JPH037263B2 - - Google Patents

Info

Publication number
JPH037263B2
JPH037263B2 JP57232683A JP23268382A JPH037263B2 JP H037263 B2 JPH037263 B2 JP H037263B2 JP 57232683 A JP57232683 A JP 57232683A JP 23268382 A JP23268382 A JP 23268382A JP H037263 B2 JPH037263 B2 JP H037263B2
Authority
JP
Japan
Prior art keywords
membrane
polymer
redox
electrode
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57232683A
Other languages
Japanese (ja)
Other versions
JPS59119254A (en
Inventor
Takeshi Shimomura
Noboru Koyama
Norihiko Ushizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP57232683A priority Critical patent/JPS59119254A/en
Publication of JPS59119254A publication Critical patent/JPS59119254A/en
Publication of JPH037263B2 publication Critical patent/JPH037263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/40Semi-permeable membranes or partitions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

〔技術分野〕〔Technical field〕

この発明は、むオン遞択透過性局ず酞化還元反
応機胜性局ずを有するむオン遞択透過性・酞化還
元機胜性膜に係り、特に、比范的長期にわた぀お
酞化還元反応機胜を維持し埗るむオン遞択透過
性・酞化還元機胜性膜に関する。 〔先行技術および問題点〕 皮々な化合物を導電䜓衚面に保持するこずによ
り新しい機胜性を探玢する研究は掻発化しおい
る。しかしながら、機胜性、䟋えば酞化還元反応
機胜性を持぀た倚くの化合物は、それらを安定に
導電䜓衚面に保持し、その機胜を長期にわた぀お
維持させるこずは困難である。 発明の目的 この発明の目的は、詊料溶液䞭の特定むオン遞
択的に透過させ、そのむオンずの酞化還元反応機
胜を比范的長期間にわた぀お維持するこずができ
るむオン遞択透過性・酞化還元機胜性膜を提䟛す
るこずにある。 この発明によれば、導電性衚面に接すべき衚面
を䞀方に有する酞化還元反応機胜材料局ず、その
他方の面に接するむオン遞択透過性を有する高分
子局ずを具備し、該酞化還元反応機胜材料が、高
分子金属錯䜓化合物たたは高分子−高分子間電荷
移動型錯䜓からなるこずを特城ずするむオン遞択
透過性・酞化還元機胜性膜が提䟛される。 䞀般に前蚘酞化還元反応機胜を有する材料は高
分子金属錯䜓化合物たたは高分子−高分子間電荷
移動型錯䜓である。 たた、むオン遞択透過性を有する高分子は、ポ
リフルオロスルホン酞暹脂、セルロヌス系高分
子、ポリ塩化ビニルおよびその共重合䜓、ポリ塩
化ビニリデン、シリコヌンゎム、ポリスルホンよ
りなる矀の䞭から遞ばれる。 たた、導電䜓は、通垞、癜金系金属以倖の導電
材料の衚面に金又は癜金系金属の局を真空蓄積に
よ぀お圢成しおなるものである。 発明の具䜓的説明 以䞋、図面に沿぀お、この発明を詳しく説明す
る。 第図は、この発明のむオン遞択透過性・酞化
還元機胜性膜が基盀に担持されおいる態様を瀺し
おいる。金、癜金などの導電性物質およびSnO2
TiO2RuO2In2O3などの半導䜓物質がガラス
あるいはフむルム等の絶瞁性板状䜓䞊にスパ
ツタ法により導電性薄膜ずしお圢成されおい
る。さらに、薄膜衚面に酞化還元反応機胜を
有する材料からなる局が圢成されおいる。こ
の酞化還元反応機胜を有する材料には、レドツク
ス反応掻性䞭心を持぀た高分子化合物であるプ
ロセン誘導䜓、ポリニトロスチレン、ポリアニリ
ンなど、あるいは高分子配䜍子化合物に金属錯䜓
が配䜍した高分子金属錯䜓化合物、䟋えば、ポリ
ビニルピリゞンPVPに配䜍したルテニりム
錯䜓、あるいは高分子電解質化合物ずむオン皮ず
の間の静電的盞互䜜甚によ぀お䜜補された高分子
錯䜓化合物、䟋えば、プロトン付加したPVP膜
䞭に固定されたMoCN3-/4- 8錯䜓、ポリキシリ
ルビオロゲンずポリスチレンスルホン酞ずの錯䜓
化合物などがある。 この局は、䞊蚘の高分子化合物あるいは高
分子錯䜓の溶液を薄膜䞊に塗垃するキダスト
法によ぀お薄膜䞊に圢成できる。 局を芆぀おむオン遞択透過性を有する高分
子化合物の膜が圢成されおいる。この高分子
膜はセルロヌス系高分子セルロヌス、アセ
チルセルロヌス、ニトロセルロヌス、゚チルセル
ロヌス、トリアセチルセルロヌス、セルロヌスア
セテヌトブチレヌト等、ポリ塩化ビニルおよび
その共重合䜓、ポリ塩化ビニリデン、シリコヌン
ゎム、フツ玠暹脂䟋えば、ポリテトラフルオロ
゚チレン、ポリフルオロスルホン酞暹脂、ポリス
ルホン等で圢成されおいる。この高分子膜は
所定のむオンを遞択的に透過させる機胜を有する
ずずもに、溶液䞭においお前蚘の酞化還元反応機
胜を有する材料が圓該溶液䞭に溶離するこずを防
止し、か぀その局を薄膜に安定に固定化
する機胜を有する。 薄膜、酞化還元反応局および高分子膜
の呚蟺郚を芆぀お、䟋えば゚ポキシ暹脂から
なる絶瞁局が圢成されおいる。リヌド線
は䟋えば、銀ペヌストを介しお薄膜に接
続しおいる。 発明の具䜓的䜜甚 以䞊述べた構成のむオン遞択透過性・酞化還元
機胜性膜を被芆した導電䜓を詊料氎溶液に浞挬し
その電気化孊的応答を調べるず、導電性薄膜衚面
に保持された酞化還元皮は、むオン遞択分離膜を
通しおの察むオンの移動により酞化還元反応を行
なう。䞀方、該高分子膜は、酞化還元皮を通過せ
ず、溶液ぞの拡散を抑え、衚面での保持安定性に
寄䞎する。 以䞋、実斜䟋を瀺す。 実斜䟋  ガラス板に金属膜をスパツタ法により䜜補し、
その片すみから、銀ペヌストにより銅線を接觊さ
せお、リヌド線をず぀た。次に、金薄膜䞊で4.97
ミリモルポリビニルピリゞンPVP平均
重合床Pn19メタノヌル溶液ず25.0ミリモル
K4MoCN8氎溶液をキダスト法により混合し垞
枩で補膜し、次いで、キナプロフアン旭化成瀟
補銅アンモニりムセルロヌスの商品名をその䞊
に被芆し、電極の呚囲を゚ポキシ暹脂で絶瞁しお
電極面積0.28cm2の金薄膜PVP−MoCN8
キナプロフアン膜組成膜電極を䜜補した。 電極匏セルを䜿甚し、動䜜電極に本発明の膜
被芆電極、察極ずしお癜金網、基準電極ずしお飜
和塩化ナトリりムカロメル電極SSCEず略称
を甚い、0.2MCF3COONa支持電解質溶液PH
1.52䞭でMoCN8の酞化還元反応のサむクリ
ツクボルタモグラムを枬定掃匕速床100mV
秒し膜の特性を調べたずころ第図に瀺す酞化
ピヌク0.6V察SSCE、還元ピヌク0.45V
察SSCEが芳枬され、各々のピヌクは埐々に増
加し30分経過埌䞀定化し時間経おもピヌクが枛
少するこず無しに、䞀定の倀を接続するこずが認
められた。䞀方、金電極に盎接PVP−Mo
CN8膜を被芆した電極では、䞊蚘電極ずほが
同電䜍倀察SSCEに酞化還元ピヌクが珟わ
れるが、電極を溶液浞挬埌分以内で30䜍のピ
ヌク電流の枛少がみられ掃匕30分以内でこのピヌ
ク電流はれロ近くたで枛少するこずが芳枬された
第図。 これらのこずにより、キナプロフアン膜はむオ
ン遞択分離膜ずしお、PVP−MoCN8の電
極衚面ぞの被着安定性に著しく寄䞎するこずがわ
か぀た。 たた、キナプロフアン膜の代わりに酢酞セルロ
ヌスあるいはニトロセルロヌス膜を䜿甚し、䞊蚘
ず同様の方法で金属膜PVP−MoCN8酢
酞セルロヌス膜あるいは金属膜PVP−Mo
CN8ニトロセルロヌス膜を䜿甚し、䞊蚘ず
同様の方法でサむクリツクボルタモグラムを枬定
し、膜の特性を調べたずころ、酞化ピヌク
0.64V察SSCE及び還元ピヌク0.33V察
SSCEのピヌク電流は埐々に増加し30分経過埌
数時間経おも䞀定の飜和倀を持続した。したが぀
お、酢酞セルロヌス膜及びニトロセルロヌス膜
は、PVP−MoCN8膜を金薄膜衚面䞊に安
定に保持した保護膜およびむオン遞択透過膜であ
るこずがわか぀た。 実斜䟋 〜
