JPH01216262A - Electrochemical sensor - Google Patents

Electrochemical sensor

Info

Publication number
JPH01216262A
JPH01216262A JP63042853A JP4285388A JPH01216262A JP H01216262 A JPH01216262 A JP H01216262A JP 63042853 A JP63042853 A JP 63042853A JP 4285388 A JP4285388 A JP 4285388A JP H01216262 A JPH01216262 A JP H01216262A
Authority
JP
Japan
Prior art keywords
reaction
solid electrolyte
thickness
electrolyte layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63042853A
Other languages
Japanese (ja)
Other versions
JP2514222B2 (en
Inventor
Koichi Aizawa
浩一 相澤
Keiji Kakinote
柿手 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63042853A priority Critical patent/JP2514222B2/en
Publication of JPH01216262A publication Critical patent/JPH01216262A/en
Application granted granted Critical
Publication of JP2514222B2 publication Critical patent/JP2514222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To increase the ion quantity which is concerned in the ionic conduction and to raise the sensitivity of the sensor by forming the thickness of a solid-state electrolytic layer between reaction parts of a working electrode and a counter electrode so as to become thicker than the sum of the thickness of the reaction parts of the working electrode and the counter electrode part and the thickness of the solid-state electrolytic layer for covering the reaction part. CONSTITUTION:On a rectangular insulating substrate 1, reaction parts 20, 30 and 40 for executing an electrochemical action and a working electrode 2, a counter electrode 3 and a reference electrode 4 consisting of terminal parts 21, 31 and 41, which are connected to an external circuit are provided, and the upper part of each reaction part 20, 30 and 40 and the parts among them are covered with a solid-state electrolytic layer 6. The solid-state electrolytic layer 6 consists of a comparatively thin part 61 on each reaction part 20, 30 and 40, and a pretty thick part 60 between each reaction part, and constituted so that thickness t1 extending from the surface of the insulating substrate 1 to the solid-state electrolytic layer 60 becomes larger than the sum t2 of thickness of the reaction part 20, etc. and thickness of the solid-state electrolytic layer 61 on said part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気化学式センサに関し、詳しくは電解反
応を利用して特定のガス成分等を検出したり定量したり
する、電解型の電気化学式センサに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrochemical sensor, and more specifically, an electrochemical sensor that detects or quantifies a specific gas component using an electrolytic reaction. It is related to sensors.

〔従来の技術〕[Conventional technology]

電解型ガスセンサの一般的な基本構造は、電解質内に作
用極、対極および参照極の3個の電極が設けられてなる
ものであり、その−船釣な作用機構は、作用極に一定の
電圧をかけると、検出対象とするガス成分が作用極で酸
化または還元反応を起こし、このとき生成されたイオン
は電解質内を移動して、対極で還元または酸化反応を起
こすと言うものである。この酸化還元反応に伴い作用極
と対極の間を流れる電流を測定することによって、対象
ガスの検出および定量を行うことができるようになって
いる。
The general basic structure of an electrolytic gas sensor is that three electrodes, a working electrode, a counter electrode, and a reference electrode, are provided in an electrolyte, and its working mechanism is that a constant voltage is applied to the working electrode. When applied, the gas component to be detected undergoes an oxidation or reduction reaction at the working electrode, and the ions generated at this time move within the electrolyte and undergo a reduction or oxidation reaction at the counter electrode. By measuring the current flowing between the working electrode and the counter electrode accompanying this redox reaction, it is possible to detect and quantify the target gas.

なお、反応を起こさせるために必要な作用極の電位は、
検出ガスの成分によって異なるので、検出ガスに応じて
作用極の電位を一定に保つ必要があり、そのため、参照
極を基準にして、作用極に加える電圧を制御している。
The potential of the working electrode required to cause the reaction is
Since the potential of the working electrode varies depending on the components of the detected gas, it is necessary to keep the potential of the working electrode constant depending on the detected gas. Therefore, the voltage applied to the working electrode is controlled with reference to the reference electrode.

このように、作用極の電位を一定値に設定して、検出す
るガス成分を選択する方法のほか、同じセンサでも作用
極°の電位を変えることによって、反応がガス成分ごと
に選択的に行われることを利用して、作用極の電位を変
化させながら検出電流を測定する、いわゆる電位掃引法
によって、目的の検出ガス成分を分離選択する方法も採
用されている。
In this way, in addition to the method of setting the potential of the working electrode to a constant value and selecting the gas component to be detected, the reaction can be performed selectively for each gas component by changing the potential of the working electrode of the same sensor. A method has also been adopted in which the target detection gas component is separated and selected using the so-called potential sweep method, which measures the detection current while changing the potential of the working electrode.

