JPH01216263A - Electrochemical sensor - Google Patents

Electrochemical sensor

Info

Publication number
JPH01216263A
JPH01216263A JP63042854A JP4285488A JPH01216263A JP H01216263 A JPH01216263 A JP H01216263A JP 63042854 A JP63042854 A JP 63042854A JP 4285488 A JP4285488 A JP 4285488A JP H01216263 A JPH01216263 A JP H01216263A
Authority
JP
Japan
Prior art keywords
reaction
electrode
working electrode
parts
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042854A
Other languages
Japanese (ja)
Inventor
Koichi Aizawa
浩一 相澤
Keiji Kakinote
柿手 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63042854A priority Critical patent/JPH01216263A/en
Publication of JPH01216263A publication Critical patent/JPH01216263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To raise the detection sensitivity, and also, to stabilize the detecting reaction by placing successively and repeatedly reaction parts of each electrode, in the electrochemical sensor in which a solid-state electrolytic layer is provided among a working electrode, a counter electrode and a reference electrode. CONSTITUTION:On an insulating electrode 1, reaction parts 20, 30 and 40 for executing an electrochemical action and a working electrode 2, a counter electrode 3 and a reference electrode 4 consisting of terminal parts 21, 31 and 41 which are connected to an external circuit are provided, and the upper part of each reaction part 20, 30 and 40 and the parts among them are covered with a slid-state electrolytic layer 6. The reaction parts 20, 30 and 40 of the working electrode 2, the counter electrode 3 and the reference electrode 4 consist of those which are formed in a thin spiral line shape, and these spiral-like reaction parts 20, 30 and 40 have the same center, and also, placed at a prescribed interval between each other. The outside peripheral ends of each reaction part 20, 30 and 40 are connected to the rectangular surface-like terminal parts 21, 31 and 41, and can be connected easily to the external circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気化学式センサに関し、詳しくは、電解
反応を利用して特定のガス成分等を検出したり定量した
りする、電解型の電気化学式センサに関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrochemical sensor, and more specifically, an electrolytic sensor that detects or quantifies a specific gas component using an electrolytic reaction. This relates to chemical sensors.

〔従来の技術〕[Conventional technology]

電解型ガスセンサの一般的な基本構造は、電解質内に作
用極、対極および参照極の3個の電極が設けられてなる
ものであり、その−船釣な作用機構は、作用極に一定の
電圧をかけると、検出対象とするガス成分が作用極で酸
化または還元反応を起こし、このとき生成されたイオン
は電解質内を移動して、対極で還元または酸化反応を起
こすと言うものである。この酸化還元反応に伴い作用極
と対極の間を流れる電流を測定することによって、対象
ガスの検出および定量を行うことができるようになって
いる。   ″ なお、反応を起・こさせるために必要な作用極の電位は
、検出ガスの成分によって異なるので、検出ガスに応じ
て作用極の電位を一定に保つ必要があり、そのため、参
照極を基準にして、作用極に  ・加える電圧を制御し
ている。
The general basic structure of an electrolytic gas sensor is that three electrodes, a working electrode, a counter electrode, and a reference electrode, are provided in an electrolyte, and its working mechanism is that a constant voltage is applied to the working electrode. When applied, the gas component to be detected undergoes an oxidation or reduction reaction at the working electrode, and the ions generated at this time move within the electrolyte and undergo a reduction or oxidation reaction at the counter electrode. By measuring the current flowing between the working electrode and the counter electrode accompanying this redox reaction, it is possible to detect and quantify the target gas. ″ The potential of the working electrode required to cause a reaction varies depending on the components of the detected gas, so it is necessary to keep the potential of the working electrode constant depending on the detected gas. to control the voltage applied to the working electrode.

