JPH01216259A - Electrochemical sensor - Google Patents

Electrochemical sensor

Info

Publication number
JPH01216259A
JPH01216259A JP63042850A JP4285088A JPH01216259A JP H01216259 A JPH01216259 A JP H01216259A JP 63042850 A JP63042850 A JP 63042850A JP 4285088 A JP4285088 A JP 4285088A JP H01216259 A JPH01216259 A JP H01216259A
Authority
JP
Japan
Prior art keywords
electrode
insulating substrate
bonding layer
sensor
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63042850A
Other languages
Japanese (ja)
Inventor
Keiji Kakinote
柿手 啓治
Koichi Aizawa
浩一 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63042850A priority Critical patent/JPH01216259A/en
Publication of JPH01216259A publication Critical patent/JPH01216259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To preclude a decrease in the sensitivity of the sensor and to prevent an electrode from being peeled off by providing an intermediate joint layer between an insulating substrate and the electrode, and covering the external surface of the intermediate joint layer completely with the electrode. CONSTITUTION:Intermediate joint layers 50 made of metal such as chromium are provided between electrodes 2 and the insulating substrate 1. The intermediate joint layers 50, however, have top surfaces and flanks covered completely with the electrodes 2 except the bottom surfaces joined with the insulating substrate 1. Consequently, the intermediate joint layers 50 never contact a solid electrolyte layer 6 and even when the sensor is put in operation, no battery effect is caused, so the intermediate joint layers 50 are securely prevented from being dissolved out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気化学式センサに関し、詳しくは、電解
反応を利用して特定のガス成分等を検出したり定量した
りする、電解型の電気化学式センサに関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrochemical sensor, and more specifically, an electrolytic sensor that detects or quantifies a specific gas component using an electrolytic reaction. This relates to chemical sensors.

〔従来の技術〕[Conventional technology]

電解型ガスセンサの一般的な基本構造は、電解質内に作
用極、対極および参照極の3個の電極が設けられてなる
ものであり、その−船釣な作用機構は、作用極に一定の
電圧をかけると、検出対象とするガス成分が作用極で酸
化または還元反応を起こし、このとき生成されたイオン
は電解質内を移動して、対極で還元または酸化反応を起
こすと言うものである。この酸化還元反応に伴い作用極
と対極の間を流れる電流を測定することによって、対象
ガスの検出および定量を行うことができるようになって
いる。
The general basic structure of an electrolytic gas sensor is that three electrodes, a working electrode, a counter electrode, and a reference electrode, are provided in an electrolyte, and its working mechanism is that a constant voltage is applied to the working electrode. When applied, the gas component to be detected undergoes an oxidation or reduction reaction at the working electrode, and the ions generated at this time move within the electrolyte and undergo a reduction or oxidation reaction at the counter electrode. By measuring the current flowing between the working electrode and the counter electrode accompanying this redox reaction, it is possible to detect and quantify the target gas.

なお、反応を起こさせるために必要な作用極の電位は、
検出ガスの成分によって異なるので、検出ガスに応じて
作用極の電位を一定に保つ必要があり、そのため、参照
極を基準にして、作用極に加える電圧を制御している。
The potential of the working electrode required to cause the reaction is
Since the potential of the working electrode varies depending on the components of the detected gas, it is necessary to keep the potential of the working electrode constant depending on the detected gas. Therefore, the voltage applied to the working electrode is controlled with reference to the reference electrode.

但し、参照極を設けず、作用極と対極のみからなるセン
サもある。
However, there is also a sensor that does not include a reference electrode and consists only of a working electrode and a counter electrode.

ところで、従来の電解型ガスセンサは、電解質として、
例えばH* So、等の液体電解質を使用しているため
、電解質の経時変化、液漏れ、材料腐食等の問題があり
、厳重な密封構造にしなければならないために、小型化
が困難であり、また、感度や出力が経時的に低下するの
で、長期的な安定性に乏しく、寿命が短いこと、さらに
、取り扱いや管理が難しいこと等の欠点があった。
By the way, conventional electrolytic gas sensors use the electrolyte as
For example, since a liquid electrolyte such as H*So is used, there are problems such as electrolyte change over time, liquid leakage, and material corrosion, and it is difficult to miniaturize because it must have a tightly sealed structure. Furthermore, since the sensitivity and output decrease over time, there are drawbacks such as poor long-term stability, short lifespan, and difficulty in handling and management.

そこで、液体電解質のかわりに、スルホン化パーフルオ
ロカーボン等の高分子固体電解質を用いたガスセンサが
開発され、例えば、米国特許第4227984号明細書
、同第4265714号明細書あるいは、特開昭53−
115293号公報等に開示されている。
Therefore, instead of liquid electrolytes, gas sensors using solid polymer electrolytes such as sulfonated perfluorocarbons have been developed; for example, U.S. Pat.
It is disclosed in Japanese Patent No. 115293 and the like.

このガスセンサは、固体電解質膜の片面に感知電極(作
用極)と参照電極(参照極)が設けられ、反対面に逆電
極(対極)が設けられており、液体電解質型のものに比
べてコンパクト化され、経時的安定性等の性能の点でも
優れており、取り扱いも容易になっている。
This gas sensor has a sensing electrode (working electrode) and a reference electrode (reference electrode) on one side of the solid electrolyte membrane, and a reverse electrode (counter electrode) on the other side, making it more compact than the liquid electrolyte type. It has excellent performance such as stability over time, and is easy to handle.

しかし、このガスセンサは、Pt、Au等とポリテトラ
フルオロエチレンとの微粒子混合体が担持されたガス透
過性膜からなる電極を、軟質の固体電解質膜に接着する
ようにしているため、製造が面倒であるとともに、超小
型化、センサアレイ化が困難であるという問題があった
However, in this gas sensor, an electrode made of a gas-permeable membrane supporting a fine particle mixture of Pt, Au, etc. and polytetrafluoroethylene is bonded to a soft solid electrolyte membrane, which makes manufacturing difficult. In addition, there was a problem in that it was difficult to miniaturize and form a sensor array.

近年、半導体等の電子回路素子が、プレーナ技術等のマ
イクロ加工技術を利用して超小型化されてきており、こ
のような素子と組み合わせて使用するガスセンサとして
も、−層の超小型化、高性能化が要求されている。
In recent years, electronic circuit elements such as semiconductors have been miniaturized using micro-processing technology such as planar technology, and gas sensors used in combination with such elements have also been developed using ultra-miniaturized layers and high Performance is required.

そこで、本件出願人は、上記した従来技術の問題点を解
消し、半導体素子等と同様のマイクロ加工技術で製造で
きる、プレーナ型のガスセンサを開発した。第3図は、
このようなブレーナ型のガスセンサの構造例を示してお
り、絶縁基板1の上面に、電極として作用極2.対極3
および参照極4が設けられ、各種はそれぞれ、電気化学
作用を行う反応部20.30.40と外部回路へ接続さ
れる端子部21,31.41からなり、各種の反応部2
0.30.40およびその間を覆って、固体電解質M6
が設けられている。したがって、検出ガス等は固体電解
質層6を通過して作用極の反応部20上に拡散し、電気
化学反応を起こすことになる。
Therefore, the applicant has developed a planar gas sensor that solves the problems of the prior art described above and can be manufactured using the same microprocessing technology as semiconductor devices. Figure 3 shows
An example of the structure of such a Brehner-type gas sensor is shown, in which a working electrode 2. Opposite 3
and a reference electrode 4, each of which consists of a reaction section 20, 30, 40 that performs an electrochemical action and a terminal section 21, 31.41 that is connected to an external circuit.
0.30.40 and covering therebetween, solid electrolyte M6
is provided. Therefore, the detection gas and the like pass through the solid electrolyte layer 6 and diffuse onto the reaction part 20 of the working electrode, causing an electrochemical reaction.

上記ガスセンサは、絶縁基板lの同一面に全ての電極2
.3.4が設けられているので、電極や固体電解質層の
形成を、ブレーナ技術等のマイクロ加工技術を利用して
、極めて能率良く加工でき、センサの小型化、高性能化
を図れる等、多くの優れた特徴を有している。
The above gas sensor has all electrodes 2 on the same surface of an insulating substrate l.
.. 3.4, the electrodes and solid electrolyte layers can be formed extremely efficiently using micro-processing technology such as Brenna technology, making it possible to miniaturize the sensor and improve its performance. It has excellent characteristics.

なお、上記ガスセンサの場合、電極材料として通常用い
られる白金、金、イリジウム等の金属と絶縁基板との接
合性がそれほど良くないため、電極が絶縁基板と剥離し
て、感度や出力が低下する問題がある。特に、微細な電
極パターンを形成するために、表面の平滑なガラス基板
等を用いた場合には、上記のような電極剥離が生じ易い
。そのため、第4図に示すように、白金等の金属からな
る電極2(または3.4)と絶縁基板1の間に、電極2
・・・お□よび絶縁基板の何れにも接合性の良い、クロ
ム、チタン等の金属からなる薄い中間接合層5を設ける
ことによって、電極と絶縁基板との接合力をよ゛り高め
ることが行われている。
In addition, in the case of the above gas sensor, the bonding properties between the metals commonly used as electrode materials, such as platinum, gold, and iridium, and the insulating substrate are not very good, so there is a problem that the electrodes may separate from the insulating substrate, resulting in a decrease in sensitivity and output. There is. In particular, when a glass substrate with a smooth surface is used to form a fine electrode pattern, the electrode peeling as described above is likely to occur. Therefore, as shown in FIG. 4, between the electrode 2 (or 3.4) made of metal such as platinum and the insulating substrate 1,
...By providing a thin intermediate bonding layer 5 made of a metal such as chromium or titanium with good bonding properties on both the electrode and the insulating substrate, the bonding strength between the electrode and the insulating substrate can be further increased. It is being done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記した電気化学式センサの場合、電極2・
・・が固体電解質層6で覆われているため、中間接合層
5も固体電解質層6と接触することになる。
However, in the case of the electrochemical sensor described above, the electrode 2.
... are covered with the solid electrolyte layer 6, the intermediate bonding layer 5 also comes into contact with the solid electrolyte layer 6.

そうすると、従来の中間接合層5は、比較的抵抗の小さ
なりロム等の金属材料からなるので、センサの動作中に
中間接合層5にも電流が流れ、電池効果によって、第4
図に示すように、中間接合層5が固体電解質層6中に溶
出してしまう、この溶出材料は作用極2等における検出
成分の反応を阻害して、センサの感度低下や誤動作を起
こすとともに、中間接合層5が溶けてしまうと、電極の
剥離を起こしてしまう場合もある。
Then, since the conventional intermediate bonding layer 5 is made of a metal material such as ROHM with a relatively low resistance, current also flows through the intermediate bonding layer 5 during the operation of the sensor, and the battery effect causes the fourth
As shown in the figure, the intermediate bonding layer 5 is eluted into the solid electrolyte layer 6, and this eluted material inhibits the reaction of the detection component at the working electrode 2 etc., causing a decrease in sensor sensitivity and malfunction. If the intermediate bonding layer 5 melts, the electrodes may peel off.

そこで、この発明の課題は、中間接合層の溶出を防止し
て、センサの感度低下を防ぐとともに、電極の剥離を防
止することにある。
Therefore, an object of the present invention is to prevent elution of the intermediate bonding layer to prevent a decrease in sensitivity of the sensor and to prevent peeling of the electrode.

なお、上記説明はすべて、ガスセンサについて行ったが
、上記ガスセンサの構造は、作用極で反応を起こさせる
検出対象を液体中のイオンにすればイオンセンサに通用
できる等、種々の用途における電気化学式センサに同様
に通用できるものであるので、この発明は、ガスセンサ
を含めたセンサ一般を対象とする。
Although all of the above explanations have been made regarding gas sensors, the structure of the above gas sensor can be used as an ion sensor if the detection target that causes a reaction at the working electrode is ions in a liquid, and can be used as an electrochemical sensor for various uses. This invention is applicable to sensors in general, including gas sensors.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、この発明は、絶縁基板と電極
の間に中間接合層を設けるとともに、中間接合層の外面
を電極で完全に覆うようにしている。
In order to solve the above problems, the present invention provides an intermediate bonding layer between the insulating substrate and the electrode, and completely covers the outer surface of the intermediate bonding layer with the electrode.