ところで、従来の電解型ガスセンサは、電解質として、
例えばH,So、等の液体電解質を使用しているため、
電解質の経時変化、液漏れ、材料腐食等の問題があり、
厳重な密封構造にしなければならないために、小型化が
困難であり、また、感度や出力が経時的に低下するので
、長期的な安定性に乏しく、寿命が短いこと、さらに、
取り扱いや管理が難しいこと等の欠点があった。
By the way, conventional electrolytic gas sensors use the electrolyte as
For example, since liquid electrolytes such as H, So, etc. are used,
There are problems such as electrolyte change over time, liquid leakage, and material corrosion.
Because it requires a tightly sealed structure, it is difficult to miniaturize it, and its sensitivity and output decrease over time, resulting in poor long-term stability and short lifespan.
There were drawbacks such as difficulty in handling and management.

そこで、液体電解質のかわりに、スルホン化パーフルオ
ロカーボン等の高分子固体電解質を用いたガスセンサが
開発され、例えば、米国特許第4227984号明細書
、同第4265714号明細書あるいは、特開昭53−
115293号公報等に開示されている。
Therefore, instead of liquid electrolytes, gas sensors using solid polymer electrolytes such as sulfonated perfluorocarbons have been developed; for example, U.S. Pat.
It is disclosed in Japanese Patent No. 115293 and the like.

このガスセンサは、固体電解質膜の片面に感知電極(作
用極)と参照電極(参照極)が設けられ、反対面に逆電
極(対極)が設けられており、液体電解質型のものに比
べてコンパクト化され、経時的安定性等の性能の点でも
優れており、取り扱いも容易になっている。
This gas sensor has a sensing electrode (working electrode) and a reference electrode (reference electrode) on one side of the solid electrolyte membrane, and a reverse electrode (counter electrode) on the other side, making it more compact than the liquid electrolyte type. It has excellent performance such as stability over time, and is easy to handle.

しかし、このガスセンサは、Pt、Au等とポリテトラ
フルオロエチレンとの微粒子混合体が担持されたガス透
過性膜からなる電極を、軟質の固体電解質膜に接着する
ようにしているため、製造が面倒であるとともに、超小
型化、センサアレイ化が困難であるという問題があった
However, in this gas sensor, an electrode made of a gas-permeable membrane supporting a fine particle mixture of Pt, Au, etc. and polytetrafluoroethylene is bonded to a soft solid electrolyte membrane, which makes manufacturing difficult. In addition, there was a problem in that it was difficult to miniaturize and form a sensor array.

近年、半導体等の電子回路素子が、プレーナ技術等のマ
イクロ加工技術を利用して超小型化されてきており、こ
のような素子と組み合わせて使用するガスセンサとして
も、−層の超小型化、高性能化が要求されている。
In recent years, electronic circuit elements such as semiconductors have been miniaturized using micro-processing technology such as planar technology, and gas sensors used in combination with such elements have also been developed using ultra-miniaturized layers and high Performance is required.

そこで、本件出願人は、上記した従来技術の問題点を解
消し、半導体素子等と同様のマイクロ加工技術で製造で
きる、プレーナ型のガスセンサを開発した。第8図およ
び第9図に、このようなプレーナ型のガスセンサの構造
例を示しており、絶縁基板1の上面に、作用極2.対極
3および参照極4が設けられ、各種はそれぞれ、電気化
学作用を行う反応部20.30.40と外部回路へ接続
される端子部21,31.41からなり、各種の反応部
20.30.40およびその間を覆って、固体電解質層
6が設けられている。
Therefore, the applicant has developed a planar gas sensor that solves the problems of the prior art described above and can be manufactured using the same microprocessing technology as semiconductor devices. 8 and 9 show structural examples of such a planar type gas sensor, in which a working electrode 2. A counter electrode 3 and a reference electrode 4 are provided, each of which consists of a reaction section 20.30.40 that performs an electrochemical action and a terminal section 21, 31.41 that is connected to an external circuit. A solid electrolyte layer 6 is provided to cover .40 and the space therebetween.

固体電解質層6は、全体が−様な厚さになるように各反
応部20等を薄く覆っており、固体電解質層6の上面は
平坦になっている。したがって、検出ガス等は固体電解
質層6を通過して作用極の反応部20上に拡散し、電気
化学反応を起こすことになる。
The solid electrolyte layer 6 thinly covers each reaction section 20 and the like so that the entire solid electrolyte layer 6 has a -like thickness, and the upper surface of the solid electrolyte layer 6 is flat. Therefore, the detection gas and the like pass through the solid electrolyte layer 6 and diffuse onto the reaction part 20 of the working electrode, causing an electrochemical reaction.