ところで、従来の電解型ガスセンサは、電解質として、
例えばH,So、等の液体電解質を使用しているため、
電解質の経時変化、液漏れ、材料腐食等の問題があり、
厳重な密封構造にしなければならないために、小型化が
困難であり、また、感度や出力が経時的に低下するので
、長期的な安定性に乏しく、寿命が短いこと、さらに、
取り扱いや管理が難しいこと等の欠点があった。
By the way, conventional electrolytic gas sensors use the electrolyte as
For example, since liquid electrolytes such as H, So, etc. are used,
There are problems such as electrolyte change over time, liquid leakage, and material corrosion.
Because it requires a tightly sealed structure, it is difficult to miniaturize it, and its sensitivity and output decrease over time, resulting in poor long-term stability and short lifespan.
There were drawbacks such as difficulty in handling and management.

そこで、液体電解質のかわりに、スルホン化パーフルオ
ロカーボン等の高分子固体電解質を用いたガスセンサが
開発され、例えば、米国特許第4227984号明細書
、同第4265714号明細書あるいは、特開昭53−
115293号公報等に開示されている。
Therefore, instead of liquid electrolytes, gas sensors using solid polymer electrolytes such as sulfonated perfluorocarbons have been developed; for example, U.S. Pat.
It is disclosed in Japanese Patent No. 115293 and the like.

こ?ガスセンサは、固体電解質膜の片面に感知電極(作
用極)と参照電極(参照極)が設けられ、反対面に逆電
極(対極)が設けられており、液体電解質型のものに比
べてコンパクト化され、経時的安定性等の性能の点でも
優れており、取り扱いも容易になっている。
child? Gas sensors have a sensing electrode (working electrode) and a reference electrode (reference electrode) on one side of a solid electrolyte membrane, and a reverse electrode (counter electrode) on the other side, making them more compact than liquid electrolyte types. It has excellent performance such as stability over time, and is easy to handle.

しかし、このガスセンサは、Pt、Au等とポリテトラ
フルオロエチレンとの微粒子混合体が担持されたガス透
過性膜からなる電極を、軟質の固体電解質膜に接着する
ようにしているため、製造が面倒であるとともに、超小
型化、センサアレイ化が困難であるという問題があった
However, in this gas sensor, an electrode made of a gas-permeable membrane supporting a fine particle mixture of Pt, Au, etc. and polytetrafluoroethylene is bonded to a soft solid electrolyte membrane, which makes manufacturing difficult. In addition, there was a problem in that it was difficult to miniaturize and form a sensor array.

近年、半導体等の電子回路素子が、プレーナ技術等のマ
イクロ加工技術を利用して超小型化されてきており、こ
のような素子と組み合わせて使用するガスセンサとして
も、−i5の超小型化、高性能化が要求されている。
In recent years, electronic circuit elements such as semiconductors have been miniaturized using microfabrication technology such as planar technology, and the -i5 has become ultra-miniaturized and highly sophisticated as a gas sensor used in combination with such elements. Performance is required.

そこで、本件出願人は、上記した従来技術の問題点を解
消し、半導体素子等と同様のマイクロ加工技術で製造で
きる、プレーナ型のガスセンサを開発した。第5図は、
このようなプレーナ型のガスセンサの構造例を示してお
り、絶縁基板1の上面に、作用極2.対極3および参照
極4が設けられ、各種はそれぞれ、電気化学作用を行う
反応部20.30.40と外部回路へ接続される端子部
21.31.41からなる。作用極2と対極3の反応部
20.30は、互いに入り組んだ櫛型構造に形成されて
おり、反応面積を増大させることによって、センサの感
度等を向上させている。参照極4の反応部40は°、作
用極2と対極3の櫛型の反応部20.30の側に配置さ
れている。このような各種の反応部20.30.40お
よびその間を覆って、固体電解質層6が設けられている
。検出ガス等は固体電解質層6を通過して作用極の反応
部20上に拡散し、電気化学反応を起こすことになる。
Therefore, the applicant has developed a planar gas sensor that solves the problems of the prior art described above and can be manufactured using the same microprocessing technology as semiconductor devices. Figure 5 shows
An example of the structure of such a planar gas sensor is shown, in which a working electrode 2. A counter electrode 3 and a reference electrode 4 are provided, each consisting of a reaction part 20.30.40 for performing electrochemical action and a terminal part 21.31.41 connected to an external circuit. The reaction parts 20.30 of the working electrode 2 and the counter electrode 3 are formed in a mutually intricate comb-shaped structure, and by increasing the reaction area, the sensitivity of the sensor is improved. The reaction section 40 of the reference electrode 4 is disposed on the side of the comb-shaped reaction sections 20, 30 of the working electrode 2 and counter electrode 3. A solid electrolyte layer 6 is provided to cover these various reaction sections 20, 30, 40 and the spaces therebetween. The detection gas and the like pass through the solid electrolyte layer 6 and diffuse onto the reaction part 20 of the working electrode, causing an electrochemical reaction.