〔作   用〕[For production]

このように、中間接合層を電極で覆うことによって、中
間接合層、が固体電解質層と接触することが無くなり、
センサを作動させても、電池効果を生じることがないた
め、中間接合層の溶出を確実に防止できる。
In this way, by covering the intermediate bonding layer with the electrode, the intermediate bonding layer does not come into contact with the solid electrolyte layer,
Even when the sensor is activated, no battery effect occurs, so elution of the intermediate bonding layer can be reliably prevented.

〔実 施 例〕〔Example〕

つぎに、この発明を、実施例を示す図面を参照しながら
、以下に詳しく説明する。
Next, the present invention will be described in detail below with reference to drawings showing embodiments.

第1図は、この発明にかかるガスセンサの断面構造を示
しており、矩形の絶縁基板1の上に、電極として作用極
2.対極3および参照極(図面には表れていない)が設
けられ、各種2・・・の電気化学作用を行う反応部が固
体電解質層6で覆われている。なお、各種2・・・の配
置や形成パターンは、前記した第3図の構造例等、通常
のガスセンサと同様の構造で実施されるので、詳細な説
明は省略する。
FIG. 1 shows the cross-sectional structure of a gas sensor according to the present invention, in which a working electrode 2. A counter electrode 3 and a reference electrode (not shown in the drawings) are provided, and a reaction section that performs various electrochemical actions is covered with a solid electrolyte layer 6. Note that the arrangement and formation patterns of the various types 2... are implemented in a structure similar to that of a normal gas sensor, such as the structure example shown in FIG. 3 described above, and detailed explanations will be omitted.

各電極2・・・と絶縁基板1の間には、クロム等の金属
からなる中間接合層50が設けられている。
An intermediate bonding layer 50 made of metal such as chromium is provided between each electrode 2 and the insulating substrate 1.

但し、中間接合層50は、絶縁基板1に接合された底面
を除いて、上面および側面の外面全体が電極2・・・で
完全に覆われており、露出した部分がないようになって
いる。
However, the entire outer surface of the top and side surfaces of the intermediate bonding layer 50, except for the bottom surface bonded to the insulating substrate 1, is completely covered with the electrodes 2, so that there is no exposed part. .

上記のような構造のガスセンサのうち、絶縁基板1は、
アルミノ珪酸塩ガラスが好適に使用されるが、ホウ珪酸
ガラス、石英ガラス等のガラス基板、アルミナ等のセラ
ミックス基板等も使用でき、さらにシリコンや適宜金属
等の導電性材料の上に、酸化シリコン等の絶縁性膜が形
成されたもの等、通常のガスセンサあるいは電子回路素
子用の絶縁基板材料が使用できる。
Among the gas sensors having the above structure, the insulating substrate 1 is
Aluminosilicate glass is preferably used, but glass substrates such as borosilicate glass and quartz glass, ceramic substrates such as alumina, etc. can also be used, and silicon oxide etc. An ordinary insulating substrate material for gas sensors or electronic circuit elements, such as one on which an insulating film is formed, can be used.

この絶縁性基板lの上に接合される中間接合層50は、
絶縁基板lと電極2・・・の何れに対しても接合性の良
い、クロム、チタン等の金属が、通常の電極形成法と同
様の手段を用い、電極2・・・の形成パターンと同じパ
ターンで、絶縁基板1上に約10〜1000人の厚みで
形成される。具体的には、例えば絶縁基板l全面に、ス
パッタ法あるいは蒸着法等の手段で中間接合1i50を
形成した後、フォトレジスト等を用いて、所定のマスク
パターンを形成し、その後、湿式あるいはドライエツチ
ングによって、中間接合層50の不要な部分を除去すれ
ばよい。
The intermediate bonding layer 50 bonded onto this insulating substrate l is
A metal such as chromium or titanium that has good bonding properties to both the insulating substrate l and the electrode 2... is used in the same manner as the normal electrode forming method, and the same pattern as that of the electrode 2... The pattern is formed on the insulating substrate 1 to a thickness of about 10 to 1000 layers. Specifically, for example, after forming an intermediate junction 1i50 on the entire surface of an insulating substrate l by sputtering or vapor deposition, a predetermined mask pattern is formed using a photoresist or the like, and then wet or dry etching is performed. What is necessary is to remove unnecessary portions of the intermediate bonding layer 50 by.

つぎに、電極2・・・としては、白金、金等の通常の電
極材料が用いられ、湿式めっき法等の手段で、中間接合
層50の外面を、選択的かつ完全に覆うように形成され
る。但し、中間接合層50の外面を選択的かつ完全に覆
うことができれば、湿式めっき法以外の適当なプレーナ
技術等を適用して、電極2・・・を形成することもでき
る。電極2・・・の厚みは、センサの構造や用途に応し
て、適宜に設定される。各電極2・・・には、白金黒を
着けたり、酸化処理等の活性化処理を施しておいてもよ
い。
Next, as the electrode 2..., a normal electrode material such as platinum or gold is used, and is formed by means such as wet plating so as to selectively and completely cover the outer surface of the intermediate bonding layer 50. Ru. However, as long as the outer surface of the intermediate bonding layer 50 can be selectively and completely covered, the electrodes 2 can also be formed by applying a suitable planar technique or the like other than the wet plating method. The thickness of the electrodes 2 is appropriately set depending on the structure and purpose of the sensor. Each electrode 2 may be coated with platinum black or subjected to activation treatment such as oxidation treatment.

固体電解質層6は、例えばスルホン化パーフルオロカー
ボン(商品名Nafion :デュポン社製)等のガス
透過性高分子固体電解質が使用されるが、その他、通常
のガスセンサ等に用いられている各種の固体電解質が使
用でき、例えば、5bzOi−4H!01Zr  (H
PO,)、  ・48t O等も使用できる。
For the solid electrolyte layer 6, a gas-permeable polymer solid electrolyte such as sulfonated perfluorocarbon (trade name: Nafion, manufactured by DuPont) is used, but other types of solid electrolytes used in ordinary gas sensors etc. are used. can be used, for example, 5bzOi-4H! 01Zr (H
PO, ), ・48t O, etc. can also be used.

図示した実施例では、固体電解質層6が、各電極2・・
・の全体を覆うように設けられているが、各電極2・・
・の電気化学作用に関与する、反応部の間のみを固体電
解質M6で覆うようにしてもよい。
In the illustrated embodiment, the solid electrolyte layer 6 includes each electrode 2...
・Although it is provided to cover the entire area, each electrode 2...
The solid electrolyte M6 may cover only the area between the reaction parts involved in the electrochemical action.

つぎに、第2図に示す実施例は、上記した第1の中間接
合Jii50の外面を覆って、別の材料からなる第2の
中間接合jEi51が設けられ、この第2の中間接合層
51の外面を覆って、電極2・・・が形成されている。
Next, in the embodiment shown in FIG. 2, a second intermediate junction jEi 51 made of another material is provided to cover the outer surface of the first intermediate junction Jii 50 described above, and the second intermediate junction jEi 51 made of another material is provided. Electrodes 2... are formed covering the outer surface.

この第2の中間接合N51は、第1の中間接合Jit5
0よりも固体電解質6に溶出し難いとともに、第1の中
間接合層50および電極2・・・との接合性の良好な材
料が用いられる。
This second intermediate junction N51 is the first intermediate junction Jit5
A material is used that is less eluted into the solid electrolyte 6 than zero and has good bonding properties with the first intermediate bonding layer 50 and the electrodes 2 .

第2の中間接合層51の形成法は、上記した中間接合層
50または電極2・・・と同様の方法で実施される。
The second intermediate bonding layer 51 is formed in the same manner as the intermediate bonding layer 50 or the electrode 2 described above.

このように、第2の中間接合層51を設けておくと、電
極2・・・にピンホールがあっても、第2の中間接合F
551によって、第1の中間接合層50が溶出するのを
、より確実に防止できる。
In this way, by providing the second intermediate bonding layer 51, even if there is a pinhole in the electrode 2..., the second intermediate bonding layer 51 is provided.
551, it is possible to more reliably prevent the first intermediate bonding layer 50 from being eluted.

すなわち、中間接合層50として、絶縁基Filと電極
2・・・の両方に対する接合性と、固体電解質6に対す
る非溶解性を兼ね備えた材料を選択するのが困難な場合
、第1の中間接合Jii50の材料は絶縁基板lに対す
る接合性のみを考慮して選択し、第2の中間接合層51
は固体電解質6に対する非溶出性と電極2・・・に対す
る接合性のみを考慮して選択することができるので、材
料選択の幅が広くなる。
That is, if it is difficult to select a material for the intermediate bonding layer 50 that has both bonding properties to both the insulating group Fil and the electrodes 2... and insolubility to the solid electrolyte 6, the first intermediate bonding layer Jii50 The material of the second intermediate bonding layer 51 is selected by considering only the bondability to the insulating substrate l.
can be selected by considering only the non-elution property to the solid electrolyte 6 and the bonding property to the electrodes 2 . . . , which widens the range of material selection.

さらに、上記した各実施例において、固体電解質層6の
上に、ガス選択透過性フィルタを設けておけば、目的の
検出ガスを選択的に固体電解質層6あるいは作用極2側
に送り込め、検出精度を一部高めることができる。さら
に、固体電解質層6の上に水溜層を設けることによって
、感度を向上させることができる。
Furthermore, in each of the above embodiments, if a gas selective permeability filter is provided on the solid electrolyte layer 6, the target detection gas can be selectively sent to the solid electrolyte layer 6 or the working electrode 2 side, and the detection gas can be selectively sent to the solid electrolyte layer 6 or the working electrode 2 side. Accuracy can be partially increased. Furthermore, by providing a water reservoir layer on the solid electrolyte layer 6, sensitivity can be improved.

その他、この発明の要旨を変更しない限り、通常のガス
センサに採用されている各種の構造あるいは形状を組み
合わせて実施できる。
In addition, unless the gist of the present invention is changed, various structures or shapes employed in ordinary gas sensors can be combined and implemented.

さらに、上記した各実施例は、何れもガスセンサに関し
て説明したが、同様の構成で液体中のイオン成分に反応
するイオンセンサ、バイオセンサ等の各種電気化学式セ
ンサに適用することもで−きる。なお、液体中で使用す
る場合には、固体電解質はガス透過性でなくてもよい等
、用途に応じて適宜構造に変更して実施する。
Furthermore, although each of the above-mentioned embodiments has been described with respect to a gas sensor, the same structure can also be applied to various electrochemical sensors such as ion sensors and biosensors that react to ionic components in a liquid. Note that when used in a liquid, the solid electrolyte does not need to be gas permeable, and the structure may be changed as appropriate depending on the application.

〔発明の効果〕〔Effect of the invention〕

以上に説明した、この発明は、電極と絶縁基板との接合
性を良好にするために設ける、中間接合層の外面を、電
極によって完全に覆っており、中間接合層が固体電解質
層と接触しないので、従来のように、センサの動作中に
中間接合層が溶出することがない。
As described above, in the present invention, the outer surface of the intermediate bonding layer, which is provided to improve the bondability between the electrode and the insulating substrate, is completely covered by the electrode, and the intermediate bonding layer does not come into contact with the solid electrolyte layer. Therefore, the intermediate bonding layer does not elute during the operation of the sensor, unlike in the conventional case.

したがって、中間接合層の溶出によるセンサの感度低下
や寿命の短縮化、あるいは電極の剥離等の問題を全て解
消することができ、電気化学式センサの信頼性、安定性
を向上し、寿命の大幅な延長が可能になる。
Therefore, it is possible to eliminate all problems such as reduced sensitivity and shortened sensor life due to elution of the intermediate bonding layer, and peeling of electrodes, improving the reliability and stability of electrochemical sensors and significantly extending the service life. Extension is possible.

特に1.高密度の微細な電極パターンを形成するために
、平滑な絶縁基板を用いた場合でも、高い接合力を有し
、従来のような電極剥離が起こらず、センサとして優れ
た性能を維持できる。
Especially 1. Even when a smooth insulating substrate is used to form a high-density, fine electrode pattern, it has high bonding strength, prevents electrode peeling like in the past, and maintains excellent performance as a sensor.

しかも、中間接合層としては、特に固体電解層に対する
非溶解性を考慮して材料を選択する必要がなく、通常の
金属材料が使用でき、製造手段も一般的なプレーナ技術
でよいので、製造が容易でコスト的にも安価である。
In addition, there is no need to select a material for the intermediate bonding layer with particular consideration to its insolubility in the solid electrolyte layer, and ordinary metal materials can be used, and the manufacturing method can be a general planar technology, making it easy to manufacture. It is easy and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1よこの発明にかかるガスセンサの模式的断面図
、第2図は別の実施例を示す断面図、第3図は一般的な
ガスセンサの構造を示す模式的斜視図、第4図は従来例
の電極部分を示す要部断面図である。 1・・・絶縁基板 2.3.4・・・電極 50・・・
中間接合N  51・・・第2の中間接合層 6・・・
固体電解質層 代理人 弁理士  松 本 武 彦 第4図
Fig. 1 is a schematic sectional view of a gas sensor according to the present invention; Fig. 2 is a sectional view showing another embodiment; Fig. 3 is a schematic perspective view showing the structure of a general gas sensor; Fig. 4 is a schematic sectional view of a gas sensor according to the present invention; FIG. 7 is a sectional view of a main part showing an electrode portion of a conventional example. 1... Insulating substrate 2.3.4... Electrode 50...
Intermediate bonding N 51...Second intermediate bonding layer 6...
Solid electrolyte layer agent Patent attorney Takehiko Matsumoto Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板の同一面上に複数の電極が設けられ、少な
くとも各極の反応部の間を覆って固体電解質層が設けら
れた電気化学式センサにおいて、絶縁基板と電極の間に
中間接合層が設けられているとともに、中間接合層の外
面が電極によって被覆されていることを特徴とする電気
化学式センサ
1. In an electrochemical sensor in which a plurality of electrodes are provided on the same surface of an insulating substrate and a solid electrolyte layer is provided covering at least between the reaction parts of each electrode, an intermediate bonding layer is provided between the insulating substrate and the electrodes. an electrochemical sensor characterized in that the outer surface of the intermediate bonding layer is covered with an electrode.
JP63042850A 1988-02-24 1988-02-24 Electrochemical sensor Pending JPH01216259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042850A JPH01216259A (en) 1988-02-24 1988-02-24 Electrochemical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042850A JPH01216259A (en) 1988-02-24 1988-02-24 Electrochemical sensor

Publications (1)

Publication Number Publication Date
JPH01216259A true JPH01216259A (en) 1989-08-30

Family

ID=12647484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042850A Pending JPH01216259A (en) 1988-02-24 1988-02-24 Electrochemical sensor

Country Status (1)

Country Link
JP (1) JPH01216259A (en)

Similar Documents

Publication Publication Date Title
JP3706137B2 (en) Gas sensor
US5304293A (en) Microsensors for gaseous and vaporous species
JPS60239657A (en) Moisture-sensitive element and manufacture thereof
US4865717A (en) Electrochemical micro sensor
US4356150A (en) Humidity sensor with electrical rejection of contaminants
JP3194090B2 (en) Electrochemical sensor
JP2970534B2 (en) Manufacturing method of reference electrode
JPH01216259A (en) Electrochemical sensor
US6129824A (en) Electrochemical sensor for the detection of hydrogen chloride
JP3831320B2 (en) Limit current type oxygen sensor
JP2536780B2 (en) Pick-up type enzyme electrode
AU604142B2 (en) Electrochemical micro sensor
JP2501856B2 (en) Electrochemical sensor
JP3246167B2 (en) Oxygen concentration sensor
JPH01201149A (en) Composite gas sensor
JP2000088792A (en) Sensor for in urine sugar measuring device
JP2516123B2 (en) Method of joining metal and solid electrolyte
JP2810779B2 (en) Capacitive thin film humidity sensor and method of manufacturing the same
JP2926912B2 (en) Oxygen sensor
JPH04363653A (en) Electrochemical gas sensor element
JPH01216260A (en) Electrochemical sensor
JP2516121B2 (en) Method of joining metal and solid electrolyte
JP2698647B2 (en) Electrochemical sensor
JPH01216250A (en) Electrochemical sensor
JPH01216261A (en) Electrochemical sensor