上記ガスセンサは、絶縁基板lの同一面に全ての電極2
.3.4が設けられているので、電極や固体電解質層の
形成を、プレーナ技術等のマイクロ加工技術を利用して
、極めて能率良く加工でき、センサの小型化、高性能化
を図れる等、多くの優れた特徴を有している。
The above gas sensor has all electrodes 2 on the same surface of an insulating substrate l.
.. 3.4, the electrodes and solid electrolyte layers can be formed extremely efficiently using micro-processing technology such as planar technology, making it possible to miniaturize the sensor and improve its performance. It has excellent characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記した固体電解質型のセンサでは、作用極
から対極へのイオン伝導を司る固体電解質は、従来の液
体電解質に比べて、イオン濃度が低くイオンの移動度が
小さいので、センサの電気化学反応系において、作用極
から対極へのイオン移動が非常に遅く律速過程になって
しまう、そのため、検出電流が小さくなってしまい、セ
ンサの検出感度が低いという問題があった。
However, in the solid electrolyte type sensor described above, the solid electrolyte that controls ion conduction from the working electrode to the counter electrode has a lower ion concentration and lower ion mobility than conventional liquid electrolytes, so the electrochemical reaction of the sensor is In this system, the movement of ions from the working electrode to the counter electrode is extremely slow and becomes a rate-limiting process, resulting in a small detection current and a problem in that the detection sensitivity of the sensor is low.

また、固体電解質の比抵抗が、液体、電解質に比べて大
きいため、作用極と対極の間の電気抵抗が大き(なり、
その結果、電気化学反応の時定数が大きくなって、反応
速度が遅くなる問題もある。
In addition, since the specific resistance of solid electrolytes is higher than that of liquid electrolytes, the electrical resistance between the working electrode and the counter electrode is large.
As a result, there is a problem that the time constant of the electrochemical reaction becomes large and the reaction rate becomes slow.

特に、前記した電位掃引法を実施する場合には、反応速
度が遅いと、電位の掃引を速くすることができず、満足
な検出結果が得られない。
In particular, when implementing the above-described potential sweep method, if the reaction rate is slow, the potential cannot be swept quickly and a satisfactory detection result cannot be obtained.

このような欠点を解消するために、第1O図のように、
固体電解質層6の厚みを厚くして、イオン伝導が良好に
行えるようにすることも考えられ  ・たが、反応部2
0等の全体を固体電解質層6で分厚く覆ってしまうので
、検出成分がこの分厚い固体電解質相6を通過して、作
用極2の反応部2゜に拡散して反応を起こすことが困難
になり、かえって検出電流が少なくなってしまい、感度
が低下する。
In order to eliminate these drawbacks, as shown in Figure 1O,
It was also considered to increase the thickness of the solid electrolyte layer 6 to enable good ion conduction, but the reaction section 2
0 etc. is thickly covered with the solid electrolyte layer 6, making it difficult for the detection component to pass through the thick solid electrolyte layer 6, diffuse into the reaction area 2° of the working electrode 2, and cause a reaction. , on the contrary, the detection current decreases and the sensitivity decreases.

そこで、この発明の課題は、固体電解質層内でのイオン
伝導を良好に行えるようにすることによって、検出感度
を高め、反応速度を向上させることにある。
Therefore, an object of the present invention is to improve the detection sensitivity and the reaction rate by enabling good ion conduction within the solid electrolyte layer.

なお、上記説明はすべて、ガスセンサについて行ったが
、上記ガスセンサの構造は、作用極で反応を起こさせる
検出対象を液体中のイオンにすればイオンセンサに適用
できる等、種々の用途における電気化学式検知に同様に
適用できるものであるので、この発明は、ガスセンサを
含めたセンサ一般を対象とする。
Although all of the above explanations have been made regarding gas sensors, the structure of the gas sensor described above can be applied to electrochemical detection in various applications, such as by applying it to an ion sensor if the detection target that causes a reaction at the working electrode is ions in a liquid. This invention is applicable to sensors in general, including gas sensors.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、この発明は、作用極と対極と
の反応部間の固体電解質層の厚みが、作用極および対極
の反応部の厚みと反応部を覆う固体電解質層の厚みの和
よりも厚くなるようにしている。
In order to solve the above problems, the present invention provides that the thickness of the solid electrolyte layer between the reaction parts of the working electrode and the counter electrode is smaller than the sum of the thickness of the reaction parts of the working electrode and the counter electrode and the thickness of the solid electrolyte layer covering the reaction part. I also try to make it thicker.

〔作   用〕[For production]

このように、作用極と対極の反応部間の固体電解層の厚
みを他部分よりも厚くしておくと、作用極から対極まで
のイオン伝導に関与するイオン量が増え、移動度が大き
くなるので、イオン移動が律速過程になることはなく、
検出電流が十分に得られるとともに、作用極と対極の間
の電気抵抗も低くなる。
In this way, if the thickness of the solid electrolyte layer between the reaction part of the working electrode and the counter electrode is made thicker than other parts, the amount of ions involved in ion conduction from the working electrode to the counter electrode will increase, and the mobility will increase. Therefore, ion movement is not the rate-limiting process,
A sufficient detection current can be obtained, and the electrical resistance between the working electrode and the counter electrode is also low.

しかも、反応部間の固体電解質層のみを厚くしており、
反応部個所の固体電解質層の厚みは従来と同様に薄くて
もよいので、検出成分の反応部への拡散や電気化学反応
は、従来と変わりな(良好に行える。
Moreover, only the solid electrolyte layer between the reaction parts is thickened.
Since the thickness of the solid electrolyte layer at the reaction part may be as thin as in the conventional case, the diffusion of the detection component into the reaction part and the electrochemical reaction can be carried out as well as in the conventional case.