上記ガスセンサは、絶縁基板1の同・−面に全ての電極
2.3.4が設けられているので、電極や固体電解質層
の形成を、プレーナ技術等のマイクロ加工技術を利用し
て、極めて能率良く加工でき、センサの小型化、高性能
化を図れる等、多くの優れた特徴を有している。
In the above gas sensor, all the electrodes 2, 3 and 4 are provided on the same side of the insulating substrate 1, so the formation of the electrodes and solid electrolyte layer is extremely difficult using micro-processing technology such as planar technology. It has many excellent features, such as efficient processing, miniaturization and high performance of the sensor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記のような従来のセンサでは、作用極の電
位設定に重要な参照極の反応部が、作用極と対極の反応
部から離れた位置に設けられており、作用極の電位設定
が不十分になる問題があった。すなわち、作用極と対極
の反応部の間で電気化学反応が行われるのであるから、
作用極の電位設定を正確にするには、参照電極の反応部
は作用極と対極の間にあるのが、最も良いのである。
However, in the conventional sensors described above, the reaction part of the reference electrode, which is important for setting the potential of the working electrode, is provided at a position away from the reaction parts of the working electrode and the counter electrode, making it difficult to set the potential of the working electrode. There was a problem with getting enough. In other words, since an electrochemical reaction takes place between the reaction parts of the working electrode and the counter electrode,
In order to accurately set the potential of the working electrode, it is best for the reaction part of the reference electrode to be located between the working electrode and the counter electrode.

ところが1.参照極の反応部が作用極と対極の反応部間
から離れた位置にあって、作用極の電位設定が不正確に
なったり、不安定になったりすると、正確な検出電流が
得られず、検出結果の信頼性、安定性に欠けることにな
り、センサの検知性能を低下させることになる。
However, 1. If the reaction part of the reference electrode is located far from the reaction parts of the working and counter electrodes, and the potential setting of the working electrode becomes inaccurate or unstable, accurate detection current will not be obtained. This results in a lack of reliability and stability in the detection results, which reduces the detection performance of the sensor.

なお、電解質として液体電解質を用いる場合には、電解
質内の電位はほぼ一定になるので、電解質内のどの位置
に参照極の反応部があっても、それ程影響はないが、固
体電解質を用いる場合には、固体電解質内の位置によっ
て電位がかなり異なり電位分布が生じるので、参照極の
反応部を設ける位置によって、作用極の電゛位設定に極
めて大きな影響がでる。
Note that when using a liquid electrolyte as the electrolyte, the potential within the electrolyte is approximately constant, so no matter where the reaction part of the reference electrode is located within the electrolyte, it does not have much of an effect; however, when using a solid electrolyte Since the potential varies considerably depending on the position within the solid electrolyte and a potential distribution occurs, the position where the reaction part of the reference electrode is provided has an extremely large effect on the potential setting of the working electrode.

