粉
砕し、空気気流中で焼成して酸化ニツケル−銀触
媒を調製した。焼成条件は実施例1と同様であ
る。 このようにして調製した触媒を2gとり常圧流
通式反応装置に充填し、温度を上げながら3.13%
のNOを流してNOの分解率を調べた。その結果
は、実施例3として表3に示した。 比較例 4 市販の99.9%の酸化ニツケルを2gとつてこれ
を触媒とし実施例4と同様にしてNOの分解率を
調べた結果を比較例4として表3に示した。
[Table] Example 3 20.36 g of nickel nitrate (Ni (No 3 ) 2.6H 2 O) and 0.60 g of silver nitrate were dissolved in pure water to make 100 ml, and while stirring with a magnetic stirrer, 50 ml of an aqueous solution of 8.50 g of sodium carbonate was added. was added dropwise over 1 hour to form a precipitate. After stirring for an additional hour, the precipitate was separated using a centrifuge. The obtained solid was washed with pure water five times or more, dried overnight at 100° C. in a drier, pulverized, and calcined in an air stream to prepare a nickel-silver oxide catalyst. The firing conditions were the same as in Example 1. 2g of the catalyst prepared in this way was charged into a normal pressure flow reactor, and while increasing the temperature, 3.13%
The decomposition rate of NO was investigated by flowing NO. The results are shown in Table 3 as Example 3. Comparative Example 4 The NO decomposition rate was investigated in the same manner as in Example 4 using 2 g of commercially available 99.9% nickel oxide as a catalyst. The results are shown in Table 3 as Comparative Example 4.

【表】【table】

Claims (1)

【特許請求の範囲】 1 銀を助触媒金属として含むコバルト、鉄、若
しくはニツケルの酸化物触媒を用いて窒素酸化物
を分解する方法。 2 触媒を、主触媒金属塩と銀の塩を含む混合水
溶液に沈殿剤を滴下して調製する特許請求の範囲
第1項の方法。
[Claims] 1. A method for decomposing nitrogen oxides using a cobalt, iron, or nickel oxide catalyst containing silver as a promoter metal. 2. The method according to claim 1, wherein the catalyst is prepared by dropping a precipitant into a mixed aqueous solution containing a main catalyst metal salt and a silver salt.
JP63049074A 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide Granted JPH01224047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049074A JPH01224047A (en) 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049074A JPH01224047A (en) 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide

Publications (2)

Publication Number Publication Date
JPH01224047A JPH01224047A (en) 1989-09-07
JPH0442064B2 true JPH0442064B2 (en) 1992-07-10

Family

ID=12820936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049074A Granted JPH01224047A (en) 1988-03-02 1988-03-02 Decomposition catalyst for nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH01224047A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953156A (en) * 1972-09-27 1974-05-23
JPS5035083A (en) * 1973-08-01 1975-04-03
JPS513391A (en) * 1974-06-29 1976-01-12 Asahi Chemical Ind
JPS5116271A (en) * 1974-07-31 1976-02-09 Asahi Chemical Ind
JPS51140870A (en) * 1975-05-30 1976-12-04 Sumitomo Heavy Ind Ltd An exhaust gas treatment process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953156A (en) * 1972-09-27 1974-05-23
JPS5035083A (en) * 1973-08-01 1975-04-03
JPS513391A (en) * 1974-06-29 1976-01-12 Asahi Chemical Ind
JPS5116271A (en) * 1974-07-31 1976-02-09 Asahi Chemical Ind
JPS51140870A (en) * 1975-05-30 1976-12-04 Sumitomo Heavy Ind Ltd An exhaust gas treatment process

Also Published As

Publication number Publication date
JPH01224047A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
JP5185942B2 (en) Vanadium-free catalyst for selective catalytic reduction and process for producing the same
JP2841411B2 (en) How to get hydrogen from ammonia
JP3852969B2 (en) Method for decomposing ammonia in off-gas
JP4381071B2 (en) Method for producing exhaust gas treatment catalyst
JP5305133B2 (en) Nitrogen oxide purification catalyst and method for producing the same
JP2003246624A (en) Method of producing pyrochlore type oxide
JPH0239297B2 (en)
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
CN114832848A (en) Catalyst and preparation method and application thereof
JPH0442064B2 (en)
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP4016193B2 (en) Denitration catalyst
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JP3721112B2 (en) Method for catalytic reduction of nitrogen oxides and catalyst therefor
US3855389A (en) Method of treating exhaust gases of internal combustion engines
JPS61274729A (en) Removal of hydrogen cyanide in exhaust gas
JPH0290947A (en) Manufacture of catalyst for exhaust gas purification
KR0169189B1 (en) Method of preparing cyclohexanol and cyclo-hexanone
JP2619470B2 (en) Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
JPH0474536A (en) Catalyst for decomposing nitrogen oxide
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3711361B2 (en) Nitrogen oxide catalytic reduction removal catalyst and method for producing the same
JP2001162171A (en) Catalyst for purification of exhaust gas and method of purifying exhaust gas
JP3084766B2 (en) Nitrogen oxide decomposition catalyst
JP3320431B2 (en) Nitrogen oxide removal catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term