〔実 施 例〕〔Example〕

つぎに、この発明を、実施例を示す図面を参照しながら
、以下に詳しく説明する。
Next, the present invention will be described in detail below with reference to drawings showing embodiments.

第1図および第2図は、この発明にかかるガスセンサの
模式的な構・造を示しており、矩形の絶縁基板1の上に
、作用極2.対極3および参照極4が設けられ、各種2
.3.4は、それぞれ電気化学作用を行う反応部20.
30.40と、外部回路へ接続する端子部21,31.
41からなり、各反応部20.30.40の上と、その
間が固体電解質層6で覆われている。このような基本構
成については、従来のガスセンサと同様である。
1 and 2 schematically show the structure of a gas sensor according to the present invention, in which a working electrode 2 is placed on a rectangular insulating substrate 1. A counter electrode 3 and a reference electrode 4 are provided, and various 2
.. 3.4 are reaction sections 20.3 and 3.4, respectively, which perform electrochemical action.
30, 40, and terminal portions 21, 31 . . , which connect to external circuits.
41, and the solid electrolyte layer 6 covers the top and the space between each reaction section 20, 30, 40. This basic configuration is the same as that of a conventional gas sensor.

そして、図示した実施例では、作用極2と対極3の反応
部20.30は、比較的大きな矩形状をなし、その長辺
同士が一定の隙間をあけた状態で対向している。参照極
4の反応部40は、小さな矩形状をなすとともに、上記
作用極と対極の反応部20.30の間に配置されている
。各種の端子部21,31.41は、反応部20,30
.40を覆った固体電解質層6の外側に並置され、外部
回路への接続を行い易くしている。
In the illustrated embodiment, the reaction parts 20.30 of the working electrode 2 and the counter electrode 3 have a relatively large rectangular shape, and their long sides face each other with a constant gap. The reaction section 40 of the reference electrode 4 has a small rectangular shape and is arranged between the reaction sections 20, 30 of the working electrode and the counter electrode. The various terminal parts 21, 31.41 are connected to the reaction parts 20, 30.
.. It is juxtaposed on the outside of the solid electrolyte layer 6 that covers the solid electrolyte layer 40 to facilitate connection to an external circuit.

固体電解質層6は、各反応部20,30.40および、
その間を覆っているとともに、固体電解質N6の厚みが
場所によって異なっている。各反応部20.30.40
の上に相当する個所61では比較的薄く形成され、各反
応部20.30.40の間になる個所60ではかなり部
厚く形成されている0反応部個所の固体電解質層61の
厚みは、検出ガス等が固体電解質層61を迅速に通過し
て反応部20等へ拡散できる程度の薄さに形成されてい
る。これに対し、反応部間の固体電解質層60は、イオ
ン伝導が十分良好に行える程度の厚みに形成される。そ
のため、絶縁基板1の表面から反応部間の固体電解質層
60までの厚み11が、反応部20等の厚みとその上の
固体電解質層61の厚みの和t3よりも大きくなってい
る。
The solid electrolyte layer 6 includes each reaction section 20, 30.40 and
The thickness of the solid electrolyte N6 that covers the space between them varies depending on the location. Each reaction section 20.30.40
The thickness of the solid electrolyte layer 61 at the zero reaction area is relatively thin at the area 61 corresponding to the top, and considerably thick at the area 60 between the reaction areas 20, 30, and 40. The solid electrolyte layer 61 is formed to be thin enough to allow gas and the like to quickly pass through the solid electrolyte layer 61 and diffuse into the reaction section 20 and the like. On the other hand, the solid electrolyte layer 60 between the reaction parts is formed to have a thickness that allows sufficiently good ion conduction. Therefore, the thickness 11 from the surface of the insulating substrate 1 to the solid electrolyte layer 60 between the reaction parts is larger than the sum t3 of the thickness of the reaction part 20 etc. and the thickness of the solid electrolyte layer 61 thereon.

上記のようなガスセンサにおいて、絶・縁基板lは、ア
ルミノ珪酸塩ガラス等、通常のガスセンサあるいは電子
回路素子用の絶縁基板材料が使用される。
In the above-mentioned gas sensor, the insulating substrate l is made of a common insulating substrate material for gas sensors or electronic circuit elements, such as aluminosilicate glass.

