JPH03195965A - Electrochemical sensor - Google Patents

Electrochemical sensor

Info

Publication number
JPH03195965A
JPH03195965A JP1337714A JP33771489A JPH03195965A JP H03195965 A JPH03195965 A JP H03195965A JP 1337714 A JP1337714 A JP 1337714A JP 33771489 A JP33771489 A JP 33771489A JP H03195965 A JPH03195965 A JP H03195965A
Authority
JP
Japan
Prior art keywords
working electrode
electrode
electrochemical
sensor
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337714A
Other languages
Japanese (ja)
Inventor
Yoshifumi Watabe
祥文 渡部
Toru Fujioka
藤岡 透
Shigekazu Kusanagi
草薙 繁量
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1337714A priority Critical patent/JPH03195965A/en
Publication of JPH03195965A publication Critical patent/JPH03195965A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Abstract

PURPOSE:To increase an effective length which takes part in electrochemical reactions in a working electrode and improve a sensor sensitiveness by forming projections and recesses on and in, respectively, the surface of at least the working electrode, arranging electrodes such that counter electrodes are positioned as opposed to a plurality of the sides of the working electrode while surrounding it as a center and reference electrodes are positioned as sandwiched by the working electrodes and the counter electrodes therebetween. CONSTITUTION:A detecting gas which is transmitted and reaches the reaction portion 20 of a working electrode causes electrochemical oxidation and reduction reactions on the surface of the projected and recessed reaction portion 20. Then, ions generated by the reactions are transmitted via the electrolyte layer 5 of the opposed portion of the working electrode 2 and a counter electrode 3. That is, the substantial effective area of the reaction portion 20 which takes part in the electrochemical reactions has a wide range along the three-sides of the reaction portion 20. Therefore, an effective length which takes part in the electrochemical reactions on the working electrode 2 is increased. As a result, a sensor sensitiveness can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気化学式センサに関し、詳しくは、電解
反応を利用して特定のガス成分を検出したり定量したり
する電解型の電気化学式センサに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrochemical sensor, and more specifically, an electrolytic type electrochemical sensor that detects or quantifies a specific gas component using an electrolytic reaction. It is related to.

〔従来の技術〕[Conventional technology]

電気化学的な酸化還元反応を利用して、大気中のガス、
例えば、−酸化炭素、水素、アルコール、窒素酸化物、
硫黄酸化物等を検知する電気化学式センサは、これまで
にも数多く報告されている。−船釣に、この種のガスセ
ンサは、高いガス感度を有していることから、工業用の
ガス濃度検知機等の分野において利用されている。
Using electrochemical redox reactions, gases in the atmosphere,
For example - carbon oxides, hydrogen, alcohols, nitrogen oxides,
Many electrochemical sensors that detect sulfur oxides and the like have been reported so far. - This type of gas sensor is used in the field of industrial gas concentration detectors and the like because it has high gas sensitivity for boat fishing.

近年、電気化学式センサにおいて、電極間に設けられる
イオン(プロトン)伝導用の電解質として、スルホン化
パーフルオロカーボン等の高分子固体電解質を用いたガ
スセンサが研究されており、例えば、特開昭53−11
5293号公報等に開示されている。
In recent years, in electrochemical sensors, gas sensors using solid polymer electrolytes such as sulfonated perfluorocarbons as electrolytes for ion (proton) conduction provided between electrodes have been studied.
It is disclosed in Japanese Patent No. 5293 and the like.

このセンサは、基本的な構造としては、それまでの液体
電解質をもいたガスセンサと同様に、検知電極、参照電
極、逆電極が設けられているが、電解質として液体電解
質のかわりに固体電解質を用いた点が特徴になっている
。このように、固体電解質を用いた電気化学式センサは
、液体電解質を用いたものに比べて、より小型で低価格
なセンサ素子を製造できるという利点を有している。
The basic structure of this sensor is the same as previous gas sensors that used a liquid electrolyte, including a sensing electrode, a reference electrode, and a counter electrode, but it uses a solid electrolyte instead of a liquid electrolyte. It is characterized by the fact that As described above, electrochemical sensors using solid electrolytes have the advantage that sensor elements that are smaller and cheaper can be manufactured than those using liquid electrolytes.