なお、作用極と対極の反応部間に参照極の反応部を設置
すれば、作用極の電位設定は正確に行えるが、作用極と
対極の反応部における電気化学反応やイオン伝導を、参
照極で邪魔することになり、検出感度等に悪影響を与え
るので好ましくないそこで、この発明の課題は、作用極
と対極での電気化学反応等に悪影響を与えることなく、
作用極の電位設定を正確に行え′るようにすることにあ
る。
Note that if the reaction part of the reference electrode is installed between the reaction parts of the working electrode and the counter electrode, the potential of the working electrode can be set accurately. This is undesirable since it interferes with the electrochemical reaction between the working electrode and the counter electrode, which is undesirable as it has a negative effect on the detection sensitivity, etc. Therefore, the object of this invention is to
The purpose is to enable accurate setting of the potential of the working electrode.

なお、上記説明はすべて、ガスセンサについて行ったが
、上記ガスセンサの構造は、作用極で反応を起こさせる
検出対象を液体中のイオンにすればイオンセンサに通用
できる等、種々の用途における電気化学式検知に同様に
適用できるものであるので、この発明は、ガスセンサを
含めたセンサ一般を対象とする。
Although all of the above explanations have been made regarding gas sensors, the structure of the gas sensor described above can be used as an ion sensor if the detection target that causes a reaction at the working electrode is ions in a liquid. This invention is applicable to sensors in general, including gas sensors.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、この発明は、各種の反応部が
順次繰り返し配置されるようにしている〔作   用〕 このように、各種の反応部が順次繰り返し配置されるよ
うになっていると、参照極反応部が作用極反応部と対極
反応部の間に配置されている個所では、参照極を基準に
して、作用極の電位設定を正確に行えるとともに、作用
極反応部と対極反応部とが間に参照極反応部を挟まずに
、直接対向して配置されている個所では、作用極反応部
と対極反応部との間で電気化学反応が良好に行えること
になる。
In order to solve the above-mentioned problems, the present invention arranges that various reaction parts are arranged repeatedly in sequence. Where the reference electrode reaction area is located between the working electrode reaction area and the counter electrode reaction area, the potential of the working electrode can be accurately set based on the reference electrode, and the working electrode reaction area and the counter electrode reaction area are In a location where the electrodes are directly opposed to each other without sandwiching the reference electrode reaction section between them, the electrochemical reaction can be performed satisfactorily between the working electrode reaction section and the counter electrode reaction section.

〔実 施 例〕〔Example〕

つぎに、この発明を、実施例を示す図面を参照しながら
、以下に詳しく説明する。
Next, the present invention will be described in detail below with reference to drawings showing embodiments.

第1図および第2図は、この発明にかかるガスセンサの
模式的な構造を示しており、絶縁基板lの上に、作用極
2.対極3および参照極4が設けられ、各種2,3.4
は、それぞれ電気化学作用を行う反応部20.30.4
0と、外部回路へ接続する端子部21.31.41から
なり、各反応部20,30.40の上と、その間が固体
電解質M6で覆われている。このような基本構成につい
ては、従来のガスセンサと同様である。
1 and 2 show a schematic structure of a gas sensor according to the present invention, in which a working electrode 2. A counter electrode 3 and a reference electrode 4 are provided, and various 2, 3.4
are reaction parts 20.30.4 that perform electrochemical action, respectively.
0 and terminal portions 21, 31, and 41 connected to an external circuit, and the top and the space between each reaction portion 20, 30, 40 is covered with a solid electrolyte M6. This basic configuration is the same as that of a conventional gas sensor.

そして、図示した実施例では、各種の反応部20.30
.40が、細い渦巻き線状に形成されたものからなり、
この渦巻き状反応部20・・・が、同一の中心を有する
とともに、互いの間に一定の間隔をあけて配置されてい
る。各反応部20・・・の外周端は、矩形面状の端子部
21.31.41に接続されてあって、外部回路への接
続を容易にしている。
In the illustrated embodiment, various reaction sections 20.30
.. 40 is formed into a thin spiral line,
These spiral reaction sections 20... have the same center and are arranged with a constant interval between them. The outer peripheral end of each reaction section 20... is connected to a rectangular terminal section 21, 31, 41 to facilitate connection to an external circuit.

この反応部個所の断面構造を第2図に示しており、絶縁
基板1上に、作用極反応部20.対極反応部30.参照
極反応部40.再び作用極反応部20と、3極の反応部
20・・・が順次繰り返し配置されることになる。すな
わち、作用極反応部20と対極反応部30が直接対向す
るところと、作用極反応部20と対極反応部30の間に
参照極反応部40が配置されるところが交互に形成され
ていることになる。
The cross-sectional structure of this reaction part is shown in FIG. 2, in which a working electrode reaction part 20. Counter electrode reaction section 30. Reference electrode reaction section 40. Again, the working electrode reaction section 20, the three-pole reaction section 20, and so on are repeatedly arranged one after another. That is, areas where the working electrode reaction area 20 and the counter electrode reaction area 30 directly face each other and areas where the reference electrode reaction area 40 is disposed between the working electrode reaction area 20 and the counter electrode reaction area 30 are formed alternately. Become.

上記のようなガスセンサにおいて、絶縁基板1は、アル
ミナセラミックス板等のセラミック基板、あるいはガラ
ス基板等、通常のガスセンサあるいは電子回路素子用の
絶縁基板材料が使用される作用極2および対極3の材料
には白金が使用され、参照極4の材料には金が好適に使
用されるが、その他の各種電極材料に変更することもで
きる。各電極はスパッタリング法などの通常の電極形成
手段で形成でき、例えば5000人程度0厚みで実施さ
れる0反応部20等には、白金黒を着けたり。
In the gas sensor as described above, the insulating substrate 1 is made of a ceramic substrate such as an alumina ceramic plate, or a glass substrate, which is the material of the working electrode 2 and the counter electrode 3, in which an insulating substrate material for ordinary gas sensors or electronic circuit elements is used. Although platinum is used and gold is preferably used as the material of the reference electrode 4, it is also possible to use other various electrode materials. Each electrode can be formed by a normal electrode forming method such as a sputtering method, and for example, platinum black is applied to the 0 reaction part 20, etc., which is performed with a zero thickness of about 5,000 people.

、酸化処理等の活性化処理を施してもよい。, activation treatment such as oxidation treatment may be performed.

−各反応部20・・・の具体的寸法としては、例えば線
幅IQOIIN、隣り合う反応部間の間隔100.w、
渦巻きのターン数1.0で実施される。
- Specific dimensions of each reaction section 20 include, for example, the line width IQOIIN and the distance between adjacent reaction sections 100. lol,
The number of turns of the spiral is 1.0.

固体電解質層6は、例えばスルホン化パーフルオロカー
ボン(商品名−Nafion :デュポン社製)等のガ
ス透過性高分子固体電解質が使用されるが、その他、通
常のガスセンサ等に用いられている各種の固体電解質が
使用でき、例えば、sb、o%・4H,OlZ r  
(HPO4)t  ・4Hi O等も使用できる。固体
電解質層6の厚みは、例えば2μ程度で実施されるが、
センサの用途や構造、あるいは固体電解質の種類によっ
ても適宜変更される。
For the solid electrolyte layer 6, a gas-permeable polymer solid electrolyte such as sulfonated perfluorocarbon (trade name: Nafion, manufactured by DuPont) is used, but in addition, various solids used in ordinary gas sensors etc. are used. Electrolytes can be used, for example, sb, o% 4H, OlZr
(HPO4)t 4Hi O etc. can also be used. The thickness of the solid electrolyte layer 6 is, for example, approximately 2μ, but
It may be changed as appropriate depending on the purpose and structure of the sensor, or the type of solid electrolyte.

さらに、上記した実施例において、固体電解質層6の上
に、ガス選択透過性フィルタを設けておけば、目的の検
出ガスを選択的に固体電解質N6あるいは作用極2側に
送り込め、検出精度を一部高めることができる。さらに
、固体電解質M6の上に水溜層を設けることによって、
感度を向上させることができる。
Furthermore, in the embodiment described above, if a gas selective permeability filter is provided on the solid electrolyte layer 6, the target detection gas can be selectively sent to the solid electrolyte N6 or the working electrode 2 side, thereby improving detection accuracy. Some can be increased. Furthermore, by providing a water reservoir layer on the solid electrolyte M6,
Sensitivity can be improved.

各種の反応部20・・・を渦巻き状に形成する方法とし
ては、上記実施例のほか、例えば、綿等の可撓性のある
材料に硫酸水溶液を含浸させたものを電解質層6として
用い、この硫酸含浸綿と白金薄板とを交互に三重に積層
し、この積層体を数回渦巻き状に巻き込んだものを形成
すれば、各白金薄板がそれぞれ各種の渦巻き状反応部2
0・・・として構成されたセンサができる。
In addition to the above-mentioned embodiments, methods for forming the various reaction sections 20 in a spiral shape include, for example, using a flexible material such as cotton impregnated with an aqueous sulfuric acid solution as the electrolyte layer 6; If this sulfuric acid-impregnated cotton and platinum thin plates are alternately laminated in triple layers and this laminated body is wound into a spiral shape several times, each platinum thin plate can be formed into various spiral reaction parts 2.
A sensor configured as 0... is created.

つぎに、第3図および第4図には、別の実施例を示して
おり、上記同様に、電解質N6としては硫酸含浸綿を用
い、反応部20・・・用の電極材料には白金薄板を用い
ている。そして、中心から電解質層6、作用極反応部2
0、電解質層6、参照極反応部40、電解質M6、対極
反応部30というように、順次同心円状に1層づつ重ね
巻きした構造になっている。各反応部20・・・はそれ
ぞれ5層づつ設けられ、最外層にはフッソ樹脂膜9を巻
いており、全体が同心円筒状に形成されている。各反応
部20・・・には、円筒外形の片側端面で、それぞれの
リード線23.33.43が接続されて、外部回路との
電気接続を行うようになっている。
Next, FIG. 3 and FIG. 4 show another embodiment, in which sulfuric acid-impregnated cotton is used as the electrolyte N6, and a platinum thin plate is used as the electrode material for the reaction section 20. is used. Then, from the center, the electrolyte layer 6, the working electrode reaction part 2
0, the electrolyte layer 6, the reference electrode reaction section 40, the electrolyte M6, and the counter electrode reaction section 30. Each reaction section 20... is provided with five layers, the outermost layer is wrapped with a fluorocarbon resin film 9, and the whole is formed into a concentric cylindrical shape. Respective lead wires 23, 33, 43 are connected to each reaction section 20 at one end surface of the cylindrical outer shape to establish electrical connection with an external circuit.

なお、上記実施例において、電解質N6としては、硫酸
含浸綿のほか、高分子固体電解質を用いることもできる
。また、前記第1図の実施例のように絶縁基板lを用い
、この絶縁基板1上にスパッタリング法等の手段で、同
心円状に各反応部20・・・を形成し、その上を固体電
解質N6で覆ったものでもよい。この場合には、同極の
反応部同士をリード線等で接続すればよい。
In addition, in the above embodiment, as the electrolyte N6, a solid polymer electrolyte can also be used in addition to sulfuric acid impregnated cotton. Further, as in the embodiment shown in FIG. 1, an insulating substrate 1 is used, and each reaction section 20 is formed concentrically on this insulating substrate 1 by means such as sputtering, and a solid electrolyte is placed on top of the reaction section 20. It may also be covered with N6. In this case, the reaction parts of the same polarity may be connected with a lead wire or the like.

以上に例示した各実施例のように、各反応部20・・・
が渦巻き状もしくは同心円筒状に形成されていると、一
定の面積または体積内で、作用極2と対極3等の反応面
積を非常に大きくとることができ、検出感度の向上およ
び小型化に有効であり、安定性、信輔性の高いセンサと
なる。
As in each of the examples illustrated above, each reaction section 20...
If it is formed in a spiral or concentric cylindrical shape, the reaction area of the working electrode 2, counter electrode 3, etc. can be made very large within a certain area or volume, which is effective for improving detection sensitivity and reducing size. This makes the sensor highly stable and reliable.

但し、各反応部20・・・が順番に繰り返し配置されて
いれば、円筒の一部を欠いた同心円弧状のものや、同心
多角形状のもの、あるいは直線状の反応部20・・・が
繰り返し並設されているもの等でも実施できる。
However, if each reaction section 20... is arranged repeatedly in order, the reaction section 20... in a concentric arc shape with a part of the cylinder missing, a concentric polygon shape, or a linear reaction section 20... will be repeatedly arranged. This can be done even if the devices are installed side by side.

その他、この発明の要旨を変更しない限り、通常のガス
センサに採用されている各種の構造あるいは形状を組み
合わせて実施できる。
In addition, unless the gist of the present invention is changed, various structures or shapes employed in ordinary gas sensors can be combined and implemented.

さらに、上記した各実施例は、何れもガスセンサに関し
て説明したが、同様の構成で液体中のイオン成分に反応
するイオンセンサ、バイオセンサ等の各種電気化学式セ
ンサに適用することもできる。なお、液体中で使用する
場合には、固体電解質はガス透過性でなくてもよい等、
用途に応じて適宜構造に変更して実施する。
Furthermore, although each of the above-mentioned embodiments has been described with respect to a gas sensor, it is also possible to apply the same configuration to various electrochemical sensors such as ion sensors and biosensors that react to ionic components in a liquid. In addition, when used in a liquid, the solid electrolyte does not need to be gas permeable, etc.
Change the structure as appropriate depending on the application and implement it.

〔発明の効果〕〔Effect of the invention〕

以上に説明した、この発明は、各種の反応部が順次繰り
返し配置されていることによって、作用極反応部の片側
では対極反応部が直接対向しているので、電気化学反応
やイオン伝導が良好に行われ、作用極反応部の反対側で
は対極反応部との間に参照極反応部が配置されるので、
作用極の電位設定を正確に行うことが可能になる。
As explained above, this invention has various reaction parts arranged repeatedly in sequence, and the counter electrode reaction part directly faces one side of the working electrode reaction part, so that electrochemical reactions and ion conduction can be performed well. The reference electrode reaction area is placed between the counter electrode reaction area and the counter electrode reaction area on the opposite side of the working electrode reaction area.
It becomes possible to accurately set the potential of the working electrode.