作用極2および対極3の材料には白金が使用され、参照
極4の材料には金が好適ム使用されるが、その他の各種
電極材料に変更することもできる、各電極はスパッタリ
ング法などの通常の電極形成手段で形成でき、例えば5
000人程度0厚みで実施される0反応部20等には、
白金黒を着けたり、酸化処理等の活i生化処理を施して
もよい。反応部間の間隔は、狭いほうがイオン伝導が容
易になり、電気抵抗が低下し、例えばll11m程度で
実施される。
Platinum is preferably used as the material for the working electrode 2 and counter electrode 3, and gold is preferably used as the material for the reference electrode 4, but it is also possible to use other various electrode materials. It can be formed by ordinary electrode forming means, for example, 5
For the 0 reaction part 20, etc., which is carried out with 0 thickness for about 000 people,
It may be coated with platinum black or subjected to activating treatment such as oxidation treatment. The narrower the distance between the reaction parts, the easier the ion conduction and the lower the electrical resistance.

固体電解質N6は、例えばスルホン化パーフルオロカー
ボン(商品名Nafion :デュポン社製)等のガス
透過性高分子固体電解質が使用されるが、その他、通常
のガスセンサ等に用いられている各種の固体電解質が使
用でき、例えば、sb、os’ 4H,O,Zr  (
HPO,)t  ’ 4Ht O等も使用できる。
As the solid electrolyte N6, a gas-permeable polymer solid electrolyte such as sulfonated perfluorocarbon (trade name: Nafion, manufactured by DuPont) is used, but other solid electrolytes that are used in ordinary gas sensors can also be used. For example, sb, os' 4H, O, Zr (
HPO, )t'4HtO, etc. can also be used.

固体電解質層6の厚みは、例えば、反応部個所61を約
2pH反応部間60を約20μにして実施されるが、反
応部20.30の間隔、固体電解質の特性、センサの用
途や要求性能を考慮して、適宜厚みに変更することがで
きる。
The thickness of the solid electrolyte layer 6 is, for example, approximately 2 pH at the reaction part 61 and approximately 20 μm between the reaction parts 60, but it depends on the spacing between the reaction parts 20, 30, the characteristics of the solid electrolyte, the application and required performance of the sensor. The thickness can be changed as appropriate by taking this into account.

上記実施例において、第3図に示すように、各種の反応
部20等の厚みを増やすと、反応部20.30等の対向
面積が広くなり、反応部間の固体電解質層60のうち、
より多くの部分が対向面間に配置されることになるので
、反応部20.30間の電気化学反応およびイオン伝導
がより良好になり、感度向上を図ることができる。具体
的な寸法例としては、各種の反応部20等の厚みを5μ
、反応部間の固体電解質N60の厚みを25p1にして
実施される。
In the above embodiment, as shown in FIG. 3, when the thickness of the various reaction parts 20, etc. is increased, the opposing areas of the reaction parts 20, 30, etc. become wider, and the solid electrolyte layer 60 between the reaction parts becomes larger.
Since more parts are arranged between the opposing surfaces, the electrochemical reaction and ion conduction between the reaction parts 20 and 30 become better, and sensitivity can be improved. As a specific example of dimensions, the thickness of various reaction parts 20 etc. is 5 μm.
, the thickness of the solid electrolyte N60 between the reaction parts is set to 25p1.

上記した実施例では、各電極の間の固体電解質層60が
、全て同じように厚く形成されているが、イオン伝導に
とって最も重要な作用極と対極の反応部20.30間の
みを厚く形成しておくだけでも、この発明の効果を発揮
できる。
In the embodiment described above, the solid electrolyte layer 60 between each electrode is formed to have the same thickness, but only the area between the reaction areas 20 and 30 of the working electrode and the counter electrode, which is most important for ion conduction, is formed thick. The effect of this invention can be exhibited just by keeping it in place.

固体電解質層6の厚みが、反応部個所と反応部間で違う
ものを作製する方法としては、例えば、各反応部20等
、厚みを薄くしたい個所をマスキング用テープで覆った
後、適宜溶剤に溶かした固体電解質材料を、反応部間に
所定の厚みでキャスティングし、乾燥固化させて、反応
部間の厚い固体電解質1i60を形成する。その後、テ
ープを剥がし、残りの反応部個所に上記固体電解質を薄
くキャスティングすれば、薄い固体電解質層61が形成
される。
A method for manufacturing a solid electrolyte layer 6 in which the thickness is different between the reaction parts is, for example, by covering the parts where the thickness should be reduced, such as each reaction part 20, with masking tape, and then coating it with an appropriate solvent. The melted solid electrolyte material is cast to a predetermined thickness between the reaction sections, and is dried and solidified to form a thick solid electrolyte 1i60 between the reaction sections. Thereafter, the tape is peeled off and the solid electrolyte is thinly cast on the remaining reaction area, thereby forming a thin solid electrolyte layer 61.

