JP2536780B2 - Pick-up type enzyme electrode - Google Patents

Pick-up type enzyme electrode

Info

Publication number
JP2536780B2
JP2536780B2 JP63282412A JP28241288A JP2536780B2 JP 2536780 B2 JP2536780 B2 JP 2536780B2 JP 63282412 A JP63282412 A JP 63282412A JP 28241288 A JP28241288 A JP 28241288A JP 2536780 B2 JP2536780 B2 JP 2536780B2
Authority
JP
Japan
Prior art keywords
electrode
sample
enzyme
resin
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63282412A
Other languages
Japanese (ja)
Other versions
JPH02129541A (en
Inventor
由照 野添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E & D Kk
Original Assignee
E & D Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E & D Kk filed Critical E & D Kk
Priority to JP63282412A priority Critical patent/JP2536780B2/en
Publication of JPH02129541A publication Critical patent/JPH02129541A/en
Application granted granted Critical
Publication of JP2536780B2 publication Critical patent/JP2536780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酵素電極に係り、特に過酸化水素電極と、酸
素を過酸化水素に変換する酸化還元酵素を用いた使い捨
て型の酵素電極であって、測定精度を向上させるよう構
成した酵素電極に関する。
TECHNICAL FIELD The present invention relates to an enzyme electrode, and more particularly to a hydrogen peroxide electrode and a disposable enzyme electrode using an oxidoreductase that converts oxygen into hydrogen peroxide. And an enzyme electrode configured to improve measurement accuracy.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be Solved by Prior Art and Invention]

使い捨て型の酵素電極は臨床検査において検量線の校
正や電極の洗浄が不要である等のため、所謂メンテナン
スフリーで然も小型化が可能である等の利点があるため
最近大いに注目されている技術である。然し検出精度、
再現性等の性能面においては必ずしも満足できるもので
はなく、かつ製造コストが高い等、技術面、経済面にお
いて解決すべき問題を含んでいる。
Since disposable enzyme electrodes do not require calibration of calibration curves or cleaning of electrodes in clinical tests, they are so-called maintenance-free and can be downsized. Is. However, the detection accuracy,
In terms of performance such as reproducibility, it is not always satisfactory, and there are problems such as high manufacturing cost to be solved in terms of technology and economy.

センサを小型化すれば電極面積を低減でき、これに伴
い高価な酵素の使用量を減少できるため、理論的にはセ
ンサの製造コストを低減することが可能であるが、小型
化が過ぎると、製造上の再現性を得るために、電極形成
精度を向上させる必要が生じて結局基板材や製造コスト
の上昇を招くことになる。また使い捨て型センサの利点
である操作性の良さを犠牲にする虞れもある。なお、生
体に対する侵襲性を減らし、かつ測定の簡便さを図るに
は検体の微量化が望まれる。
If the sensor is miniaturized, the electrode area can be reduced, and the amount of expensive enzyme used can be reduced accordingly, so it is theoretically possible to reduce the manufacturing cost of the sensor, but if the miniaturization is too much, In order to obtain reproducibility in manufacturing, it is necessary to improve the accuracy of electrode formation, which eventually leads to an increase in substrate material and manufacturing cost. There is also a risk that the operability, which is an advantage of the disposable sensor, may be sacrificed. In addition, in order to reduce the invasiveness to the living body and to facilitate the measurement, it is desired to reduce the amount of the sample.

ここで、酸素を基質の一つとする酸化還元酵素は、検
体に対する空気中の酸素の拡散が反応律速となり、本来
測定すべき基質の濃度に応じた変化を検出できなくなる
ことがある。例えば通常のバッチ式或いはフロー式のH2
O2を用いたグルコース(glucose)センサでは高濃度の
測定限界はO2拡散速度が律速となって決まる。O2の拡散
速度は電極配置面である検体底面と検体の表面との距
離、即ち検体の空気界面と電極との距離によって変化す
る。例えば検体を電極に滴下した際に検体の有する表面
張力により検体は雫状になり、電極表面で不均一に拡散
する傾向を示す。また滴下量に対応して雫の大きさ即ち
空気界面と電極との距離は変化してしまう。従って検体
の滴下は電極に対して均一かつ定量的に行う必要上極め
て慎重に行わなければならないが、このように慎重に行
っても検出誤差の発生は避けられない。
Here, in the oxidoreductase using oxygen as one of the substrates, the diffusion of oxygen in the air to the sample becomes the reaction rate control, and the change depending on the concentration of the substrate to be originally measured may not be detected. For example, normal batch or flow H 2
In the glucose sensor using O 2 , the measurement limit of high concentration is determined by the rate of O 2 diffusion. The diffusion rate of O 2 changes depending on the distance between the bottom surface of the sample, which is the electrode arrangement surface, and the surface of the sample, that is, the distance between the air interface of the sample and the electrode. For example, when the sample is dropped on the electrode, the sample becomes a drop due to the surface tension of the sample and tends to diffuse nonuniformly on the electrode surface. Further, the size of the drop, that is, the distance between the air interface and the electrode, changes according to the amount of dropping. Therefore, the dropping of the sample must be performed very carefully because it needs to be performed uniformly and quantitatively on the electrode, but the detection error is unavoidable even with such careful handling.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は以上に示した従来技術における技術的課題を
解決すべく構成したものであり、使い捨て型の酵素電極
の有する利点を損なうことなく、充分な検出精度、再現
性等を有し、かつ操作性が良好で低コストの電極の実
現、及び検査時の検体量の微量化、O2反応律速による反
応制限の解決を目的としたものであり、 基板の同一平面の一端に対して本体接続部を、また他
端部には電極部を形成し、電極部は差動電極を構成する
二つの作用極及び参照極から成る測定電極群と対極とか
ら構成され、樹脂中に酸化還元酵素を含む樹脂により測
定電極群の二つの作用極のうち少なくとも一方の作用極
表面に酵素固定化樹脂部を形成し、他方の作用極上には
酵素活性を持たない同じ樹脂のコーテイング部を形成し
た酵素型電極であって、 基板端部には対極が形成され、かつ対極に隣接して前
記測定電極群が形成され、対極表面は検体を浸潤させる
材料により層形成されて検体導入部を構成し、測定電極
群の形成部上部には空間を介して酸素透過膜が形成され
ることにより、検体導入部を介して当該空間内に浸潤し
た検体の空気界面が酸素透過膜の配置位置となるよう構
成することにより検体の空気界面と測定電極群との距離
が予め定められた値となるよう構成したことを特徴とす
る使い捨て型酵素電極である。
The present invention is configured to solve the technical problems in the above-described conventional techniques, has sufficient detection accuracy, reproducibility, etc., without impairing the advantages of disposable enzyme electrodes, and operates. The purpose of this is to realize a low-cost electrode with good performance, to reduce the amount of sample during inspection, and to solve the reaction limitation due to the O 2 reaction rate-controlling. Also, an electrode portion is formed at the other end portion, and the electrode portion is composed of a measurement electrode group consisting of two working electrodes and a reference electrode forming a differential electrode and a counter electrode, and contains a redox enzyme in the resin. An enzyme-type electrode in which an enzyme-immobilized resin part is formed on the surface of at least one of the two working electrodes of the measurement electrode group by a resin, and a coating part of the same resin having no enzyme activity is formed on the other working electrode. And at the edge of the board A pole is formed, and the measurement electrode group is formed adjacent to the counter electrode, the counter electrode surface is layered with a material that infiltrates the sample to form a sample introduction part, and a space is formed above the measurement electrode group formation part. By forming the oxygen permeable film through the sample introduction portion, the air interface of the sample infiltrated into the space through the sample introduction part is arranged so that the oxygen permeable film is located at the position where the oxygen permeable film and the measurement electrode group are arranged. The disposable enzyme electrode is characterized in that the distance between and is a predetermined value.

〔作用〕[Action]

検体導入部に滴下された検体は隣接する測定電極群形
成部に形成された空間内に流入し、同空間内に充填され
た検体の空気界面はこの酸素透過膜配置面となる。酸素
透過膜は前記測定電極群配置面から極めて僅かな高さを
持って配置されているため測定電極群配置面から空気界
面までの距離は短く設定され、かつ空間内に万遍なく充
填される。
The sample dropped in the sample introduction part flows into the space formed in the adjacent measurement electrode group forming part, and the air interface of the sample filled in the space becomes this oxygen permeable membrane arrangement surface. Since the oxygen permeable membrane is arranged with an extremely small height from the measurement electrode group arrangement surface, the distance from the measurement electrode group arrangement surface to the air interface is set short and the space is evenly filled. .

〔発明の基本的構成〕[Basic Structure of the Invention]

第1図は本発明に係る使い捨て型電極の基本構成を示
す。
FIG. 1 shows the basic structure of a disposable electrode according to the present invention.

この使い捨て型電極は例えば幅4〜10mm、全長が30〜
60mm程度の大きさで、その構成は3個の構成部分に分け
ることができる。まず符号20は測定装置本体と接続する
本体接続部、21は絶縁部、22は絶縁部21を介して本体接
続部20側と接続する電極部(H2O2電極)である。このう
ち電極部の構成をより具体的に示すと、符号1及び2は
表面をPt化した作用極、3は参照極であってこれら一対
の作用極1、2及び参照極3により測定電極群を構成す
る。
This disposable electrode has a width of 4-10 mm and a total length of 30-
With a size of about 60 mm, its structure can be divided into three parts. First, reference numeral 20 is a main body connecting portion connected to the main body of the measuring apparatus, 21 is an insulating portion, and 22 is an electrode portion (H 2 O 2 electrode) connected to the main body connecting portion 20 side via the insulating portion 21. More specifically, the structure of the electrode portion is shown. Reference numerals 1 and 2 are working electrodes whose surfaces are made Pt, 3 is a reference electrode, and a pair of working electrodes 1, 2 and a reference electrode 3 are used for the measurement electrode group. Make up.

4はこの測定電極群に隣接して基板5の端部に形成さ
れた対極である。また符号5はこれらの各パターンを形
成するための基板である。
Reference numeral 4 is a counter electrode formed on the end portion of the substrate 5 adjacent to the measurement electrode group. Reference numeral 5 is a substrate for forming each of these patterns.

次に第1図に示した構成の電極部表面に対しては次の
ような樹脂層が形成される。即ち、第2図において、7
は酵素を含有する樹脂により作用極1上に形成した酵素
固定化樹脂部、6はこの酵素固定化樹脂部7と同様の樹
脂でかつ酵素活性のない樹脂により、少なくとも作用極
2を覆うように形成したコーティング部であり。
Next, the following resin layer is formed on the surface of the electrode portion having the structure shown in FIG. That is, in FIG.
Is an enzyme-immobilized resin portion formed on the working electrode 1 by a resin containing an enzyme, and 6 is a resin similar to the enzyme-immobilized resin portion 7 and covered with at least the working electrode 2 by a resin having no enzyme activity. It is the formed coating part.

本願は上述の基本構成に対して更に次の構成が付加さ
れている。
In the present application, the following configuration is added to the above basic configuration.

即ち、第3図および第4図において、先ず対極4は検
体の浸潤が可能な樹脂、多孔体或いは不織布等により覆
われて層形成され、当該層形成部が検体導入部10として
構成されている。8は前記電極部22の周囲の少なくとも
3方を囲むように形成した検体保持領域制限壁(以下単
に「制限壁」または「壁部」と称する)である。
That is, in FIG. 3 and FIG. 4, first, the counter electrode 4 is formed into a layer by being covered with a resin, a porous body or a non-woven fabric capable of infiltrating the sample, and the layer forming part is configured as the sample introducing part 10. . Reference numeral 8 denotes a sample holding area limiting wall (hereinafter simply referred to as “limiting wall” or “wall portion”) formed so as to surround at least three sides around the electrode portion 22.

符号9は前記作用極1、2および参照極3からなる測
定電極群の形成部を、第4図に示すように空間を介して
覆うように配置した膜体であって、酸素の透過が可能な
膜体(以下この膜を「酸素透過膜」と称する)である。
またコーテイング部6の表面から酸素透過膜9までの距
離、即ち空間の高さは後述の実施例の如く、例えば0.5m
m或いはそれ以下と、極めて小さく設定されている。
Reference numeral 9 is a film body in which the formation portion of the measurement electrode group consisting of the working electrodes 1 and 2 and the reference electrode 3 is arranged so as to cover it through a space as shown in FIG. A film body (hereinafter, this film is referred to as an "oxygen permeable film").
Further, the distance from the surface of the coating portion 6 to the oxygen permeable membrane 9, that is, the height of the space, is 0.5 m, for example, as in the embodiment described later.
It is set to a very small value of m or less.

前記酸素透過膜9はその名のとおり酸素を透過する材
料、例えば酸素透過性樹脂または多孔体により形成され
る。このうち酸素透過性樹脂としてはシリコン樹脂、シ
リコンゴム等が考えられる。また多孔体の構成としては
120メッシュ以上の布或いは不織布、120メッシュ以上の
金属布で対極の一部と電気的に導通があるもの等が考え
られる。
As the name implies, the oxygen permeable film 9 is formed of a material that allows oxygen to pass therethrough, such as an oxygen permeable resin or a porous body. Among them, as the oxygen permeable resin, silicone resin, silicone rubber or the like can be considered. In addition, as the structure of the porous body
A cloth or non-woven cloth of 120 mesh or more, a metal cloth of 120 mesh or more, which is electrically connected to a part of the counter electrode, is considered.

以上の構成において、検体導入部10に滴下された検体
は当該検体導入部10を介して隣接する測定電極群の空間
内に流入充填される。当該空間は空間高さが例えば0.5m
m程度と極めて小さい空間であり、少量の検体滴下で当
該空間内に検体が均一に充填され、かつ充填された検体
の空気界面はこの酸素透過膜9の配置面となる。
In the above configuration, the sample dropped in the sample introducing unit 10 flows into and fills the space of the adjacent measurement electrode group via the sample introducing unit 10. The space has a height of 0.5 m, for example.
The space is a very small space of about m, and the sample is uniformly filled with a small amount of the sample, and the air interface of the filled sample is the arrangement surface of the oxygen permeable membrane 9.

検体中の酸素の拡散速度は一定とみなせるので、空間
部の高さ(距離)が小さい程酸素の供給量は多くなり、
高濃度の検体でも正確に測定することが可能となる。ま
た酸素透過膜の形成自体は検体を直接空気に触れさせる
場合に比較して酸素の供給量を低下させるが、当該酸素
透過膜により検体の量を大幅に低減でき、検体の空気界
面の高さを低くできるため相対的には酸素透過膜を設置
した方が酸素の供給量を多くすることができるのであ
る。
Since the diffusion rate of oxygen in the sample can be regarded as constant, the smaller the height (distance) of the space, the greater the amount of oxygen supplied,
It is possible to accurately measure even a high-concentration sample. Also, the formation of the oxygen permeable membrane itself reduces the supply of oxygen compared to the case where the specimen is directly exposed to air, but the oxygen permeable membrane can significantly reduce the quantity of the specimen and the height of the air interface of the specimen. Therefore, it is possible to increase the supply amount of oxygen relatively by installing the oxygen permeable membrane because the temperature can be lowered.

ここで、過酸化水素電極である測定電極群は、酵素に
よって変換されたH2O2を充分な精度と再現性で検出する
能力を有し、かつ低価格であることが必要である。この
充分な精度と再現性を実現するためには電極面積の均一
性を確保する必要がある。すなわち高精度のパターニン
グをする必要がある。高精度のパターニングを実現させ
るための基板としては、セラミックス基板、ガラス基板
等を挙げることができ、これらの基板を用いれば数μm
程度の較差でパターニングでき、パターンを微小化でき
るが、製造コストが上昇すことは否めない。一方プラス
チック基板を用いた場合にはパターンニングの際の較差
は一般に数十μm程度となりパターンニングの微小化の
点では前記基板に劣るが、安価であり、特にプリント回
路形成用として一般に使用されているガラスエポキシ基
板やフェノール基板は安価である。
Here, the measurement electrode group, which is a hydrogen peroxide electrode, is required to have the ability to detect H 2 O 2 converted by the enzyme with sufficient accuracy and reproducibility, and to be inexpensive. In order to realize this sufficient accuracy and reproducibility, it is necessary to ensure the uniformity of the electrode area. That is, it is necessary to perform highly precise patterning. As a substrate for realizing highly precise patterning, a ceramics substrate, a glass substrate, etc. can be mentioned.
Patterning can be performed with a degree of difference and the pattern can be miniaturized, but the manufacturing cost cannot be denied. On the other hand, when a plastic substrate is used, the difference in patterning is generally about several tens of μm, which is inferior to the above-mentioned substrate in terms of miniaturization of patterning, but it is inexpensive and is generally used for forming a printed circuit. Glass epoxy substrates and phenolic substrates are inexpensive.

またセンサの操作性を考慮すると、センサ全体の大き
さは指で容易に取り扱える程度の大きさとする必要があ
り、数mmの小さな過酸化水素電極では操作性は悪くな
る。即ちセラミックス基板やガラス基板を用いた過酸化
水素電極ではパターンの微小化により低コストが可能で
あるが、操作性の点からみればこのような微小なパター
ンは妥当ではない。結局やや大きめのパターン形成を行
うべきであり、このため基板そのものは安価なプラスチ
ック基板を用いるのが好適である。プラスチック基板を
用いた過酸化水素電極は、例えば較差±15μm以内でパ
ターンニングできれば、1mm2の電極面積で誤差を2〜
3%以内に収めることができる。
Also, considering the operability of the sensor, the size of the entire sensor must be such that it can be easily handled with a finger, and the operability becomes worse with a hydrogen peroxide electrode of a few millimeters. That is, a hydrogen peroxide electrode using a ceramics substrate or a glass substrate can be manufactured at a low cost by miniaturizing the pattern, but such a fine pattern is not appropriate from the viewpoint of operability. After all, a slightly larger pattern should be formed, and therefore, it is preferable to use an inexpensive plastic substrate as the substrate itself. Hydrogen peroxide electrode using a plastic substrate, for example if patterned within hidden ± 15 [mu] m,. 2 to errors in electrode area of 1 mm 2
It can be kept within 3%.

一方H2O2検出のためにはH2O2酸化電位が比較的低く、
水の電気分解によるO2発生電位と重ならず、かつ検体中
に多量に含まれるCl-イオンに対して不活性である電極
素材が望ましい。例えばカーボンは過酸化水素酸化電位
と比較してO2発生電位が近くにある。このため酸化電流
が重なり、O2電流がかなり大きいのでH2O2酸化電流を分
離しにくい。またAuは検体中のCl-イオンによりかなり
大きな反応電流が生じ、これもH2O2酸化電流に悪影響を
与えるので妥当ではない。
On the other hand, the H 2 O 2 oxidation potential is relatively low for H 2 O 2 detection,
It is desirable to use an electrode material that does not overlap with the O 2 generation potential due to the electrolysis of water and is inert to Cl ions contained in a large amount in the sample. For example, carbon has a nearer O 2 generation potential than the hydrogen peroxide oxidation potential. For this reason, the oxidation currents overlap and the O 2 current is considerably large, so it is difficult to separate the H 2 O 2 oxidation current. In addition, Au is not appropriate because Cl ions in the sample cause a considerably large reaction current, which also adversely affects the H 2 O 2 oxidation current.

次にPt電極はH2O2酸化電位が300mV〜900mV(pH7.2Ag/
AgCl)と低く、Cl-に対して応答がないので過酸化水素
電極として最適であるといえる。なお、Pt自体は高価で
あるが、銅によりパターン形成し、これにPtメッキ等の
方法によりPt層を形成すれば低コスト化を達成すること
ができる。またPtメッキによりPt層を形成する場合、銅
とPtとの間にAuメッキを行うと密着性を向上させること
ができる。
Next, the Pt electrode has an H 2 O 2 oxidation potential of 300 mV to 900 mV (pH7.2Ag /
AgCl) and lower, Cl - said to be suitable as a hydrogen peroxide electrode because there is no response to. Although Pt itself is expensive, cost reduction can be achieved by forming a pattern with copper and forming a Pt layer on it by a method such as Pt plating. Further, when the Pt layer is formed by Pt plating, the adhesion can be improved by performing Au plating between copper and Pt.

次にH2O2酸化電流検出法として、通常例えば700mV(A
g/AgCl)定電位印加時の酸化電流を求める方式が用いら
れている。この方式において、電流値はH2O2の拡散によ
って作られる濃度勾配によって決まるが、定電位法やゆ
っくりとした電位sweep法ではcottrellの式により、濃
度勾配は時間に依存して変化するので、電流値もそれに
伴って変化する。濃度勾配の及ぶ距離は時間と共に長く
なり、酵素の分布や拡散係数の分布の変化が電流に影響
を及ぼす。このことは電極表面に密着した酵素固定化部
の膜厚や液面までの距離等の設計に大きな制限を加える
ことになり、再現性に悪影響を与えることになる。そこ
で電位sweep法やcyclic voltammetry法で電位を一定速
度(数十mV/sec〜数百mV/sec)でsweepすると、酵素の
分布や拡散係数の分布の変化の影響を低減することがで
きる。
Next, as a H 2 O 2 oxidation current detection method, for example, 700 mV (A
g / AgCl) A method of determining the oxidation current when a constant potential is applied is used. In this method, the current value is determined by the concentration gradient created by H 2 O 2 diffusion, but in the potentiostatic method or the slow potential sweep method, the concentration gradient changes with time according to the Cottrell equation, The current value also changes accordingly. The distance covered by the concentration gradient becomes longer with time, and changes in the enzyme distribution and the diffusion coefficient distribution affect the current. This imposes great restrictions on the design of the film thickness of the enzyme-immobilized portion in close contact with the electrode surface, the distance to the liquid surface, and the like, which adversely affects the reproducibility. Therefore, by sweeping the potential at a constant rate (tens of mV / sec to hundreds of mV / sec) by the potential sweep method or the cyclic voltammetry method, it is possible to reduce the influence of changes in the enzyme distribution and the diffusion coefficient distribution.

電位sweep法やcyclic voltammetry法は作用極、対
極、参照極の3極法が用いられる。電位印加の基準とな
る参照極は液絡された飽和KCl溶液中の銀/塩化銀電極
のようにイオン構成や電極活性物質濃度等、一定条件で
安定な電位を取り出す仕組みになっている。そこで、検
体自体の緩衝性、或いは緩衝剤等の添加によるpHの一定
化、および検体中の酸化還元物質構成比、濃度等の変化
が測定中に僅かであることなどによって、検体溶液に対
して不活性な金属であればそのまま参照電極として用い
ることが考えられる。
The potential sweep method and the cyclic voltammetry method use a three-pole method of a working electrode, a counter electrode, and a reference electrode. The reference electrode, which is the standard for applying the potential, has a mechanism to extract a stable potential under certain conditions such as the ion composition and the concentration of the electrode active substance, like a silver / silver chloride electrode in a saturated KCl solution with a liquid junction. Therefore, due to the buffering property of the sample itself, or the stabilization of the pH by the addition of a buffer, etc., and the change in the composition ratio of the redox substance in the sample, the concentration, etc. being slight during the measurement, If it is an inactive metal, it can be used as it is as a reference electrode.

本発明ではcyclic voltammetry法に、差動法を適用す
るため、作用極1および作用極2の差動電極に対し、こ
れら電極と共通の参照極、対極を加えた4極構造とし、
かつ作用極1および作用極2を同じ樹脂でコーティング
し、一方の作用極に酵素活性を持たせることとしてい
る。この構成とすることにより検体中の酸化還元物質の
酸化還元波の影響を除去できると共に、再現性の妨げと
なる拡散係数分布や酵素分布の相違、例えば液量、固定
化部膜厚の変化等の影響を低減することができる。
In the present invention, since the differential method is applied to the cyclic voltammetry method, a differential electrode of the working electrode 1 and the working electrode 2 has a four-pole structure in which a reference electrode and a counter electrode common to these electrodes are added,
In addition, the working electrode 1 and the working electrode 2 are coated with the same resin so that one working electrode has an enzymatic activity. With this configuration, it is possible to remove the effect of the redox wave of the redox substance in the sample, and also the difference in the diffusion coefficient distribution and the enzyme distribution that hinders the reproducibility, such as the change in the liquid volume and the thickness of the immobilization part, etc. The influence of can be reduced.

また本発明では検体を電極面上に保持する方式として
いる。これにより電極の小型化によるセンサ製造の低コ
スト化及び検体の微量化を実現できた。また検体の微量
化によって、侵襲性の低減と、基質濃度検出範囲の増加
という二つの利点がえられた。
Further, in the present invention, the method of holding the sample on the electrode surface is adopted. As a result, it was possible to reduce the cost of manufacturing the sensor and reduce the amount of sample by downsizing the electrode. In addition, the miniaturization of the sample provided two advantages: reduced invasiveness and increased substrate concentration detection range.

このうち特に基質濃度検出範囲の増加という点につい
て説明する。即ち、このセンサの電極に用いる酵素は基
質の1つに酵素を必要とするので、溶液中からのO2の供
給を考える必要がある。生体から取り出した検体成分中
で最もO2が必要になると考えられるのはグルコースであ
る。そこでグルコースセンサを例にとると、通常の酵素
電極法では酵素グルコースオキシターゼは十分過剰に固
定化されており、検出電流はグルコース拡散律速になっ
ているが、グルコースが高濃度になるとO2拡散量が不足
し、H2O2変換量が飽和して検出電流の変化がなくなり、
グルコース測定範囲が制限される。しかし本願発明では
測定電極群上部に空間を形成し、かつこの空間を微小化
することにより検体量を微量化でき、これにより酵素固
定化膜と空気との距離は酸素透過膜と酵素固定化膜との
距離と同じとなり、従来に比較してその距離は大幅に減
少した。この結果、酸素透過膜を介して検体に酸素を供
給するにも係わらず、この距離の大幅な減少により検体
に対する空気中からの酸素の供給量は結果的には増加す
ることになり、グルコース測定の飽和電流の出現が高濃
度側に移行し、測定範囲が拡大された。
Of these, the increase in the substrate concentration detection range will be described. That is, since the enzyme used for the electrode of this sensor requires the enzyme as one of the substrates, it is necessary to consider the supply of O 2 from the solution. It is glucose that is considered to require the most O 2 among the analyte components taken out from the living body. Therefore, taking a glucose sensor as an example, the enzyme glucose oxidase is immobilized in a sufficient excess in the usual enzyme electrode method, and the detection current is glucose diffusion limited, but when the concentration of glucose becomes high, the amount of O 2 diffusion increases. Is insufficient, the H 2 O 2 conversion amount saturates and the detected current does not change,
The glucose measurement range is limited. However, in the present invention, by forming a space above the measurement electrode group and miniaturizing this space, the amount of the sample can be made small, and thus the distance between the enzyme immobilization membrane and air can be reduced. The distance is the same as that of, and the distance is greatly reduced compared to the past. As a result, although oxygen is supplied to the sample through the oxygen permeable membrane, the amount of oxygen supplied from the air to the sample will be increased due to the drastic decrease in this distance. The appearance of the saturation current of was shifted to the high concentration side, and the measurement range was expanded.

次に検体保持方法としては以下に示す(1)〜(3)
の構成等が考えられる。
Next, the sample holding method is shown below (1) to (3)
The configuration and the like are conceivable.

(1)電極表面上に設置した多孔体に検体を含ませる構
成(特開昭61-294351号等)。
(1) A structure in which a sample is contained in a porous body placed on the surface of an electrode (JP-A-61-294351, etc.).

(2)電極の4方を囲って微量の容器を形成する構成。(2) A configuration in which a small amount of container is formed by surrounding four sides of the electrode.

(3)電極の3方を囲い、電極面と対向するように酸素
透過性膜を形成した微量容器を形成する構成(本願発明
の構成)。
(3) A configuration in which a microvolume container is formed that surrounds the electrodes on three sides and has an oxygen-permeable film formed so as to face the electrode surface (configuration of the present invention).

以上の各構成のうち(1)の構成は低コストであるが
O2供給量が比較的少ない、(2)の構成はO2供給量は多
いが検体採取を行いずらく取り扱い性が良くない等の問
題がある。これに対して(3)の方法はややコスト高と
はなるが、毛管現象を利用した検体採取が容易であり、
酸素透過性膜の性質及び当該酸素透過膜の設置高さを低
く設定することにより、検体を空気に直接接触させる
(1)の構成よりも高いO2供給量を望めることや、熟練
を要せず容易に電極と酸素透過膜間の距離を一定化で
き、容量の一定化やO2供給量の一定化等、再現性に対す
る利点がある。
Although the configuration (1) is low cost among the above configurations,
The O 2 supply amount is relatively small, and the configuration of (2) has a problem that the O 2 supply amount is large but the sample collection is difficult and the handleability is not good. On the other hand, although the method (3) is slightly expensive, it is easy to collect a sample using the capillary phenomenon,
By setting the property of the oxygen permeable membrane and the installation height of the oxygen permeable membrane to be low, it is possible to expect a higher O 2 supply amount than the configuration of (1) in which the sample is brought into direct contact with air, and skill is required. Without any difficulty, the distance between the electrode and the oxygen permeable membrane can be made constant, and there are advantages in reproducibility such as constant capacity and constant O 2 supply amount.

以上(2)と(3)の方法において問題となる製造コ
ストを低減する方策としては、電極を囲う壁の形成材料
をポリ塩化ビニル、ポリエステル、ポリエチレン、ポリ
プロピレン等のプラスチックフィルムに粘着剤を塗布し
たものを型抜きし、これを壁部として装着する方法が好
適である。またこの方法に代えて、スクリーン印刷法に
より予め基板上に樹脂により壁部を形成するように構成
しても低コスト化を達成できる。
As a measure for reducing the manufacturing cost, which is a problem in the above methods (2) and (3), an adhesive agent is applied to a plastic film such as polyvinyl chloride, polyester, polyethylene, or polypropylene as a material for forming a wall surrounding an electrode. A method in which an object is die-cut and this is mounted as a wall is suitable. Further, instead of this method, the cost can be reduced by forming the wall portion on the substrate by resin in advance by the screen printing method.

第7図は(2)示す方法に於ける、電極と検体の空気
界面距離(以下「電極−界面距離」とする)と、グルコ
ース測定範囲の変化を示す。同図において電極−界面距
離が0.5mmの場合、グルコース測定範囲は40mM(720mg/d
l)以上まで伸びているが、前記電極−液面距離が2.0mm
の場合、20mM(360mg/dl)程度で飽和している。検出範
囲を20mM(360mg/dl)以上と規定すると、液面距離を決
定する壁部高さ、O2透過膜までの距離、及び多孔体の厚
みは2.0mm以下、好適には0.5mm以下とすることが望まし
い。
FIG. 7 shows changes in the glucose measurement range and the air interface distance between the electrode and the sample (hereinafter referred to as “electrode-interface distance”) in the method shown in (2). In the figure, when the electrode-interface distance is 0.5 mm, the glucose measurement range is 40 mM (720 mg / d
l) It extends to more than the above, but the electrode-liquid level distance is 2.0 mm
In the case of, it is saturated at about 20 mM (360 mg / dl). When the detection range is defined as 20 mM (360 mg / dl) or more, the wall height that determines the liquid surface distance, the distance to the O 2 permeable membrane, and the thickness of the porous body are 2.0 mm or less, preferably 0.5 mm or less. It is desirable to do.

続いて酵素固定化法としては親水性樹脂による包括固
定法を用いるのが効果的である。包括固定法は樹脂が蛋
白質である酵素の脱落を防止すると共に、検体中の血球
成分や蛋白質の膜中への進入を防ぎ、電極に対する蛋白
質の吸着による応答再現性の低下を防止することができ
る。また包括固定のための樹脂は光硬化性樹脂、感光性
樹脂を用いることで製造コストを低減することができ
る。本発明における差動電極法では、作用極1に酵素固
定膜を形成するが、この作用極1以外の他の極、即ち作
用極2、参照極3に対しても酵素を含まない同じ樹脂に
よりコーティングを行う。これにより各極に対する検体
中の血球成分や蛋白質の吸着を防ぐことができ、かつ電
極活性物質の各成分の拡散係数を揃えることができる。
Subsequently, as the enzyme immobilization method, it is effective to use the entrapping immobilization method using a hydrophilic resin. The entrapping immobilization method can prevent the enzyme, which is a protein from falling out of the resin, prevent the blood cell components and proteins in the sample from entering the membrane, and prevent the decrease in response reproducibility due to the adsorption of the protein to the electrode. . Further, as the resin for entrapping fixation, a photocurable resin or a photosensitive resin is used, so that the manufacturing cost can be reduced. In the differential electrode method of the present invention, an enzyme-immobilized film is formed on the working electrode 1, but the other electrodes other than the working electrode 1, that is, the working electrode 2 and the reference electrode 3 are made of the same resin containing no enzyme. Perform coating. As a result, it is possible to prevent the blood cell components and proteins in the sample from adsorbing to each electrode, and to make the diffusion coefficients of the respective components of the electrode active substance uniform.

以下実施例を示し、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

〔実施例1〕 (i)基板5はガラスエポキシ樹脂基板 (ii)作用極1、作用極2、参照極3、対極4は銅によ
りパタンー形成し、かつパターン上部にAuメッキ1μm
形成し、更にPtメッキを1μm形成する。
[Example 1] (i) Substrate 5 is a glass epoxy resin substrate (ii) Working electrode 1, working electrode 2, reference electrode 3 and counter electrode 4 are formed by patterning with copper, and Au plating is 1 μm on the upper part of the pattern.
Then, Pt plating is further formed to 1 μm.

(iii)検体は以下の構成とする。(Iii) The sample shall have the following configuration.

NaCl 106mEq アスコルビン酸 5.9mg/dl 尿酸 4.3mg/dl BSA 7.6/dl 及び、以上に0.1Mリン酸Buffer pH7.3を加えたもの。NaCl 106mEq Ascorbic acid 5.9mg / dl Uric acid 4.3mg / dl BSA 7.6 / dl and 0.1M phosphate buffer pH7.3 added to the above.

BufferによってpHを一定化したサイクリックボルタモ
グラフは再現性が良いものが得られた。
A cyclic voltamograph with a constant pH by Buffer was obtained with good reproducibility.

第6図は上記溶液(0.1Mリン酸Bufferを加えたもの)
にH2O2を0〜1mMを加えた検体のサイクリックボルタモ
グラムで、−600mV〜1000mV、sweep速度100mV/sec、2cy
cle目up時、700mVの作用極1の電流値と、この電流値か
らH2O2を加えない検体の作用極2の電流値を引いた値を
縦軸に、H2O2濃度を横軸に各々とった検量線である。こ
の実施例において相関係数は0.9967、n25が得られ、十
分に良い再現性を得られることが確認できた。即ち以上
の構成の参照電極は十分機能を果たしていることが確認
できた。
Figure 6 shows the above solution (0.1M phosphate buffer added)
Cyclic voltammogram of the sample in which 0 to 1 mM H 2 O 2 was added to -600 mV to 1000 mV, sweep speed 100 mV / sec, 2cy
The current value of the working electrode 1 of 700 mV and the current value of the working electrode 2 of the sample to which H 2 O 2 was not added were subtracted from this current value at the time of the cle up, and the H 2 O 2 concentration was plotted horizontally. It is a calibration curve taken on each axis. In this example, a correlation coefficient of 0.9967 and n25 were obtained, and it was confirmed that sufficiently good reproducibility was obtained. That is, it was confirmed that the reference electrode having the above-mentioned configuration was sufficiently functioning.

Pt電極ではH2O2の酸化電流はcyclic voltammetry法に
おいて、400mV〜800mVの間で平坦であるので、センサの
製造公差、検体成分構成の相違等で参照電位が多少変化
しても検出誤差は僅かである。
In the Pt electrode, the H 2 O 2 oxidation current is flat between 400 mV and 800 mV in the cyclic voltammetry method, so even if the reference potential changes slightly due to sensor manufacturing tolerances, differences in analyte composition, etc. Few.

〔実施例2〕 先ず、電極の構成は実施例1と同様とした。この構成
の作用極1上にポリビニルアルコールにスチルバゾリウ
ム残基を付加した水溶性感光性樹脂(特開昭56-5761
号、重合度1700、ケン化度88%、SbQ1.3mol%、1.1wt
%)1ml中に、グルコースオキシターゼ(EC,1,1,3,4、S
igma,136units/mg・Aspersillus・niger)4.1mgを添加
したもの2μlを展開塗布し、乾燥後、紫外線照射500
μW(340nM)、10minで硬化させた。
Example 2 First, the structure of the electrode was the same as in Example 1. A water-soluble photosensitive resin obtained by adding a stilbazolium residue to polyvinyl alcohol on the working electrode 1 of this constitution (JP-A-56-5761).
No., polymerization degree 1700, saponification degree 88%, SbQ1.3mol%, 1.1wt
%) Glucose oxidase (EC, 1,1,3,4, S
igma, 136units / mg ・ Aspersillus ・ niger) 4.1mg added 2μl spread coating, dried and UV irradiation 500
It was cured at μW (340 nM) for 10 minutes.

次に第3図乃至第5図に示したように検体保持領域制
限壁8を、ポリエステルフィルム、厚さ188μmに粘着
テープ(商品名ニットー5010)を貼って型抜きして作成
し、これを電極上に貼り付け、酵素を含まない上記水溶
性感光性樹脂10μlを電極全面に滴下し、乾燥後硬化さ
せた。
Next, as shown in FIG. 3 to FIG. 5, the sample holding area limiting wall 8 was formed by sticking an adhesive tape (product name Nitto 5010) on a polyester film and a thickness of 188 μm, and stamping it to make an electrode. 10 μl of the above water-soluble photosensitive resin containing no enzyme was dropped on the entire surface of the electrode, dried and cured.

またポリエステルフィルム壁上に測定電極部を覆うよ
うにO2透過膜としてテトロンメッシュ#200を粘着剤を
用いて貼り付けた。またこの実施例における検体保持領
域の容積は約10μlとなった。
Further, Tetoron mesh # 200 was attached as an O 2 permeable film on the polyester film wall so as to cover the measurement electrode portion using an adhesive. The volume of the sample holding area in this example was about 10 μl.

以上の構成のセンサの検量線を第8図に示す。 A calibration curve of the sensor having the above configuration is shown in FIG.

固定化酵素量0.15Units/mm2がこのセンサの検量線
で、酵素量0.23Unitsでも同様な検量線が得られた。0.1
5Units/mm2以上であれば同一の検量線が得られ、酵素活
性によらず再現性が良いことが示された。再現性はグル
コース濃度10mM(180mg/dl)でCv2.49%が得られ、濃度
範囲1mM〜20mM(20mg/dl〜360mg/dl)で相関係数0.9954
が得られた。
An immobilized enzyme amount of 0.15 Units / mm 2 was the calibration curve of this sensor, and a similar calibration curve was obtained with the enzyme amount of 0.23 Units. 0.1
When it was 5 Units / mm 2 or more, the same calibration curve was obtained, showing that the reproducibility was good regardless of the enzyme activity. The reproducibility was Cv2.49% at a glucose concentration of 10 mM (180 mg / dl), and the correlation coefficient was 0.9954 in the concentration range of 1 mM to 20 mM (20 mg / dl to 360 mg / dl).
was gotten.

〔効果〕〔effect〕

本発明は、測定電極群配置部に予め設定された配置高
さで酸素透過膜が配置形成されることにより検体を充填
する空間が形成され、かつ当該空間内に検体が充填され
ることにより検体の空気界面と測定電極群との高さは予
め設定された高さとなるため、当該高さを小さく設定す
ることにより検体に対する酸素の供給量を増加させるこ
とが可能となり、高濃度の検体の測定も可能となる。
The present invention provides a space for filling a specimen by forming and disposing an oxygen permeable film at a predetermined arrangement height in the measurement electrode group arrangement portion, and the specimen by filling the space with the specimen. Since the height between the air interface and the measurement electrode group is a preset height, it is possible to increase the amount of oxygen supplied to the sample by setting the height to a small value, and to measure a high-concentration sample. Will also be possible.

また検体導入部に滴下した検体が隣接する空間部に流
入充填されるよう構成されているため、検体滴下に熟練
を要せずに正確な測定が可能となる。
Further, since the sample dropped in the sample introducing part is configured to flow into and fill the adjacent space, accurate measurement can be performed without requiring skill in dropping the sample.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す使い捨て型酵素電極の下
層構成を示す電極平面図、第2図は電極の中層構成を示
す電極平面拡大部分図、第3図は電極の上層構成を示す
電極平面拡大部分図、第4図は第3図のA-A線による断
面図、第5図は同B-B線による断面図、第6図は実施例
1における検量線、第7図はグルコース測定範囲を示す
検量線を示す線図、第8図は実施例2の構成におけるグ
ルコース測定範囲を示す検量線を示す線図である。 1、2……作用極、3……参照極、4……対極、5……
基板 6……コーティング部、7……酵素固定化樹脂部 8……検体導入部形成用壁部、9……酸素透過膜 10……検体導入部、20……本体接続部、21……絶縁部 22……電極部
FIG. 1 is an electrode plan view showing a lower layer structure of a disposable enzyme electrode showing an embodiment of the present invention, FIG. 2 is an enlarged partial plan view of an electrode showing an intermediate layer structure of the electrode, and FIG. 3 shows an upper layer structure of the electrode. FIG. 4 is a sectional view taken along line AA in FIG. 3, FIG. 5 is a sectional view taken along line BB in FIG. 6, FIG. 6 is a calibration curve in Example 1, and FIG. 7 is a glucose measurement range. FIG. 8 is a diagram showing the calibration curve shown, and FIG. 8 is a diagram showing the calibration curve showing the glucose measurement range in the configuration of Example 2. 1, 2 ... Working electrode, 3 ... Reference electrode, 4 ... Counter electrode, 5 ...
Substrate 6 ... Coating part, 7 ... Enzyme-immobilized resin part 8 ... Wall part for forming sample introduction part, 9 ... Oxygen permeable membrane 10 ... Sample introduction part, 20 ... main body connection part, 21 ... insulation Part 22 …… Electrode part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板の同一平面の一端に対して本体接続部
を、また他端部には電極部を形成し、電極部は差動電極
を構成する二つの作用極及び参照極から成る測定電極群
と対極とから構成され、樹脂中に酸化還元酵素を含む樹
脂により測定電極群の二つの作用極のうち少なくとも一
方の作用極表面に酵素固定化樹脂部を形成し、他方の作
用極上には酵素活性を持たない同じ樹脂のコーテイング
部を形成した酵素型電極において、基板端部には対極が
形成され、かつ対極に隣接して前記測定電極群が形成さ
れ、対極表面は検体を浸潤させる材料により層形成され
て検体導入部を構成し、測定電極群の形成部上部には空
間を介して酸素透過膜が形成されることにより、検体導
入部を介して当該空間内に浸潤した検体の空気界面が酸
素透過膜の配置位置となるよう構成することにより検体
の空気界面と測定電極群との距離が予め定められた値と
なるよう構成したことを特徴とする使い捨て型酵素電
極。
1. A measurement comprising a working electrode and a reference electrode which form a body connecting part on one end of the same plane of the substrate and an electrode part on the other end, and the electrode part constitutes a differential electrode. It is composed of an electrode group and a counter electrode, and an enzyme-immobilized resin part is formed on the surface of at least one working electrode of the two working electrodes of the measurement electrode group by a resin containing a redox enzyme in the resin, and on the other working electrode. Is an enzyme-type electrode in which a coating part of the same resin having no enzyme activity is formed, a counter electrode is formed at the end of the substrate, and the measurement electrode group is formed adjacent to the counter electrode, and the counter electrode surface infiltrates a specimen. The sample introduction part is formed by layering the material, and the oxygen permeable film is formed on the upper part of the formation part of the measurement electrode group through the space, so that the sample infiltrated into the space through the sample introduction part Position of oxygen permeable membrane at the air interface Disposable enzyme electrode, characterized in that the distance between the air interface and the measuring electrode group of the sample is constructed to be a predetermined value by configured to be.
【請求項2】前記酸素透過膜が酸素透過樹脂または多孔
体の布伏物であることを特徴とする特許請求の範囲第
(1)項記載の使い捨て型酵素電極。
2. The disposable enzyme electrode according to claim 1, wherein the oxygen permeable membrane is an oxygen permeable resin or a porous material.
JP63282412A 1988-11-10 1988-11-10 Pick-up type enzyme electrode Expired - Lifetime JP2536780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282412A JP2536780B2 (en) 1988-11-10 1988-11-10 Pick-up type enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282412A JP2536780B2 (en) 1988-11-10 1988-11-10 Pick-up type enzyme electrode

Publications (2)

Publication Number Publication Date
JPH02129541A JPH02129541A (en) 1990-05-17
JP2536780B2 true JP2536780B2 (en) 1996-09-18

Family

ID=17652074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282412A Expired - Lifetime JP2536780B2 (en) 1988-11-10 1988-11-10 Pick-up type enzyme electrode

Country Status (1)

Country Link
JP (1) JP2536780B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264920A (en) * 2008-04-25 2009-11-12 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and biosensor
JP2013054042A (en) * 2012-12-18 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2960265B2 (en) * 1991-10-18 1999-10-06 松下電器産業株式会社 Biosensor and measurement method using the same
KR0151203B1 (en) * 1994-12-08 1998-12-01 이헌조 Multi-electrode type biosensor
JPH08226910A (en) * 1995-02-22 1996-09-03 Masao Karube Microbial electrode and microbial sensor
JP4949589B2 (en) * 2000-05-03 2012-06-13 ガウ,ジェン−ジェイアール Biological identification system with integrated sensor chip
CN100367906C (en) * 2004-12-08 2008-02-13 圣美迪诺医疗科技(湖州)有限公司 Endermic implantating biological sensors
JP5432575B2 (en) * 2009-04-21 2014-03-05 グンゼ株式会社 Biosensor and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648256B2 (en) * 1985-06-21 1994-06-22 松下電器産業株式会社 Biosensor
JPS6232351A (en) * 1985-08-06 1987-02-12 Nok Corp Enzyme sensor
JPS62235556A (en) * 1986-04-04 1987-10-15 Nok Corp Compound enzyme sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264920A (en) * 2008-04-25 2009-11-12 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and biosensor
JP2013054042A (en) * 2012-12-18 2013-03-21 Funai Electric Advanced Applied Technology Research Institute Inc Sensor

Also Published As

Publication number Publication date
JPH02129541A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
US6863800B2 (en) Electrochemical biosensor strip for analysis of liquid samples
AU775172B2 (en) Electrochemical sensor for analysis of liquid samples
EP0359831B2 (en) Biosensor and process for its production
US5312590A (en) Amperometric sensor for single and multicomponent analysis
US6241862B1 (en) Disposable test strips with integrated reagent/blood separation layer
JPH09222411A (en) Electrochemical sensor
KR19990028415A (en) Electrochemical Biosensor Specimen
JPH0136063B2 (en)
JPWO2008047843A1 (en) Method for measuring hematocrit value of blood sample, method for measuring concentration of analyte in blood sample, sensor chip and sensor unit
JPH09101280A (en) Biosensor
KR100446468B1 (en) Biosensors with porous chromatographic membranes and enhanced sampling capability
JPH01291153A (en) Biosensor
JPS63128252A (en) Biosensor
JP2536780B2 (en) Pick-up type enzyme electrode
JP2004117342A (en) Biosensor and measuring method using the same
DK174989B1 (en) Enzyme electrode and method of assay
JPH04279854A (en) Platinum coated carbon fiber electrode and enzymatic film sensor using same
JPH0345336B2 (en)
JPS6212472B2 (en)
JPS62232554A (en) Biosensor
JP3483930B2 (en) Biosensor
JPH05149910A (en) Cell for electrochemical measurement
JPS63317095A (en) Biosensor
JPS63139244A (en) Glucose sensor
JPS63139243A (en) Glucose sensor