したがって、検出感度が高いと同時に、検出反応が安定
することになり、信頼性、性能の安定性に優れたセンサ
を提供できることになる。
Therefore, the detection sensitivity is high and at the same time the detection reaction is stable, making it possible to provide a sensor with excellent reliability and stable performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかるガスセンサの模式的平面図、
第2図は断面図、第3図は別の実施例の斜視図、第4図
は側面図、第5図は従来例の斜視図である。 2・・・作用極 20・・・作用極反応部 3・・・対
極30・・・対極反応部 4・・・参照掘 40・・・
参照極反応部 6・・・電解質層 代理人 弁理士  松 本 武 彦 第1図 第2図 13図 第4図 第5図 1穐び酵甫正書(自発 1、事件の表示 昭和63年特rfWm 42854号 2、発明の名称 電気化学式センサ 3、補正をする者 事件との関係   特許出願人 住  所   大阪府門真市大字門真1048番地名 
称(583)松下電工株式会社 代表者 ((JWJ役三 好俊夫 4、代理人 な   し 6、補正の対象 6、補正の対象 明細書 ?、  ?ili正の内容 ■ 明細書第11頁第5行に「材料に硫酸水溶液」とあ
るを、「材料に液体電解質である硫酸水溶液」と訂正す
る。 ■ 明細書第12頁第5行に「硫酸含浸綿のほか」とあ
るを、「硫酸等の液体電解質を綿に含浸させたもののは
か」と訂正する。
FIG. 1 is a schematic plan view of a gas sensor according to the present invention;
2 is a sectional view, FIG. 3 is a perspective view of another embodiment, FIG. 4 is a side view, and FIG. 5 is a perspective view of a conventional example. 2... Working electrode 20... Working electrode reaction part 3... Counter electrode 30... Counter electrode reaction part 4... Reference hole 40...
Reference electrode reaction section 6...Electrolyte layer agent Takehiko Matsumoto, patent attorney Figure 1 Figure 2 Figure 13 Figure 4 Figure 5 rfWm 42854 No. 2, Name of the invention Electrochemical sensor 3, Relationship to the amended person case Patent applicant address Address 1048 Kadoma, Kadoma City, Osaka Prefecture Name of the invention
Name (583) Representative of Matsushita Electric Works Co., Ltd. In the line ``Aqueous sulfuric acid solution as a material'' should be corrected to ``Aqueous sulfuric acid solution as a liquid electrolyte''. ■ In line 5 of page 12 of the specification, ``In addition to sulfuric acid impregnated cotton'' should be changed to ``Aqueous sulfuric acid etc. "It's made by impregnating cotton with liquid electrolyte."

Claims (1)

【特許請求の範囲】[Claims] 1 作用極、対極および参照極を備え、少なくとも各極
の反応部の間に電解質層が設けられた電気化学式センサ
において、各極の反応部が、順次繰り返し配置されてい
ることを特徴とする電気化学式センサ。
1. An electrochemical sensor comprising a working electrode, a counter electrode, and a reference electrode, with an electrolyte layer provided between at least the reaction parts of each electrode, characterized in that the reaction parts of each electrode are arranged repeatedly in sequence. Chemical sensor.
JP63042854A 1988-02-24 1988-02-24 Electrochemical sensor Pending JPH01216263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042854A JPH01216263A (en) 1988-02-24 1988-02-24 Electrochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042854A JPH01216263A (en) 1988-02-24 1988-02-24 Electrochemical sensor

Publications (1)

Publication Number Publication Date
JPH01216263A true JPH01216263A (en) 1989-08-30

Family

ID=12647604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042854A Pending JPH01216263A (en) 1988-02-24 1988-02-24 Electrochemical sensor

Country Status (1)

Country Link
JP (1) JPH01216263A (en)

Similar Documents

Publication Publication Date Title
US4865717A (en) Electrochemical micro sensor
JPH0370782B2 (en)
JPH0829387A (en) Electrochemical element and nitrogen oxide concentration measuring apparatus
JPH01216263A (en) Electrochemical sensor
JP2598771B2 (en) Composite gas sensor
JPS60243558A (en) Analyzing device of oxygen gas concentration
JPH01216250A (en) Electrochemical sensor
AU1958088A (en) Electrochemical micro sensor
JP2698647B2 (en) Electrochemical sensor
JPH01216260A (en) Electrochemical sensor
JP2514222B2 (en) Electrochemical sensor
JP2669527B2 (en) Electrochemical sensor
JPH04363653A (en) Electrochemical gas sensor element
JPH03274452A (en) Field-effect transistor type oxygen sensor
JPH02171650A (en) Electrochemical type sensor
JPH01216258A (en) Electrochemical sensor
AU2013200265B2 (en) A miniaturised electrochemical sensor
JP2761086B2 (en) Electrochemical gas sensor device
EP2757367B1 (en) A miniaturised electrochemical sensor
JPH0298660A (en) Gas concentration sensor
JP2607631B2 (en) Electrochemical sensor
JPH01216259A (en) Electrochemical sensor
JPH0287057A (en) Electrochemical sensor
JPH0219759A (en) Electrochemical type sensor
JPH03195965A (en) Electrochemical sensor