各種の形状や配置は、図示した実施例以外にも、通常の
ガスセンサに採用されている適宜構造で実施でき、例え
ば、第4図に示すものは、作用極2と対極3の反応部2
0.30が櫛歯状に形成されて、互いに間隔をあけて噛
み合うように配置されている。このような構造であれば
、作用極と対極の反応部20.30において、電気化学
反応に関与する対向面積が増え、反応部20.30同士
の間隔も狭くできるので、検出感度を向上させることが
できる。なお、固体電解質層6は、反応部20等の形成
パターンに合わせた形状で、反応部間の固体電解質層6
0 (図ではハンチング部分)が分厚く形成されている
In addition to the illustrated embodiments, various shapes and arrangements can be made with appropriate structures employed in ordinary gas sensors. For example, the structure shown in FIG.
0.30 are formed in a comb-teeth shape and are arranged so as to mesh with each other at intervals. With this structure, the opposing areas involved in the electrochemical reaction in the reaction parts 20.30 of the working electrode and the counter electrode increase, and the spacing between the reaction parts 20.30 can be narrowed, so detection sensitivity can be improved. Can be done. The solid electrolyte layer 6 has a shape that matches the formation pattern of the reaction parts 20 and the like, and the solid electrolyte layer 6 between the reaction parts
0 (the hunting part in the figure) is formed thickly.

上記実施例の具体的寸法を示すと、例えば、作用極およ
び対極の反応部20.30とも、個々の櫛歯の線幅to
o n、線間200 n、線長3c11、厚み5000
人で、本数を各反応部20.30で50本、合計100
本が設けられる。反応部個所の固体電解質Fi61の厚
みは2n、反応部間の固体電解質層60の厚みは10#
1で実施される。
To show the specific dimensions of the above embodiment, for example, the line width of each comb tooth to
o n, line spacing 200 n, line length 3c11, thickness 5000
For a person, the number of tubes is 50 tubes for each reaction part 20.30 mm, total 100 tubes.
A book will be provided. The thickness of the solid electrolyte Fi61 at the reaction part is 2n, and the thickness of the solid electrolyte layer 60 between the reaction parts is 10#.
1 will be implemented.

この発明の別の実施例を第5図および第6図に示してお
り、固体電解質層6が各種の反応部間のみに設けられて
おり、各反応部20.30.40の上には固体電解質層
がない。反応部間の固体電解質Jif6の厚み1.は、
イオン伝導が良好に行えるように分厚く形成されていて
、反応部20等の厚みt、よりも、かなり厚くなってい
る。
Another embodiment of the invention is shown in FIGS. 5 and 6, in which a solid electrolyte layer 6 is provided only between the various reaction sections, and a solid electrolyte layer 6 is provided above each reaction section 20, 30, 40. There is no electrolyte layer. Thickness of solid electrolyte Jif6 between reaction parts 1. teeth,
It is formed thickly so that ion conduction can be performed well, and is considerably thicker than the thickness t of the reaction section 20 and the like.

このように、固体電解質層6が反応部20等の上になく
、反応部20等が露出していると、検出ガス等が固体電
解質層6に邪魔されることなく、直接反応部20等に到
達することができるとともに、検出ガス等が含まれた気
相、この検出ガスが電気化学反応を起こす反応部の固相
および、反応で生じたイオンを運ぶ電解質相の三相が共
存する、いわゆる三相界面が構成されることになり、検
出ガスの反応、反応によって生成されたイオンの移動等
、電気化学反応が非常に効率良く行われ、センサの感度
、応答速度が一層向上する。
In this way, if the solid electrolyte layer 6 is not above the reaction section 20 etc. and the reaction section 20 etc. is exposed, the detected gas etc. will not be obstructed by the solid electrolyte layer 6 and will directly reach the reaction section 20 etc. The so-called three phases coexist: a gas phase containing the detection gas, a solid phase in the reaction area where the detection gas undergoes an electrochemical reaction, and an electrolyte phase that carries the ions generated by the reaction. A three-phase interface is formed, and electrochemical reactions such as the reaction of the detection gas and the movement of ions generated by the reaction occur very efficiently, further improving the sensitivity and response speed of the sensor.