さらに、発明者らは、センサ素子の構造を、上記従来技
術のように、感知電極および参照電極と逆電極とが、間
に固体電解質を挟んで対向する対向型電極構成から、平
面型電極構成、すなわち1枚の基板の同一平面上に3つ
の電極を形成し、その上に固体電解質を配置した構造に
することによって、現在半導体製造分野等で用いられて
いる薄膜形成技術や印刷回路形成技術、写真製版技術等
が通用でき、ますまず小型化、製造の簡略化を推し進め
ることが可能になると考え、このような平面型電極構成
、すなわちプレーナ型電気化学式センサを開発し、先に
特願昭62−316419号等において特許出願してい
る。
Furthermore, the inventors changed the structure of the sensor element from the opposed electrode structure in which the sensing electrode, the reference electrode, and the counter electrode face each other with a solid electrolyte in between, as in the prior art described above, to the planar electrode structure. In other words, by creating a structure in which three electrodes are formed on the same plane of one substrate and a solid electrolyte is placed on top of them, thin film formation technology and printed circuit formation technology currently used in the semiconductor manufacturing field etc. , we thought that photolithography technology could be used and that it would be possible to promote miniaturization and simplification of manufacturing, so we developed such a planar electrode configuration, that is, a planar electrochemical sensor, and first applied for a patent application. Patent applications have been filed in No. 62-316419, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、固体電解質を用いた平面型電極構成の場
合、固体電解質のイオン伝導率が非常に小さいこと、お
よび、作用極と対極が同じ平面上で横に並んでいること
によって、作用極上で検知ガスの電気化学的な酸化還元
反応により生じたイオンの対極への移動が充分に行えな
い場合が多いという問題があった。
However, in the case of a planar electrode configuration using a solid electrolyte, the ionic conductivity of the solid electrolyte is very low, and the working electrode and counter electrode are arranged side by side on the same plane. There is a problem in that ions generated by the electrochemical redox reaction often cannot be sufficiently transferred to the counter electrode.

このうち、作用極と対極の配置上の問題について説明す
る。例えば、第6図に、従来の電気化学式センサの構造
を示しており、絶縁基板1上に、作用極2、参照極4、
対極3が順番に並んでおり、その上を固体電解質5で覆
っている。この場合、作用極2から対極3へのイオン伝
導は、主に互いの対向部分で行われるため、作用極2の
実質的な電気化学反応に関与する有効面積は、図中X印
で示した、対極3に近い側の一辺付近のみに限られてし
まう。そのため、検出ガス感度は、作用極2の面積に見
合うだけの値が得られず、設計値よりも感度が低くなっ
てしまうのである。
Among these, problems related to the arrangement of the working electrode and the counter electrode will be explained. For example, FIG. 6 shows the structure of a conventional electrochemical sensor, in which a working electrode 2, a reference electrode 4,
Counter electrodes 3 are arranged in order and covered with a solid electrolyte 5. In this case, since the ion conduction from the working electrode 2 to the counter electrode 3 is mainly carried out in the parts facing each other, the effective area of the working electrode 2 that is involved in the substantial electrochemical reaction is indicated by the X mark in the figure. , it is limited only to the vicinity of one side near the counter electrode 3. Therefore, the detection gas sensitivity cannot be obtained to a value commensurate with the area of the working electrode 2, and the sensitivity ends up being lower than the designed value.

上記問題の解決方法として、固体電解質層5の厚みを分
厚くすることが考えられた。すなわち、作用極2と対極
3の間のイオン伝導経路となる部分の固体電解質層5を
分厚くしておき、イオン伝導が迅速に行われるようにし
ておくのである。しかし、作用極2と対極3の間の固体
電解質層5の厚みを増やしただけでは、作用極2と対極
3の対向部分のイオン伝導が良くなるだけで、作用極2
の表面全体を電気化学反応に有効に利用することはでき
ない。そこで、作用極2と対極3の間および作用極2の
上を覆う固体電解質層5全体を分厚(して、作用極2の
表面全体から対極3に至るイオン伝導経路を広く設定す
る必要がある。
As a solution to the above problem, it has been considered to increase the thickness of the solid electrolyte layer 5. That is, the portion of the solid electrolyte layer 5 that forms the ion conduction path between the working electrode 2 and the counter electrode 3 is made thick so that ion conduction can occur quickly. However, simply increasing the thickness of the solid electrolyte layer 5 between the working electrode 2 and the counter electrode 3 only improves the ion conduction of the opposing portion of the working electrode 2 and the counter electrode 3.
cannot effectively utilize the entire surface for electrochemical reactions. Therefore, it is necessary to thicken the entire solid electrolyte layer 5 between the working electrode 2 and the counter electrode 3 and covering the top of the working electrode 2, and to set a wide ion conduction path from the entire surface of the working electrode 2 to the counter electrode 3. .

このようにすれば、イオン伝導性については向上するが
、検知ガスが分厚い固体電解質層5を透過して作用極2
の表面に到達しなければならなくなるため、検知ガスの
作用極2表面への拡散が著しく悪くなり、却って、検出
ガス感度を低下させるという問題がある。
In this way, although the ion conductivity is improved, the sensing gas passes through the thick solid electrolyte layer 5 and the working electrode 2
Since the detection gas has to reach the surface of the working electrode 2, the diffusion of the detection gas to the surface of the working electrode 2 becomes extremely poor, and there is a problem that the detection gas sensitivity is reduced.