The present invention relates to an ion selectively permeable/redox functional membrane having an ion selectively permeable layer and a redox reaction functional layer, and in particular, an ion selectively permeable and redox functional membrane that can maintain a redox reaction function for a relatively long period of time. Concerning permeable/redox functional membranes. [Prior Art and Problems] Research is becoming more active in exploring new functionality by holding various compounds on the surface of conductors. However, many compounds having functionality, such as redox reaction functionality, are difficult to stably hold on the surface of a conductor and maintain their functionality over a long period of time. Purpose of the Invention The purpose of the present invention is to provide ion selective permeability and redox function that can selectively transmit specific ions in a sample solution and maintain the redox reaction function with the ions for a relatively long period of time. The goal is to provide a sexual membrane. According to the present invention, the redox reaction functional material layer has one surface that is in contact with the conductive surface, and the polymer layer that has ion selective permeability that is in contact with the other surface. Provided is an ion-selective permselective/redox functional membrane characterized in that the functional material is comprised of a polymeric metal complex compound or a polymer-polymer charge transfer type complex. Generally, the material having the redox reaction function is a polymer metal complex compound or a polymer-polymer charge transfer type complex. Further, the polymer having ion selective permeability is selected from the group consisting of polyfluorosulfonic acid resin, cellulose polymer, polyvinyl chloride and its copolymer, polyvinylidene chloride, silicone rubber, and polysulfone. Further, the conductor is usually formed by forming a layer of gold or a platinum-based metal on the surface of a conductive material other than a platinum-based metal by vacuum accumulation. DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment in which the ion selectively permeable/redox functional membrane of the present invention is supported on a substrate. Conductive substances such as gold and platinum and SnO 2 ,
A semiconductor material such as TiO 2 , RuO 2 or In 2 O 3 is formed as a conductive thin film 12 on an insulating plate 11 such as glass or film by sputtering. Further, a layer 13 made of a material having a redox reaction function is formed on the surface of the thin film 12. Materials with this redox reaction function include ferrocene derivatives, polynitrostyrene, polyaniline, etc., which are polymeric compounds with redox reaction active centers, or polymeric metals in which a metal complex is coordinated to a polymeric ligand compound. Complex compounds, e.g. ruthenium complexes coordinated to polyvinylpyridine (PVP), or polymeric complex compounds created by electrostatic interactions between polyelectrolyte compounds and ionic species, e.g. protonated These include Mo(CN) 3-/4-8 complex fixed in a PVP membrane, and a complex compound of polyxylyl viologen and polystyrene sulfonic acid. This layer 13 can be formed on the thin film 12 by a casting method in which a solution of the above-mentioned polymer compound or polymer complex is applied onto the thin film 12. A membrane 14 of a polymer compound having ion-selective permeability is formed to cover the layer 13 . This polymer membrane 14 is made of cellulose-based polymers (cellulose, acetylcellulose, nitrocellulose, ethylcellulose, triacetylcellulose, cellulose acetate butyrate, etc.), polyvinyl chloride and its copolymers, polyvinylidene chloride, silicone rubber, fluorine It is made of resin (for example, polytetrafluoroethylene, polyfluorosulfonic acid resin, polysulfone, etc.). This polymer membrane 14 has a function of selectively transmitting predetermined ions, and also has the function of selectively transmitting the above-mentioned oxidation-reduction in a solution. It has a function of preventing a material having a reaction function from eluting into the solution and stably fixing the layer 13 to the thin film 12. Peripheral areas of the thin film 12, the redox reaction layer 13, and the polymer film 14. An insulating layer 15 made of, for example, epoxy resin is formed to cover the lead wire 16.
is connected to the thin film 12 via a silver paste 17, for example. Specific Effects of the Invention When a conductor coated with an ion-selective permselective/redox functional membrane having the above-described structure is immersed in an aqueous sample solution and its electrochemical response is examined, it is found that the oxidation-reduction film retained on the surface of the conductive thin film is The species undergo redox reactions by transfer of counterions through the ion-selective separation membrane. On the other hand, the polymer membrane does not allow redox species to pass through, suppresses diffusion into the solution, and contributes to retention stability on the surface. Examples are shown below. Example 1 A metal film was produced on a glass plate by sputtering method,
A lead wire was taken from one corner by contacting a copper wire with silver paste. Then 4.97 on the gold thin film
mmol/polyvinylpyridine (PVP; average degree of polymerization Pn=19 methanol solution and 25.0 mmol/
A K 4 Mo (CN) 8 aqueous solution was mixed by the casting method and formed into a film at room temperature, then Kyuprofan (trade name of copper ammonium cellulose manufactured by Asahi Kasei Corporation) was coated on top of it, and the area around the electrode was insulated with epoxy resin. (gold thin film/PVP - Mo(CN) 8 /
A composition membrane electrode (Cuprofan membrane) was prepared. A three-electrode cell was used, with the membrane-coated electrode of the present invention as the working electrode, a platinum mesh as the counter electrode, and a saturated sodium chloride calomel electrode (abbreviated as SSCE) as the reference electrode.
using 0.2MCF 3 COONa supporting electrolyte solution (PH
1.52) Measure the cyclic voltammogram of the redox reaction of Mo(CN) 8 (sweep rate 100 mV/
After investigating the properties of the film, the oxidation peak (+0.6V vs. SSCE) and reduction peak (+0.45V
SSCE) was observed, and each peak gradually increased and became constant after 30 minutes, and even after 1 hour, it was observed that the peaks did not decrease and remained constant values. On the other hand, directly on the gold electrode (PVP−Mo
(CN) 8 ) In the membrane-coated electrode, a redox peak appears at almost the same potential value (V vs. SSCE) as the above electrode, but the peak current decreases by about 30% within 1 minute after the electrode is immersed in the solution. It was observed that this peak current decreased to nearly zero within 30 minutes of scanning (Figure 3). Based on these findings, it was found that the Cyprofane membrane, as an ion-selective separation membrane, significantly contributes to the stability of adhesion of (PVP-Mo(CN) 8 ) to the electrode surface. In addition, cellulose acetate or nitrocellulose membrane was used instead of the cyprofane membrane, and (metal membrane/PVP-Mo (CN) 8 /cellulose acetate membrane) or (metal membrane/PVP-Mo
(CN) 8 /nitrocellulose membrane) was used to measure the cyclic voltammogram in the same manner as above, and the properties of the membrane were investigated.
0.64V vs. SSCE) and reduction peak (+0.33V vs.
The peak current of SSCE) gradually increased and remained at a constant saturation value even after 30 minutes and several hours. Therefore, it was found that the cellulose acetate membrane and the nitrocellulose membrane are protective membranes and ion selectively permeable membranes that stably hold the (PVP-Mo(CN) 8 ) membrane on the surface of the thin gold membrane. Examples 2 to 4

【衚】 むオン遞択透過性・酞化還元機胜性膜ずしお、
キナプロフアン、及び酢酞セルロヌスを䜿甚し、
電極衚面に保持する化孊皮をかえお䞊蚘衚に掲
げた組成膜電極を䜜補した。電極䜜補法に぀いお
は以䞋に述べる。 実斜䟋 金薄膜䞊に4.97ミリモルPVPメ
タノヌル溶液ず19.1ミリモルK4WCN8氎溶
液をキダスト法により混合、補膜し、次いで、キ
ナプロフアン膜を被芆し、電極を䜜補した。 実斜䟋 金薄膜䞊に重量ポリ−キシリ
ルビオロ−ゲン−PXV−ポリスチレンスル
ホン酞PSS錯䜓混合モル比の
NaBrH2Oアセトン30/55/15溶液をキダ
スト法により、補膜し、次いで、キナプロフアン
膜を被芆し電極を䜜補した。 実斜䟋 金薄膜䞊に重量ポリビニルプ
ロセンPVFのゞクロロメタン溶液をキダス
ト法により補膜し、次いで酢酞セルロヌス膜を被
芆し電極を䜜補した。 䞊蚘衚に掲げた組成膜電極を
0.2MCF3COONaPH6.86あるいは0.2MNaClO4
PH5.9の支持電解質溶液䞭に浞挬し、実斜䟋
ず同様の方法でサむクリツクボルタモグラムを枬
定し膜の特性を調べた結果、酞化、還元波ピヌク
電䜍倀は衚に瀺すようになり、いずれの組成膜
電極も、ピヌク電流は埐々に増加し30分経過埌、
ピヌク電流な枛少するこずなく、䞀定の飜和倀を
接続するこずが認められた。䞀方、金薄膜に
PVP−CN8膜、−PXV−PSS2膜
あるいはPVF膜だけを被芆した電極では、掃匕
30分以内にピヌク電流はれロ付近たで枛少するこ
ずが認められた。したが぀お、キナプロフアン膜
及び酢酞セルロヌス膜を被芆した本発明のむオン
遞択透過性・酞化還元機胜性膜は、その導電性薄
膜衚面䞊にPVP−CN8、−PXV−
PSS2あるいはPVFのような酞化還元物質を
安定に保持するこずがわか぀た。 実斜䟋  第図に瀺すように、ポリアミドフむルム
衚面に癜金薄膜をスパツタ法により被芆し、
次に、癜金薄膜䞊で4.97ミリモルPVPメ
タノヌル溶液ず25.0ミリモルK4MoCN8æ°Ž
溶液をキダスト法により垞枩で混合、補膜し
次いでナフむオンデナ・ポン瀟補ポリフルオロ
スルホン酞暹脂の商品名膜をその䞊に被芆
し、この薄被芆電極の䞡偎から穎φ6.4mmのあ
いたシリコヌンゎムでパツキングした。これ
を、第図に瀺すような䞡偎に連通する電解液宀
を有するすり合せガラス板
の間にはさんで倖偎をばね぀き留め金で固定し、
実斜䟋ず同様の方法でサむクリツクボルタモグ
ラムを枬定し、膜の特性を調べた。この堎合、
MoCN8錯䜓の酞化還元波のピヌク電䜍を衚
の−に瀺した。ピヌク電流倀は電䜍走査開始
埌30分経過しおも枛少するこずなしに、䞀定の飜
和倀を持続するこずが認められた。したが぀お、
本䜜補の組成電極は、導電䜓衚面に担持させた
PVP−MoCN8高分子錯䜓を電極倖に溶離
するこずを防止し、電解質溶液䞭の察むオンを取
り蟌むこずができるこずがわか぀た。 䞊蚘ず同様にしおポリアミド癜金薄膜
PVP−MoCN8ナフむオン組成電極を䜜補
し、ナフむオンの枬定詊料溶液に接觊する面以倖
はすべお゚ポキシ暹脂で被芆した。この電極を䜿
甚し、実斜䟋ず同様の方法でサむクリツクボル
タモグラムを枬定し膜の特性を調べた結果、ピヌ
ク電流倀は電䜍走査埌30分経過しおも枛少するこ
ずなしに、䞀定の飜和倀を持続するこずが認めら
れた。この結果、ナフむオンを被芆したこずによ
り導電䜓衚面䞊にPVP−MoCN8膜が安定
に保持されるこずがわか぀た。たた、むオン遞択
透過機胜を有するこずもわか぀た。以䞊の結果を
衚に瀺す。
[Table] As an ion permselective/redox functional membrane,
Using cyprofan and cellulose acetate,
Membrane electrodes having the compositions listed in Table 1 above were prepared by changing the chemical species retained on the electrode surface. The electrode manufacturing method will be described below. Example 2: A 4.97 mmol/PVP methanol solution and a 19.1 mmol/K 4 W(CN) 8 aqueous solution were mixed and formed into a film by a casting method on a gold thin film, and then a Cuprofane film was coated to produce an electrode. Example 3: 1% by weight of polym-xylylviologen (m-PXV)-polystyrene sulfonic acid (PSS) complex (mixed molar ratio 1:2) was deposited on a gold thin film.
A film was formed using a NaBr/H 2 O/acetone (30/55/15) solution by a casting method, and then a cyprofen film was coated to prepare an electrode. Example 4: A dichloromethane solution of 1% by weight polyvinylferrocene (PVF) was formed on a gold thin film by a casting method, and then a cellulose acetate film was coated to prepare an electrode. The composition membrane electrode listed in Table 1 above
0.2MCF 3 COONa (PH6.86) or 0.2MNaClO 4
Example 1
As a result of measuring the cyclic voltammogram and examining the properties of the membrane using the same method as above, the peak potential values of oxidation and reduction waves were shown in Table 1, and the peak current gradually increased for all composition membrane electrodes30. After minutes,
It was observed that the peak current connects to a constant saturation value without decreasing. On the other hand, with electrodes in which only a thin gold film is coated with a (PVP-W(CN) 8 ) film, (m-PXV-(PSS) 2 ) film, or a PVF film, the sweep
It was observed that the peak current decreased to near zero within 30 minutes. Therefore, the ion-selective permselective/redox functional membrane of the present invention coated with a cyprofane membrane and a cellulose acetate membrane has (PVP-W(CN) 8 ), (m-PXV-
It was found that redox substances such as (PSS) 2 ) or PVF can be stably retained. Example 5 As shown in FIG. 4, polyamide film 21
A platinum thin film 22 is coated on the surface by a sputtering method,
Next, on the platinum thin film 22, 4.97 mmol/PVP methanol solution and 25.0 mmol/K 4 Mo (CN) 8 aqueous solution were mixed at room temperature by a casting method to form a film 23. A resin (trade name) membrane 24 was coated thereon, and this thinly coated electrode was packed with silicone rubber 25 having holes (φ6.4 mm) on both sides. As shown in FIG.
Sandwich it in between and secure the outside with a spring-loaded clasp.
A cyclic voltammogram was measured in the same manner as in Example 1 to examine the properties of the membrane. in this case,
Table 2 shows the peak potential of the redox wave of Mo(CN) 8 complex.
It is shown in 5-A. It was observed that the peak current value maintained a constant saturation value without decreasing even after 30 minutes had passed after the start of potential scanning. Therefore,
It was found that the electrode with this composition can prevent the (PVP-Mo(CN) 8 ) polymer complex supported on the conductor surface from eluting out of the electrode, and can incorporate counterions in the electrolyte solution. Ta. Same as above (polyamide/platinum thin film/
A PVP-Mo(CN) 8 /naf ion) composition electrode was prepared, and all surfaces other than those in contact with the napf ion measurement sample solution were coated with epoxy resin. Using this electrode, we measured the cyclic voltammogram in the same manner as in Example 1 to examine the properties of the membrane. As a result, the peak current value did not decrease even after 30 minutes had passed after potential scanning, but remained at a constant saturation level. It was observed that the value persisted. As a result, it was found that the (PVP-Mo(CN) 8 ) film was stably maintained on the conductor surface by coating with naphion. It was also found that it has an ion selective permeation function. The above results are shown in Table 2.

【衚】 実斜䟋  ポリアミドフむルム衚面に癜金薄膜をスパツタ
法により被芆し、次に、癜金薄膜䞊で・97ミリ
モルPVPメタトル溶液ず25.0ミリモル
K4MoCN8氎溶液をキダスト法により垞枩で混
合、補膜し、次いでニトロセルロヌスをその䞊に
被芆し、䞡偎から穎のあいたシリコヌンゎムでパ
ツキングし、第図に瀺すすりガラス板にはさみ
実斜䟋ず同様の方法でサむクリツクボルタムグ
ラムを枬定し膜の特性を調べた結果、第−
のようになり、ピヌク電流倀は30分経過埌も
枛少するこずなしに、䞀定の飜和倀を持続するこ
ずが認められた。したが぀お、本䜜補の組成膜電
極は導電䜓衚面に担持させたPVP−Mo
CN8高分子錯䜓を電極倖に溶離するこずを防
止し、電解液䞭の察むオンを電極内に取り蟌むこ
ずができる特性を持぀こずがわか぀た。 䞊蚘ず同様にしおポリアミド癜金薄膜
PVP−MoCN8ニトロセルロヌス組成電極
を䜜補し、ナフむオンの枬定詊料溶液に接觊する
面以倖はすべお゚ポキシ暹脂で被芆した。この電
極を䜿甚しお実斜䟋ず同様の方法でサむクリツ
クボルタモグラムを枬定した結果、酞化還元電䜍
は衚の−のようになり、ピヌク電流倀は30
分経過埌も枛少するこずなしに、䞀定の飜和倀を
持続するこずが認められた。この結果ニトロセル
ロヌスを被芆した本発明の膜は、導電䜓衚面䞊に
PVP−MoCN8膜を安定に保持する保護膜
および察むオンに察する透過膜であるこずがわか
぀た。
[Table] Example 6 A thin platinum film was coated on the surface of a polyamide film by a sputtering method, and then 4.97 mmol/PVP methanol solution and 25.0 mmol/
K 4 Mo (CN) 8 aqueous solution was mixed at room temperature by the casting method to form a film, then nitrocellulose was coated on top of it, packed with perforated silicone rubber from both sides, and sandwiched between frosted glass plates as shown in Figure 5. The cyclic voltamgram was measured in the same manner as in Example 1 to investigate the properties of the film.
As shown in A), it was observed that the peak current value did not decrease even after 30 minutes and maintained a constant saturation value. Therefore, the composition membrane electrode prepared in this study was supported on the surface of the conductor (PVP-Mo
(CN) 8 ) It was found that it has the property of preventing the polymer complex from eluting outside the electrode and allowing the counter ions in the electrolyte to be taken into the electrode. Same as above (polyamide/platinum thin film/
A PVP-Mo(CN) 8 /nitrocellulose) composition electrode was prepared, and all surfaces other than those in contact with the napfion measurement sample solution were coated with epoxy resin. Using this electrode, a cyclic voltammogram was measured in the same manner as in Example 1. As a result, the redox potential was as shown in 6-B in Table 3, and the peak current value was 30
It was observed that a constant saturation value was maintained without decreasing even after minutes had passed. As a result, it was found that the membrane of the present invention coated with nitrocellulose is a protective membrane that stably maintains the (PVP-Mo(CN) 8 ) membrane on the surface of the conductor and a membrane permeable to counterions.

【衚】 実斜䟋  ナフむオンデナポン瀟補膜衚面に癜金薄膜
をスパツタ法あるいは無電解め぀き法により䜜補
し、次に、癜金薄膜䞊に4.97ミリモルPVPメ
タノヌル溶液ず25.0ミリモルK4MoCN8æ°Ž
溶液をキダスト法により垞枩で混合、補膜し、次
いで、ナフむオンをその䞊に被芆し、電極の呚囲
を゚ポキシ暹脂で絶瞁し、第図に瀺すず同様の
構造のナフむオン癜金薄膜PVP−Mo
CN8ナフむオン組成電極を䜜補した。この
電極を0.2MCF3COONaPH1.5の支持電解質溶
液䞭に浞挬し、実斜䟋ず同様の方法で、サむク
リツクボルタモグラムを枬定し膜の特性を調べた
結果、ピヌク電流は埐々に増加し、30分経過埌、
ピヌク電流は枛少するこずなく、䞀定の倀を維持
するこずが認められた。したが぀お本䜜補の組成
膜電極は導電䜓衚面䞊にPVP−MoCN8膜
を安定に保持する効果を有するこずがわか぀た。 発明の具䜓的効果 以䞊述べたこの発明のむオン遞択透過性・酞化
還元機胜性膜は、酞化還元反応機胜を有する材料
局をむオン遞択透過性高分子膜で芆うこずによ぀
お䞊蚘酞化還元反応機胜を有する材料局を導電性
衚面に安定に保持するこずができ、その機胜を充
分に発珟させるこずができる。たた、この発明の
むオン電極は䞊蚘のようなむオン遞択透過膜を有
するので、特定むオンに察しお遞択的に䞊蚘材料
局を感応させるこずができる。したが぀お、この
発明のむオン遞択透過性・酞化還元機胜性膜は、
その酞化還元反応機胜材料局においお導電䜓に接
合するこずにより、該特定むオンの濃床を怜出す
るむオン電極ずなり埗る。
[Table] Example 7 A platinum thin film was prepared on the surface of a Nafion (manufactured by Dupont) membrane by a sputtering method or an electroless plating method, and then 4.97 mmol/PVP methanol solution and 25.0 mmol/K 4 Mo were deposited on the platinum thin film. (CN) 8 aqueous solution was mixed and formed into a film at room temperature by the casting method, then Nafion was coated on top of it, and the electrode was insulated with epoxy resin. Platinum thin film/PVP-Mo
(CN) 8 /nafion) composition electrode was fabricated. This electrode was immersed in a supporting electrolyte solution of 0.2MCF 3 COONa (PH1.5), and the cyclic voltammogram was measured in the same manner as in Example 1 to examine the membrane characteristics. As a result, the peak current gradually increased. Then, after 30 minutes,
It was observed that the peak current did not decrease and maintained a constant value. Therefore, it was found that the composition film electrode prepared in this way has the effect of stably holding a (PVP-Mo(CN) 8 ) film on the surface of the conductor. Specific Effects of the Invention The ion selectively permeable/redox functional membrane of the present invention described above has the redox reaction function by covering the material layer having the redox reaction function with an ion selectively permeable polymer membrane. The material layer having the above structure can be stably held on the conductive surface, and its function can be fully expressed. Furthermore, since the ion electrode of the present invention has the ion selectively permeable membrane as described above, it is possible to selectively sensitize the material layer to specific ions. Therefore, the ion selective permeability/redox functional membrane of the present invention has the following characteristics:
By bonding the redox reaction functional material layer to a conductor, it can become an ion electrode for detecting the concentration of the specific ion.