さらに、第7図には別の実施例を示しており、絶縁基板
1として、基材となるシリコンlOの上に二酸化シリコ
ンの絶縁膜11が被覆されたものを用いている。また、
作用極の反応部20と対極の反応部30の間で、絶縁基
板1が溝状に堀り込まれており、この満12の内面も上
記絶縁膜11で被覆されているとともに、各反応部20
等は、絶縁基板1の上面から溝12の側壁まで、延長形
成されている。反応部個所の固体電解質層61は、先の
実施例等と同様に薄く形成され、反応部間の固体電解質
層60は溝12の内部まで覆っているとともに、上面は
反応部個所61よりも高くなっている。したがって、溝
12への延長部分を含めた反応部20等の厚みt8より
も、反応部間の固体電解質層60の厚みtlが分厚くな
っている上記センサの具体的寸法としては、例えば11
2の深さが約Ion、反応部個所の固体電解質層61の
厚みが2iIs、反応部間の固体電解質層60の厚みが
溝12部分を含めて約30μ程度で実施されるが、これ
ら満12の形状や固体電解質6の厚み、あるいは溝12
等の形成方法等は、用途に応じて適宜に変更できる。ま
た、絶縁基板1や各種2゜3.4の材料や形状も、前記
した各実施例と同様に、適宜に変更することができる。
Furthermore, FIG. 7 shows another embodiment, in which an insulating substrate 1 is used in which an insulating film 11 of silicon dioxide is coated on silicon lO as a base material. Also,
The insulating substrate 1 is dug into a groove shape between the reaction part 20 of the working electrode and the reaction part 30 of the counter electrode, and the inner surface of this 12 is also covered with the insulating film 11, and each reaction part 20
etc. are formed to extend from the upper surface of the insulating substrate 1 to the side walls of the groove 12. The solid electrolyte layer 61 at the reaction part is formed thinly as in the previous embodiment, and the solid electrolyte layer 60 between the reaction parts covers the inside of the groove 12, and the upper surface is higher than the reaction part 61. It has become. Therefore, the specific dimensions of the sensor in which the thickness tl of the solid electrolyte layer 60 between the reaction parts is thicker than the thickness t8 of the reaction part 20 etc. including the extension part to the groove 12 are, for example, 11
The depth of the solid electrolyte layer 61 at the reaction part is about 2iIs, and the thickness of the solid electrolyte layer 60 between the reaction parts is about 30 μm including the groove 12 part. shape, the thickness of the solid electrolyte 6, or the groove 12.
The formation method etc. can be changed as appropriate depending on the purpose. Further, the materials and shapes of the insulating substrate 1 and the various 2.degree.

このような構造であると、前記第3図に示した実施例と
同様に、反応部20.30等の対向面積が広くなり、そ
の間の固体電解質層60の厚みも増えるので、センサの
感度向上に有効である。なお、第3図の実施例に比べる
と、絶縁基板lと固体電解質層6の厚みを足した、セン
サ全体の厚みを薄くできたり、電極材料が少な(て済む
利点があるが、溝12を形成する手間を必要とするので
、製造の容易さでは第3図の実施例のほうが優れている さらに、上記した各実施例において、固体電解質層6の
上に、ガス選択透過性フィルタを設けておけば、目的の
検出ガスを選択的に固体電解質層6あるいは作用極2側
に送り込め、検出精度を一部高めることができる。さら
に、固体電解質層6の上に水溜層を設けることによって
、感度を向上させることができる。
With this structure, as in the embodiment shown in FIG. 3, the opposing areas of the reaction parts 20, 30, etc. become wider, and the thickness of the solid electrolyte layer 60 between them also increases, which improves the sensitivity of the sensor. It is effective for Note that, compared to the embodiment shown in FIG. The embodiment shown in FIG. 3 is superior in terms of ease of manufacture because it requires time and effort to form the solid electrolyte layer.Furthermore, in each of the embodiments described above, a gas selective permeability filter is provided on the solid electrolyte layer 6. By placing a water reservoir layer on top of the solid electrolyte layer 6, the target detection gas can be selectively sent to the solid electrolyte layer 6 or the working electrode 2 side, thereby partially increasing the detection accuracy. Sensitivity can be improved.

その他、この発明の要旨を変更しない限り、通常のガス
センサに採用されている各種の構造あるいは形状を組み
合わせて実施できる。
In addition, unless the gist of the present invention is changed, various structures or shapes employed in ordinary gas sensors can be combined and implemented.

さらに、上記した各実施例は、何れもガスセンサに関し
て説明したが、同様の構成で液体中のイオン成分に反応
するイオンセンサ、バイオセンサ等の各種電気化学式セ
ンサに適用すること−もできる。なお、液体中で使用す
る場合には、固体電解質はガス透過性でなくてもよい等
、用途に応じて適宜構造に変更して実施する。
Furthermore, although each of the above-mentioned embodiments has been described with respect to a gas sensor, it is also possible to apply the same configuration to various electrochemical sensors such as ion sensors and biosensors that react to ionic components in a liquid. Note that when used in a liquid, the solid electrolyte does not need to be gas permeable, and the structure may be changed as appropriate depending on the application.

〔発明の効果〕〔Effect of the invention〕

以上に説明した、この発明は、作用極と対極の反応部間
を覆う固体電解質層の厚みを、上記反応部とこれを覆う
固体電解質層の厚みの和よりも。
In the present invention described above, the thickness of the solid electrolyte layer covering between the reaction parts of the working electrode and the counter electrode is greater than the sum of the thicknesses of the reaction part and the solid electrolyte layer covering it.