そこで、この発明の課題は、上記のような従来技術の問
題点を解消し、固体電解質層から作用極表面へのガス透
過を阻害することなく、作用極の広い範囲にわたって、
ガス検知に関与する有効面積を増大させることにより、
検出ガス感度を良好にした電気化学式ガスセンサを提供
することにある。
Therefore, an object of the present invention is to solve the problems of the prior art as described above, and to spread the gas over a wide range of the working electrode without inhibiting gas permeation from the solid electrolyte layer to the working electrode surface.
By increasing the effective area involved in gas detection,
An object of the present invention is to provide an electrochemical gas sensor with improved detection gas sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する、この発明にかかる電気化学式セン
サは、絶縁基板の同一表面上に作用極。
An electrochemical sensor according to the present invention that solves the above problems has a working electrode disposed on the same surface of an insulating substrate.

対極および参照電極が設けられ、各種およびその間を覆
って固体電解質層が設けられた電気化学式ガスセンサ素
子において、少なくとも作用極の表面に凹凸が形成され
ており、各種の配置が、作用極を中央にして、作用極の
複数の辺と対向する位置に対極を配置し、作用極と対極
の間に挟まれた位置に参照極を配置している。
In an electrochemical gas sensor element in which a counter electrode and a reference electrode are provided, and a solid electrolyte layer is provided covering each electrode and the electrodes in between, at least the surface of the working electrode has irregularities, and various arrangements are made with the working electrode in the center. A counter electrode is arranged at a position facing the plurality of sides of the working electrode, and a reference electrode is arranged at a position sandwiched between the working electrode and the counter electrode.

絶縁基板や電極、固体電解質の材料は、通常の電気化学
式センサと同様のものが用いられる。
The materials used for the insulating substrate, electrodes, and solid electrolyte are the same as those for ordinary electrochemical sensors.

少なくとも作用極の表面に形成する凹凸は、細かいもの
ほど、電極の表面積を増大させることができるが、製造
の容易さなども考慮して、適当な大きさに設定する。凹
凸の形状は、直方体状、円柱状、半球状、その他任意の
形状が採用でき、凹凸の配置は、縦横に等間隔で並べる
ほか、千鳥状に並べたり、部分的に間隔を変えて並べる
こともできる。凹凸は、平坦な絶縁基板に形成された電
極の表面を凹凸状に加工してもよいが、絶縁基板の表面
に細かな凹凸を形成した上に、凹凸に沿って薄い導体層
を形成して電極にすれば、絶縁基板の凹凸と同じ凹凸が
電極の表面に形成されることになる。
The finer the irregularities formed on the surface of at least the working electrode, the more the surface area of the electrode can be increased, but they are set to an appropriate size, taking into account ease of manufacture. The shape of the unevenness can be a rectangular parallelepiped, cylinder, hemisphere, or any other shape, and the unevenness can be arranged at equal intervals vertically and horizontally, arranged in a staggered pattern, or arranged with partially changed spacing. You can also do it. The unevenness may be created by processing the surface of an electrode formed on a flat insulating substrate into an uneven shape, but it is also possible to form fine unevenness on the surface of the insulating substrate and then form a thin conductive layer along the unevenness. If it is made into an electrode, the same unevenness as that of the insulating substrate will be formed on the surface of the electrode.

検知ガスの電気化学反応に直接に関与するのは作用極で
あるから、凹凸は作用極のみに形成しておけば、作用極
の表面積を増大させて検知ガスの反応を良好にするとい
う目的は果たせるが、対極や参照極にも凹凸を形成して
おけば、それぞれの電極における機能を高めることがで
きる。凹凸の加工を容易にするには、絶縁基板の表面全
体に凹凸を形成しておいてもよい。
Since the working electrode is directly involved in the electrochemical reaction of the sensing gas, if the unevenness is formed only on the working electrode, the purpose of increasing the surface area of the working electrode and improving the reaction of the sensing gas is not achieved. However, if unevenness is also formed on the counter electrode and the reference electrode, the functions of each electrode can be enhanced. In order to facilitate the processing of the unevenness, the entire surface of the insulating substrate may be formed with unevenness.

つぎに、各種の配置について説明する。Next, various arrangements will be explained.

まず、作用極は、検知ガスが電気化学反応を起こす有効
面積が充分に確保できるように、その形状および面積等
を設定して配置される。この作用極を中央にして、作用
極の複数の辺と対向する位置に対極を配置する。例えば
、作用極が短冊状をなす場合は、外部回路との接続用端
子部となる一方の端部を除いた3方向の辺のうち、3辺
全てもしくは長手方向の2辺と対向する位置に対極を配
置する。短冊状作用極の3辺全てに対向して対極を設け
るには、各辺毎に対極を設けてもよいが、作用極の3辺
を囲む形のコ字状をなす対極を設けておけば、構造が簡
単で外部回路への配線接続も容易である。作用極の形状
が変われば、辺の形状や配置も変わるので、これと対向
させて配置する対極の形状や配置も変わる。作用極が曲
線状の辺を有する場合には、対極も曲線状に配置する。
First, the working electrode is arranged with its shape, area, etc. set so as to ensure a sufficient effective area for the detection gas to cause an electrochemical reaction. With this working electrode at the center, a counter electrode is arranged at a position facing the plurality of sides of the working electrode. For example, if the working electrode is in the form of a strip, it should be placed at a position opposite all three sides or two longitudinal sides of the three sides excluding one end that will serve as the terminal for connection with an external circuit. Place the opposite pole. In order to provide a counter electrode facing all three sides of a strip-shaped working electrode, a counter electrode may be provided for each side, but if a counter electrode is provided in a U-shape surrounding the three sides of the working electrode, The structure is simple and wiring connection to external circuits is easy. If the shape of the working electrode changes, the shape and arrangement of the sides will also change, so the shape and arrangement of the counter electrode placed opposite it will also change. When the working electrode has curved sides, the counter electrode is also arranged in a curved shape.

参照極は、作用極の電位を設定するための基準としての
機能を果す。そのためには、作用極から対極へのイオン
伝導経路内に設けておくのが好ましいので、作用極と対
極の間に挟まれた位置に参照極を設けておく。
The reference electrode serves as a reference for setting the potential of the working electrode. For this purpose, it is preferable to provide the reference electrode in the ion conduction path from the working electrode to the counter electrode, so the reference electrode is provided at a position sandwiched between the working electrode and the counter electrode.

固体電解質層は、上記のように配置された各種の上およ
びその間を覆って形成される。固体電解質層の材料とし
ては、前記したパーフルオロスルホネートポリマー、ポ
リスチレンスルボン酸、ポリビニルスルホン酸、その他
通常の電気化学式センサと同様の材料が使用できる。固
体電解質層は、各種の上を完全に覆うように形成するほ
か、作用極等の凹凸を覆う個所では、凸部の先端の一部
が固体電解質層の上に露出する程度に覆っておくことも
できる。
The solid electrolyte layer is formed to cover the various types arranged as described above and between them. As the material for the solid electrolyte layer, the above-mentioned perfluorosulfonate polymer, polystyrene sulfonic acid, polyvinyl sulfonic acid, and other materials similar to those used in ordinary electrochemical sensors can be used. The solid electrolyte layer should be formed so as to completely cover each type of top, and in places where it covers unevenness such as the working electrode, it should be covered to the extent that part of the tip of the protrusion is exposed above the solid electrolyte layer. You can also do it.

〔作  用〕[For production]

作用極の表面に凹凸が形成されていると、作用極の平面
的な面積が同じでも、凹凸を含んだ全表面積は増えるこ
となる。その結果、検知ガスが電気化学反応を起こす実
質的な有効面積が増え、センサ感度を高めることができ
る。また、凹凸の隙間を通ってイオン伝導が行われるの
で、イオン伝導も良好に行われる。作用極以外の電極に
も凹凸が形成されていれば、それぞれの電極の表面積が
増えるので、各電極の機能を向上させることができる。
When irregularities are formed on the surface of the working electrode, the total surface area including the irregularities increases even if the planar area of the working electrode is the same. As a result, the substantial effective area in which the detection gas undergoes an electrochemical reaction increases, making it possible to increase sensor sensitivity. Further, since ion conduction is performed through the gaps between the unevenness, ion conduction is also performed satisfactorily. If irregularities are formed on electrodes other than the working electrode, the surface area of each electrode increases, so that the function of each electrode can be improved.

各種の配置が、作用極を中央にして、作用極の複数の辺
と対向する位置に対極を配置し、作用極と対極の間に挟
まれた位置に参照極を配置していると、作用極の複数の
辺と対極の間でイオン伝導が行われるようになり、作用
極において電気化学反応に関与する有効長が増える。そ
の結果、やはリセンサ感度を高めることになる。
In various arrangements, the working electrode is placed in the center, the counter electrode is placed in a position facing multiple sides of the working electrode, and the reference electrode is placed in a position sandwiched between the working electrode and the counter electrode. Ion conduction occurs between multiple sides of the pole and the counter electrode, increasing the effective length involved in the electrochemical reaction at the working electrode. As a result, the resensor sensitivity will be increased.

〔実 施 例〕〔Example〕

ついで、この発明の実施例について、図を参照しながら
以下に説明する。
Next, embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図に示すように、シリコン基板の表面
にSing等からなる絶縁層を形成したものや、各種の
合成樹脂あるいはセラミック等からなる絶縁基板1の表
面に、ptからなる作用極2および対極3と、Auから
なる参照極4が設けられている。各電極は、スパフタリ
ングや真空蒸着等の通常の膜形成手段で形成される。作
用極2は、絶縁基板lの中央に短冊状に形成された反応
部20と、反応部20につづいて一端が小さなL状に屈
曲された、外部回路への接続用の端子部21とを備えて
いる。対極3は、作用極2の反応部20の三方の辺を囲
むように設けたコ字状の反応部30と、反応部30の端
部につづいて、作用極2の端子部21と並んで、一端が
小さなL状に屈曲された端子部32を備えている。参照
極4は、作用8i2の反応部20吉対極3の反応部3o
の間の隙間に挿入配置された細い短冊状の反応部4゜と
、反応部40につづいて、作用極2および対極3の端子
部21.31と同様に一端が小さなL状に屈曲された端
子部41を備えている。参照極4の反応部40は、作用
極2の反応部20の側辺の中程まで形成されている。具
体的な絶縁基板1および電極2〜4の寸法を例示すると
、l0XIO龍の絶縁基板1上に、作用極反応部20と
対極反応部30の間隔を50n〜21程度あけて設けて
おくのが好ましい。
As shown in FIGS. 1 and 2, a working electrode made of PT is formed on the surface of a silicon substrate with an insulating layer made of Sing or the like, or an insulating substrate 1 made of various synthetic resins or ceramics. 2, a counter electrode 3, and a reference electrode 4 made of Au. Each electrode is formed by ordinary film forming means such as sputtering or vacuum deposition. The working electrode 2 has a reaction part 20 formed in a strip shape at the center of an insulating substrate l, and a terminal part 21 for connection to an external circuit, one end of which is bent into a small L shape following the reaction part 20. We are prepared. The counter electrode 3 includes a U-shaped reaction section 30 provided so as to surround three sides of the reaction section 20 of the working electrode 2, and a U-shaped reaction section 30 that is arranged adjacent to the terminal section 21 of the working electrode 2 following the end of the reaction section 30. , is provided with a terminal portion 32 whose one end is bent into a small L shape. The reference electrode 4 is the reaction part 20 of the action 8i2 and the reaction part 3o of the counter electrode 3.
Following the reaction section 40, one end is bent into a small L shape in the same manner as the terminal sections 21 and 31 of the working electrode 2 and the counter electrode 3. A terminal portion 41 is provided. The reaction portion 40 of the reference electrode 4 is formed halfway up the side of the reaction portion 20 of the working electrode 2 . To give an example of specific dimensions of the insulating substrate 1 and the electrodes 2 to 4, it is preferable to provide the working electrode reaction section 20 and the counter electrode reaction section 30 with an interval of about 50n to 21 mm on the insulating substrate 1 of the 10XIO Dragon. preferable.

つぎに、第3図に詳しく説明するように、作用極反応部
200表面には、多数の細かな凹凸が形成されている。
Next, as explained in detail in FIG. 3, a large number of fine irregularities are formed on the surface of the working electrode reaction section 200.

なお、第2図では、図を判り易くするために、板状の作
用極反応部20の」二面に突出する凸部24が形成され
ているように表しているが、実際には、第3図に示すよ
うに、絶縁基板1の表面に凹凸を形成し、この凹凸の表
面に沿って電極材料を膜形成することによって、凹凸状
をなす作用極反応部20を形成している。凹凸の形状は
、直方体状の凸部24が縦横に等間隔で配列されている
。凸部24の寸法は、センサ全体の構造によっても異な
るが、通常、凸部24の幅すおよび凸部24同士の間隔
aが、a、b=3〜10μ重、凸部24の高さhが、k
t = 2〜5μ龍程度で実施される。絶縁基板1の表
面に凹凸を形成するには、凸部に相当する個所以外の部
分をエツチング等の手段で掘り込むことによって形成で
きる。
In addition, in FIG. 2, in order to make the diagram easier to understand, it is shown that the convex part 24 is formed on two sides of the plate-shaped working electrode reaction part 20, but in reality, the convex part 24 is As shown in FIG. 3, the working electrode reaction portion 20 having an uneven shape is formed by forming unevenness on the surface of the insulating substrate 1 and forming a film of electrode material along the uneven surface. The shape of the unevenness is such that rectangular parallelepiped-shaped protrusions 24 are arranged at equal intervals vertically and horizontally. The dimensions of the protrusion 24 vary depending on the overall structure of the sensor, but usually the width of the protrusion 24 and the distance a between the protrusions 24 are a, b = 3 to 10μ, and the height h of the protrusion 24 is But, k
It is carried out at approximately t = 2 to 5μ. In order to form irregularities on the surface of the insulating substrate 1, they can be formed by digging out portions other than the portions corresponding to the convex portions by means such as etching.

絶縁基板1の上には、各種2〜4の反応部20〜40を
囲むようにして、有機ポリマー等の絶縁性材料からなる
四角形状のフレーム10が固定されている。各種の端子
部21〜41は、上記フレーム10の外側に配置されて
いる。フレーム10の内側には、イオン伝導性の高分子
等からなる固体電解質層5が、各極反応部20〜40の
上およびその間を覆うようにして充填されている。図示
した実施例では、作用極2の凹凸を完全に覆っているが
、作用極2の凸部24の一部が固体電解質Jiit5の
上に露出していてもよい。
A rectangular frame 10 made of an insulating material such as an organic polymer is fixed on the insulating substrate 1 so as to surround the reaction sections 20 to 40 of each type. Various terminal parts 21 to 41 are arranged outside the frame 10. A solid electrolyte layer 5 made of an ion-conductive polymer or the like is filled inside the frame 10 so as to cover the tops of and between the electrode reaction parts 20 to 40. In the illustrated embodiment, the unevenness of the working electrode 2 is completely covered, but a portion of the convex portion 24 of the working electrode 2 may be exposed above the solid electrolyte 5.

固体電解質層5の材料としては、高分子固体電解質とし
て、例えば、スルホン化パーフルオロカーボン(商品名
ナフィオン:デュポン社製)が使用される。固体電解質
層5の厚みは、例えば1〜50μ厳程度で実施される。
As a material for the solid electrolyte layer 5, for example, sulfonated perfluorocarbon (trade name: Nafion, manufactured by DuPont) is used as a polymer solid electrolyte. The thickness of the solid electrolyte layer 5 is, for example, approximately 1 to 50 μm.

固体電解質層5の形成方法は、例えば、スルホン化パー
フルオロカーボンをエタノールに熔解したものを、ソリ
ューションキャスト法でフレーム10の内側部分に塗布
し乾燥させればよい。
The solid electrolyte layer 5 may be formed by, for example, dissolving sulfonated perfluorocarbon in ethanol, applying it to the inner part of the frame 10 by a solution casting method, and drying it.

このような構造の電気化学式センサにおけるガスの検知
作用を説明する。固体電解質層5を透過して作用極反応
部20に到達した検知ガスは、凹凸状の作用極反応部2
0の表面で電気化学的酸化還元反応を起こす。反応によ
って生じたイオンは、作用極2と対極3の対向部分の固
体電解質層5を通じて伝導される。すなわち、作用極反
応部20の3辺全てから対向する対極反応部3に向かっ
てイオン伝導が行われる。したがって、作用極反応部2
0の電気化学反応に関与する実質的な有効面積は、第1
図にX印で示したように、作用極反応部20の3辺に沿
った広い範囲となる。これを、前記第6図に示した従来
例の場合と比べれば、有効面積がはるかに広(なってい
ることが判る。
The gas detection action in the electrochemical sensor having such a structure will be explained. The detection gas that has passed through the solid electrolyte layer 5 and reached the working electrode reaction area 20 is exposed to the uneven working electrode reaction area 2.
An electrochemical redox reaction occurs on the surface of 0. Ions generated by the reaction are conducted through the solid electrolyte layer 5 at the opposing portion of the working electrode 2 and counter electrode 3. That is, ion conduction is performed from all three sides of the working electrode reaction section 20 toward the opposing electrode reaction section 3. Therefore, the working electrode reaction section 2
The substantial effective area involved in the electrochemical reaction of 0 is the first
As shown by the X mark in the figure, this is a wide range along three sides of the working electrode reaction section 20. Comparing this with the conventional example shown in FIG. 6, it can be seen that the effective area is much wider.

つぎに、第4図には、前記実施例と電極構造の異なる実
施例を示している。
Next, FIG. 4 shows an embodiment having a different electrode structure from the embodiment described above.

この実施例では、作用極2の左右に、それぞれ短冊状の
反応部30を有する対極3を設けている。すなわち、前
記実施例におけるコ字状の対極反応部から中央の辺を無
くして、両側の辺それぞれに端子部をつないだ構造にな
っている。この実tS例の場合には、作用極反応部20
の長手方向の両側辺から対向する対極反応部30へとイ
オン伝導が行われるので、図中X印で示すように、作用
極反応部20の長手方向両辺に沿った範囲が有効面積と
なる。
In this embodiment, counter electrodes 3 having strip-shaped reaction sections 30 are provided on the left and right sides of the working electrode 2, respectively. That is, the center side of the U-shaped counter electrode reaction section of the above embodiment is removed, and the terminal sections are connected to both sides. In the case of this actual tS example, the working electrode reaction section 20
Since ion conduction is carried out from both sides in the longitudinal direction to the opposing counter electrode reaction section 30, the effective area is the range along both sides in the longitudinal direction of the working electrode reaction section 20, as shown by the X mark in the figure.

つぎに、上記のような構造を有する電気化学式センサの
ガス感度特性を測定した結果について説明する。検知ガ
スとして、1100ppのCOガスを含む空気を用い、
作用極2の設定電位0.50 Vにしたときに、作用極
2と対極30間に流れる出力電流を測定した。
Next, the results of measuring the gas sensitivity characteristics of the electrochemical sensor having the above structure will be explained. Using air containing 1100 pp of CO gas as the detection gas,
When the set potential of the working electrode 2 was set to 0.50 V, the output current flowing between the working electrode 2 and the counter electrode 30 was measured.

センサの構造として、第1図および第4図に示す構造の
ものを用いるとともに、比較のために第6図に示す従来
構造のセンサについても、同様の測定を行った。何れの
構造でも、作用極2の幾何学的な平面面積は同一で、1
8mm”であった。測定の結果を第5図に示している。
The sensor structures shown in FIGS. 1 and 4 were used, and for comparison, similar measurements were also conducted on a sensor with a conventional structure shown in FIG. 6. In either structure, the geometric planar area of the working electrode 2 is the same, 1
8 mm''. The measurement results are shown in FIG.

図中、実施例1は第1図に示す構造のセンサの場合、実
施例2は第4図に示す構造のセンサの場合、比較例は第
6図に示す構造のセンサの場合である。
In the figure, Example 1 is a case of a sensor having the structure shown in FIG. 1, Example 2 is a case of a sensor having a structure shown in FIG. 4, and Comparative Example is a case of a sensor having a structure shown in FIG.

第5図のグラフをみれば明らかなように、この発明の実
施例の場合、比較例に比べて、はるかに検知出力が高く
、センサ感度が向上していることが判り、この発明にか
かる電気化学式センサの優れた効果が実証できた。
As is clear from the graph in FIG. 5, the detection output of the embodiment of the present invention is much higher than that of the comparative example, and the sensor sensitivity is improved. The excellent effectiveness of the chemical sensor was demonstrated.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明にかかる電気化学式セン
サは、まず、少なくとも作用極の表面に凹凸が形成され
ていることにより、作用極の表面積が増大し、検知ガス
が電気化学反応を行う場所が広くなる結果、センサ感度
が向上する。また、作用極の複数の辺と対向する位置に
対極を配置していることにより、作用極のうち、従来利
用されていなかった部分も電気化学反応に関与して、作
用極と対極間のイオン伝導経路が広くなる結果、やはり
センサ感度が向上する。上記したふたつの作用が相乗的
に加わることによって、作用極において、検知ガスの電
気化学的な酸化還元反応を行うための実質的な有効面積
が大幅に増え、センサ感度は非富に高くなる。
As described above, in the electrochemical sensor according to the present invention, first, the surface area of the working electrode is increased by forming irregularities on the surface of at least the working electrode, and the area where the sensing gas undergoes an electrochemical reaction is increased. As a result, sensor sensitivity improves. In addition, by arranging the counter electrode at a position facing multiple sides of the working electrode, parts of the working electrode that have not been used in the past can also participate in the electrochemical reaction, allowing ions to flow between the working electrode and the counter electrode. The wider conduction path also results in improved sensor sensitivity. By synergistically adding the above-mentioned two effects, the practical effective area for carrying out the electrochemical redox reaction of the detection gas at the working electrode increases significantly, and the sensor sensitivity becomes extremely high.

しかも、電極の表面に凹凸を形成するだけでは、センサ
全体の寸法は全く増えない。また、対極の面積が増えた
としても、作用極の利用効率が向上するため、対極の面
積増加分以上にセンサ感度の向上効果があり、センサ感
度が向上しただけ、センサの寸法を小さくすることもで
きる。したがって、従来構造のセンサに比べて、同じサ
イズであっても、はるかに良好な感度を有する電気化学
式センサを提供することが可能になる。
Moreover, simply forming irregularities on the surface of the electrode does not increase the overall size of the sensor at all. Furthermore, even if the area of the counter electrode increases, the utilization efficiency of the working electrode improves, so the sensor sensitivity is improved by more than the increase in the area of the counter electrode, and the size of the sensor can be reduced by the increase in sensor sensitivity. You can also do it. Therefore, it is possible to provide an electrochemical sensor that has much better sensitivity than a conventionally structured sensor even though it has the same size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す平面図、第2図は断面
図、第3図は作用極の凹凸構造を示す拡大斜視図、第4
図は別の実施例を示す平面図、第5図は感度特性の測定
結果を示すグラフ図、第6図は従来例の平面図である。 1・・・絶縁基板 2・・・作用極 20・・・反応部
 3・・・対極 30・・・反応部 4・・・参照極 
40・・・反応部 5・・・固体電解質層 第1図
Fig. 1 is a plan view showing an embodiment of the present invention, Fig. 2 is a sectional view, Fig. 3 is an enlarged perspective view showing the uneven structure of the working electrode, and Fig. 4 is a plan view showing an embodiment of the present invention.
The figure is a plan view showing another embodiment, FIG. 5 is a graph showing measurement results of sensitivity characteristics, and FIG. 6 is a plan view of a conventional example. 1... Insulating substrate 2... Working electrode 20... Reaction part 3... Counter electrode 30... Reaction part 4... Reference electrode
40...Reaction part 5...Solid electrolyte layer Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板の同一表面上に作用極、対極および参照電
極が設けられ、各極およびその間を覆って固体電解質層
が設けられた電気化学式ガスセンサ素子において、少な
くとも作用極の表面に凹凸が形成されており、各極の配
置が、作用極を中央にして、作用極の複数の辺と対向す
る位置に対極を配置し、作用極と対極の間に挟まれた位
置に参照極を配置していることを特徴とする電気化学式
センサ。
1. In an electrochemical gas sensor element in which a working electrode, a counter electrode, and a reference electrode are provided on the same surface of an insulating substrate, and a solid electrolyte layer is provided covering each electrode and between the electrodes, at least the surface of the working electrode is provided with irregularities. The arrangement of each electrode is such that the working electrode is in the center, the counter electrode is placed opposite multiple sides of the working electrode, and the reference electrode is placed between the working electrode and the counter electrode. An electrochemical sensor characterized by:
JP1337714A 1989-12-25 1989-12-25 Electrochemical sensor Pending JPH03195965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337714A JPH03195965A (en) 1989-12-25 1989-12-25 Electrochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337714A JPH03195965A (en) 1989-12-25 1989-12-25 Electrochemical sensor

Publications (1)

Publication Number Publication Date
JPH03195965A true JPH03195965A (en) 1991-08-27

Family

ID=18311276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337714A Pending JPH03195965A (en) 1989-12-25 1989-12-25 Electrochemical sensor

Country Status (1)

Country Link
JP (1) JPH03195965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160112893A (en) * 2015-03-20 2016-09-28 제트복스 어쿠스틱 코포레이션 Piezoelectric ceramic dual-band bass-enhanced earpiece
WO2018187733A1 (en) 2017-04-06 2018-10-11 Kim Deok Ho Device, system and methods for electrophysiological interrogation of cells and tissues

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160112893A (en) * 2015-03-20 2016-09-28 제트복스 어쿠스틱 코포레이션 Piezoelectric ceramic dual-band bass-enhanced earpiece
WO2018187733A1 (en) 2017-04-06 2018-10-11 Kim Deok Ho Device, system and methods for electrophysiological interrogation of cells and tissues
US20200055041A1 (en) * 2017-04-06 2020-02-20 Nanosurface Biomedical, Inc. Device, system and methods for electrophysiological interrogation of cells and tissues
EP3607078A4 (en) * 2017-04-06 2020-11-25 Deok-Ho Kim Device, system and methods for electrophysiological interrogation of cells and tissues

Similar Documents

Publication Publication Date Title
JPH03195965A (en) Electrochemical sensor
JP2698647B2 (en) Electrochemical sensor
JPS62237347A (en) Field effect transistor type gas sensor
JPS6326569A (en) Ion selective electrode device
JPH01216250A (en) Electrochemical sensor
JPH01216260A (en) Electrochemical sensor
JPH0287057A (en) Electrochemical sensor
JPH03277961A (en) Electrochemical gas sensor
JPH02171650A (en) Electrochemical type sensor
JPH0290055A (en) Electrochemical type sensor
JPH04106465A (en) Electrochemical type gas sensor
JPH05203612A (en) Electrochemical gas sensor
JPH03221859A (en) Electrochemical type sensor
JPH04363653A (en) Electrochemical gas sensor element
KR100329807B1 (en) Electrode structure of the semiconducting type gas sensor
JP2514222B2 (en) Electrochemical sensor
JPH01216258A (en) Electrochemical sensor
JPH1038843A (en) Gas/moisture sensor for inert gas
JPH0235349A (en) Electrochemical sensor
JP2761086B2 (en) Electrochemical gas sensor device
JPH0219759A (en) Electrochemical type sensor
JPH0236347A (en) Electrochemical sensor
JPH05164729A (en) Threshold current type oxygen sensor
KR20120023461A (en) Nox gas sensor
JPH03274452A (en) Field-effect transistor type oxygen sensor