【図面の簡単な説明】[Brief explanation of the drawing]

第図はこの発明のむオン遞択性・酞化還元機
胜性膜を基盀に支持された圢態で瀺す図であ぀
お、は平面図、はの線−に沿぀た断面
図、第図および第図はそれぞれこの発明のむ
オン遞択性・酞化還元機胜性および比范䟋に関す
るサむクリツクボルタモグラム図、第図はこの
発明の別の構造のむオン遞択性・酞化還元機胜性
膜の断面図、第図はサむクリツクボルタモグラ
ムを調べるためのすりガラス板ず電解液宀からな
る装眮の断面図。   導電䜓、  酞化還
元反応機胜膜、  保護膜。
FIG. 1 is a diagram showing the ion-selective/redox functional membrane of the present invention supported on a base, in which A is a plan view, B is a cross-sectional view along line B-B of A, and FIG. Figures 2 and 3 are cyclic voltammograms of the ion-selective/redox-functional membrane of the present invention and a comparative example, respectively, and Figure 4 is a cross-section of the ion-selective/redox-functional membrane of the present invention with another structure. Figure 5 is a cross-sectional view of an apparatus consisting of a ground glass plate and an electrolyte chamber for examining cyclic voltammograms. 12, 22... Conductor, 13, 23... Redox reaction functional film, 14, 24... Protective film.

Claims (1)

【特蚱請求の範囲】  導電性衚面に接すべき衚面を䞀方に有する酞
化還元反応機胜材料局ず、その他方の面に接する
むオン遞択透過性を有する高分子局ずを具備し、
該酞化還元反応機胜材料が、高分子金属錯䜓化合
物たたは高分子−高分子間電荷移動型錯䜓からな
るこずを特城ずするむオン遞択透過性・酞化還元
機胜性膜。  むオン遞択透過性を有する高分子が、ポリフ
ルオロスルホン酞暹脂、セルロヌス系高分子、ポ
リ塩化ビニルおよびその共重合䜓、ポリ塩化ビニ
リデン、シリコヌンゎム、およびポリスルホンよ
りなる矀の䞭から遞ばれる特蚱請求の範囲第項
蚘茉のむオン遞択透過性・酞化還元機胜性膜。
[Scope of Claims] 1. A redox-reactive functional material layer having one surface in contact with a conductive surface, and a polymer layer having ion selective permeability in contact with the other surface,
An ion selective permeability/redox functional membrane characterized in that the redox reaction functional material is composed of a polymer metal complex compound or a polymer-polymer charge transfer type complex. 2. A patent claim in which the polymer having selective ion permeability is selected from the group consisting of polyfluorosulfonic acid resin, cellulose polymer, polyvinyl chloride and its copolymer, polyvinylidene chloride, silicone rubber, and polysulfone. The ion selective permeability/redox functional membrane according to item 1.
JP57232683A 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane Granted JPS59119254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232683A JPS59119254A (en) 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232683A JPS59119254A (en) 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane

Publications (2)

Publication Number Publication Date
JPS59119254A JPS59119254A (en) 1984-07-10
JPH037263B2 true JPH037263B2 (en) 1991-02-01

Family

ID=16943151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232683A Granted JPS59119254A (en) 1982-12-25 1982-12-25 Ion selective protective separating membrane and ion electrode using said membrane

Country Status (1)

Country Link
JP (1) JPS59119254A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0118931D0 (en) * 2001-08-02 2001-09-26 Oxford Biosensors Ltd Voltammetric ion-selective biosensor
KR100437116B1 (en) 2002-05-22 2004-06-23 삌성ꎑ죌전자 죌식회사 Vacuum cleaner
GB0423025D0 (en) 2004-10-15 2004-11-17 Oxford Biosensors Ltd Voltammetric ion sensor
JP2021162450A (en) * 2020-03-31 2021-10-11 株匏䌚瀟゚むアンドティヌ Ion selective electrode, method for manufacturing ion selective electrode, and electrolyte analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142584A (en) * 1976-05-19 1977-11-28 Eastman Kodak Co Ion selective electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142584A (en) * 1976-05-19 1977-11-28 Eastman Kodak Co Ion selective electrode

Also Published As

Publication number Publication date
JPS59119254A (en) 1984-07-10

Similar Documents

Publication Publication Date Title
US4957615A (en) Oxygen sensor
Bobacka et al. All solid-state poly (vinyl chloride) membrane ion-selective electrodes with poly (3-octylthiophene) solid internal contact
JP4312379B2 (en) Reference electrode
US4555274A (en) Ion selective electrode and process of preparing the same
EP0100667A1 (en) Solid state transcutaneous blood gas sensors
US20010032785A1 (en) Planar reference electrode
JPS5924242A (en) Reference electrode
JPS6135510B2 (en)
CN107957440B (en) Planar ammonia selective sensing electrode and method for fabricating the same
JP3700878B2 (en) Planar bicarbonate sensor and method for making and using the same
GB2102963A (en) Film-form ion selective electrode and method of measuring ion activity using the same
EP0661535A1 (en) Ion sensor
US3794575A (en) Oxygen sensor
Bobacka et al. All‐Solid‐State Ag+‐ISE Based on [2.2. 2] p, p, p‐Cyclophane
JPH037263B2 (en)
US4995960A (en) Electrochemical electrodes
JPH0370782B2 (en)
JPS62127663A (en) Sensor electrode for electrochemical treatment and liquid chromatographic device utilizing said electrode and method of reducing diffusion effect
JPS61251764A (en) Ph sensor
Okada et al. Role of plasticizers on the characteristics of poly (vinyl chloride)-membrane lithium-selective electrodes based on phenanthroline derivatives
JP4024097B2 (en) Reference electrode and electrolytic cell including the same
JP3684244B2 (en) Reference electrode
JPH0672859B2 (en) Oxygen sensor
JP2948423B2 (en) Ion selective electrode for potassium ion analysis
JPS6221054A (en) Chlorine ion sensor