大きくしておくことによって、電気化学反応に伴うイオ
ン伝導が良好に行われ、検出電流が大きくなるので、セ
ンサの感度が向上する。また、比抵抗も小さくなるので
、作用極、対極間の電気抵抗が小さくなり、センサあ応
答速度が速(なる。そのため、電位掃引法のように速い
応答速度を必要とする用途に好適に使用することが可能
になる。
By making it large, ion conduction accompanying electrochemical reactions is performed well, and the detection current becomes large, thereby improving the sensitivity of the sensor. In addition, since the specific resistance becomes smaller, the electrical resistance between the working electrode and the counter electrode becomes smaller, and the response speed of the sensor becomes faster.Therefore, it is suitable for applications that require a fast response speed, such as the potential sweep method. It becomes possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかるガスセンサの模式的構造斜視
図、第2図は断面図、第3図は別の実施例の断面図、第
4図は別の実施例の平面図、第5    。 図は別の実施例の斜視図、第6図は断面図、第7図は別
の実施例の断面図、第8図は従来例の斜視図、第9図は
断面図、第10図は別の従来例の断面図である。 1・・・絶縁基板 2・・・作用極 20. 30. 
40・・・反応部 3・・・対極 4・・・参照極 6
・・・固体電解質層 60・・・反応部間の固体電解質
層 61・・・反応部個所の固体電解質層 代理人 弁理士  松 本 武 彦 第4図 第7図 第9図 第10図 昭和63年 4月27日
1 is a schematic structural perspective view of a gas sensor according to the present invention, FIG. 2 is a sectional view, FIG. 3 is a sectional view of another embodiment, FIG. 4 is a plan view of another embodiment, and FIG. 6 is a sectional view, FIG. 7 is a sectional view of another embodiment, FIG. 8 is a perspective view of a conventional example, FIG. 9 is a sectional view, and FIG. 10 is a sectional view of another embodiment. FIG. 3 is a sectional view of another conventional example. 1... Insulating substrate 2... Working electrode 20. 30.
40...Reaction part 3...Counter electrode 4...Reference electrode 6
...Solid electrolyte layer 60...Solid electrolyte layer between reaction parts 61...Solid electrolyte layer agent at reaction part Patent attorney Takehiko Matsumoto Figure 4 Figure 7 Figure 9 Figure 10 Figure 1986 April 27th

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板の同一面上に作用極、対極および参照極が
設けられ、少なくとも各極の反応部の間を覆って固体電
解質層が設けられた電気化学式センサにおいて、作用極
と対極との反応部間の固体電解質層の厚みが、作用極お
よび対極の反応部の厚みと反応部を覆う固体電解質層の
厚みの和よりも大きいことを特徴とする電気化学式セン
サ。
1. In an electrochemical sensor in which a working electrode, a counter electrode, and a reference electrode are provided on the same surface of an insulating substrate, and a solid electrolyte layer is provided covering at least the space between the reaction parts of each electrode, the reaction part between the working electrode and the counter electrode is An electrochemical sensor characterized in that the thickness of the solid electrolyte layer between the working electrode and the counter electrode is greater than the sum of the thickness of the reaction part of the working electrode and the counter electrode and the thickness of the solid electrolyte layer covering the reaction part.
JP63042853A 1988-02-24 1988-02-24 Electrochemical sensor Expired - Fee Related JP2514222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042853A JP2514222B2 (en) 1988-02-24 1988-02-24 Electrochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042853A JP2514222B2 (en) 1988-02-24 1988-02-24 Electrochemical sensor

Publications (2)

Publication Number Publication Date
JPH01216262A true JPH01216262A (en) 1989-08-30
JP2514222B2 JP2514222B2 (en) 1996-07-10

Family

ID=12647575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042853A Expired - Fee Related JP2514222B2 (en) 1988-02-24 1988-02-24 Electrochemical sensor

Country Status (1)

Country Link
JP (1) JP2514222B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432161A (en) * 1987-07-29 1989-02-02 Daikin Ind Ltd Combustible gas sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432161A (en) * 1987-07-29 1989-02-02 Daikin Ind Ltd Combustible gas sensor

Also Published As

Publication number Publication date
JP2514222B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US5304293A (en) Microsensors for gaseous and vaporous species
JP4312379B2 (en) Reference electrode
JPS6020700B2 (en) A frame that supports a pair of electrodes
JPH01216262A (en) Electrochemical sensor
JPH02129541A (en) Disposable type enzyme electrode
KR100434430B1 (en) Micro reference electrode using metal oxides and manufacturing method thereof
JPH01216250A (en) Electrochemical sensor
JPS6312252B2 (en)
JPH01216260A (en) Electrochemical sensor
JP2698647B2 (en) Electrochemical sensor
JPH01213565A (en) Formation of electrode of gaseous co2 sensor
JPS62138747A (en) Method for forming sensing phase to solid battery and solid battery and method of regenerating said sensing phase
JP2501856B2 (en) Electrochemical sensor
JPH01216261A (en) Electrochemical sensor
JPH02311751A (en) Oxygen sensor
JPH03137552A (en) Fet sensor
JPH01216263A (en) Electrochemical sensor
JP2669527B2 (en) Electrochemical sensor
JPH03274452A (en) Field-effect transistor type oxygen sensor
JPH01216258A (en) Electrochemical sensor
JPH04363653A (en) Electrochemical gas sensor element
JPH037263B2 (en)
JPH03135757A (en) Chemical sensor and production thereof
JPH01216259A (en) Electrochemical sensor
JPH11132992A (en) Small-sized oxygen electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees