JPH01216041A - Electronic control fuel injection device for internal combustion engine - Google Patents

Electronic control fuel injection device for internal combustion engine

Info

Publication number
JPH01216041A
JPH01216041A JP3971188A JP3971188A JPH01216041A JP H01216041 A JPH01216041 A JP H01216041A JP 3971188 A JP3971188 A JP 3971188A JP 3971188 A JP3971188 A JP 3971188A JP H01216041 A JPH01216041 A JP H01216041A
Authority
JP
Japan
Prior art keywords
fuel injection
injection amount
basic fuel
phase advance
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3971188A
Other languages
Japanese (ja)
Other versions
JPH0776538B2 (en
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP3971188A priority Critical patent/JPH0776538B2/en
Publication of JPH01216041A publication Critical patent/JPH01216041A/en
Publication of JPH0776538B2 publication Critical patent/JPH0776538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve air-fuel ratio control precision during transient running, by a method wherein phase advance processing is applied on a fundamental fuel injection amount determined from the opening of a throttle valve and the number of revolutions of an engine, and a difference between a phase advance fundamental injection amount and a fundamental fuel injection amount is used as an acceleration deceleration correction amount. CONSTITUTION:Based on a state amount of intake air, a first fundamental fuel injection amount is set by a set means A, and from the opening of a throttle and the number of revolutions of an engine, a second fundamental injection amount is set by a set means B. Based on a change in a second fundamental fuel injection amount, phase advance processing is applied in a change direction on a fundamental fuel injection amount by means of a set means C, and a phase advance fundamental fuel injection amount is set. An acceleration deceleration correction amount is set as a difference between the phase advance fundamental fuel injection amount and the second fundamental injection amount by a set means D, a fundamental fuel injection amount is corrected by a correction means E by adding it to a first fundamental injection amount, and based on a fundamental fuel injection amount after correction, a fuel injection amount is computed by a computing means F.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の電子制御燃料噴射装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine.

〈従来の技術〉 従来、内燃機関の電子制御燃料噴射装置では、吸入空気
の状態量として、吸入空気流量Qを検出し、これと機関
回転数Nとから、基本燃料噴射量Tp=に−Q/N(K
は定数)を演算し、あるいは、吸入空気の状態量として
、吸気圧(吸入負圧)PBを検出し、これに基づいて基
本燃料噴射量Tpを演算する。尚、吸入空気流量Qによ
る方式をLジェトロといい、吸気圧PBによる方式をD
ジェトロという。そして、水温等に基づく各種補正係数
C0EF及びバッテリ電圧に基づく電圧補正分子sによ
り補正して、最終的な燃料噴射量Ti=Tp −C0E
F+Tsを演算する。
<Prior art> Conventionally, in an electronically controlled fuel injection system for an internal combustion engine, the intake air flow rate Q is detected as the state quantity of the intake air, and from this and the engine speed N, the basic fuel injection amount Tp = -Q /N(K
is a constant), or the intake pressure (intake negative pressure) PB is detected as the state quantity of the intake air, and the basic fuel injection amount Tp is calculated based on this. The method based on intake air flow rate Q is called L-jetro, and the method based on intake pressure PB is called D.
It's called JETRO. Then, the final fuel injection amount Ti=Tp −C0E is corrected by various correction coefficients C0EF based on water temperature etc. and voltage correction numerator s based on battery voltage.
Calculate F+Ts.

そして、機関回転に同期した所定のタイミングで前記燃
料噴射量Tiに対応するパルス巾の駆動パルス信号を電
磁式の燃料噴射弁に出力し、これにより機関に燃料を噴
射供給する。
Then, at a predetermined timing synchronized with the engine rotation, a drive pulse signal having a pulse width corresponding to the fuel injection amount Ti is outputted to the electromagnetic fuel injection valve, thereby injecting and supplying fuel to the engine.

ところが、例えば加速時には吸気通路内壁に付着する壁
流燃料の輸送遅れにより空燃比がリーン化するため、加
速時に機関出力が応答性良く追従せず、加速性能が悪化
していた。
However, during acceleration, for example, the air-fuel ratio becomes lean due to a delay in the transport of wall flow fuel adhering to the inner wall of the intake passage, so the engine output does not respond well during acceleration, resulting in poor acceleration performance.

尚、一般には前記各種補正係数C0EF中に加速増量補
正係数KFIIELを設け、加速時にスロットル弁開度
の変化量等に基づいて加速増量補正係数に、utLの値
を適当に設定することにより、加速性能の向上を図って
いるが、加速増量補正係数KFu■をマツプデータに基
づいて設定するようにしているので、加速状態に見合っ
た最適な燃料噴射量を全ての領域で確保するのが難しく
、十分な加速性能を得ることはできなかった。
Generally, an acceleration increase correction coefficient KFIIEL is provided in the various correction coefficients C0EF, and the value of utL is set appropriately for the acceleration increase correction coefficient based on the amount of change in the throttle valve opening during acceleration. Although we are trying to improve performance, since the acceleration increase correction coefficient KFu is set based on map data, it is difficult to ensure the optimal fuel injection amount in all areas commensurate with the acceleration state, It was not possible to obtain good acceleration performance.

そこで、吸入空気の状態量に基づいて設定した基本燃料
噴射量の変化に基づきその変化の方向に基本燃料噴射量
を位相進み処理して位相進み基本燃料噴射量を設定し、
この位相進み基本燃料噴射量に基づいて最終的な燃料噴
射量を演算することにより、加速時のみならず減速時を
含む過渡運転時に壁流燃料の輸送遅れによる影響をなく
すようにして、空燃比制御精度、出力の応答性等を向上
させ、また演算により過渡運転時の基本燃料噴射量を設
定することでマツプデータのマツチング工数を不要にし
たものが提案されている(特願昭62−281963号
参照)。
Therefore, based on the change in the basic fuel injection amount set based on the state quantity of intake air, the basic fuel injection amount is phase-advanced in the direction of the change, and the phase-advanced basic fuel injection amount is set.
By calculating the final fuel injection amount based on this phase advance basic fuel injection amount, the effect of wall flow fuel transport delay is eliminated not only during acceleration but also during transient operation including deceleration, and the air-fuel ratio A system has been proposed that improves control accuracy, output responsiveness, etc., and eliminates the need for man-hours for matching map data by setting the basic fuel injection amount during transient operation using calculations (Japanese Patent Application No. 62-281963). reference).

〈発明が解決しようとする課題〉 しかしながら、かかる基本燃料噴射量の位相進み処理に
よって、加速増量、減速減量を図る場合、加減速時の機
関の負荷変動をもとの基本燃料噴射量が的確にとらえて
いれば、最適な制御量が得られるが、Lジェトロ、Dジ
ェトロ共、吸気脈動による基本燃料噴射量の変動が加わ
るため、必要以上の加速増量、減速減量が付加されて、
運転性の悪化、GO,HC排出量の増加を招き、なお改
善の余地があった。
<Problems to be Solved by the Invention> However, when increasing the amount of acceleration or decreasing the amount of deceleration by such phase advance processing of the basic fuel injection amount, it is difficult to accurately adjust the basic fuel injection amount based on engine load fluctuations during acceleration and deceleration. If this is understood, the optimal control amount can be obtained, but in both L-JETRO and D-JETRO, fluctuations in the basic fuel injection amount due to intake pulsation are added, so acceleration increases and deceleration decreases are added more than necessary.
This resulted in deterioration of drivability and increase in GO and HC emissions, and there was still room for improvement.

尚、第7図は先行技術における加速時の制御特性図で、
図示破線の如く機関の負荷変動を基本燃料噴射量Tpが
的確にとらえた場合には、位相進み基本燃料噴射量PR
ETpにより最適増量が得られるが、図示実線の如(吸
気脈動でTpがふれた場合には、常に必要以上でかつ変
動が増幅された加速増量分が付加されてしまう様子を示
している。
In addition, FIG. 7 is a control characteristic diagram during acceleration in the prior art,
When the basic fuel injection amount Tp accurately captures the engine load fluctuation as shown by the broken line in the figure, the phase advance basic fuel injection amount PR
Although the optimal increase can be obtained by ETp, as shown in the solid line in the figure (when Tp fluctuates due to intake pulsation, an acceleration increase amount that is more than necessary and whose fluctuations are amplified is always added).

本発明は、このような課題に鑑み、吸気脈動の影響を受
けることなく、加減速状態に見合った最適な燃料噴射量
を全ての領域で確保することができるようにして、過渡
運転時の空燃比制御精度を向上させ、運転性の向上並び
にCo、HCの排出量の低減を図ることを目的とする。
In view of these problems, the present invention makes it possible to secure the optimum fuel injection amount commensurate with the acceleration/deceleration state in all regions without being affected by intake pulsation, thereby reducing the amount of fuel injection during transient operation. The purpose is to improve fuel ratio control accuracy, improve drivability, and reduce Co and HC emissions.

〈課題を解決するための手段〉 このため、本発明は、第1図に示すように、下記のA−
Fの手段を設ける構成としたものである。
<Means for Solving the Problems> Therefore, as shown in FIG.
The structure is such that a means F is provided.

A)吸入空気の状態量に基づいて基本燃料噴射量を設定
する第1の基本燃料噴射量設定手段B)前記第1の基本
燃料噴射量設定手段とは別に、スロットル弁開度と機関
回転数とから基本燃料噴射量を設定する第2の基本燃料
噴射量設定手段C)前記第2の基本燃料噴射量設定手段
による基本燃料噴射量の変化に基づきその変化の方向に
位相進み処理して位相進み基本燃料噴射量を設定する位
相進み基本燃料噴射量設定手段 D)前記位相進み基本燃料噴射量設定手段による位相進
み基本燃料噴射量と前記第2の基本燃料噴射量設定手段
による基本燃料噴射量との差として加減速補正量を設定
する加減速補正量設定手段E)前記第1の基本燃料噴射
量設定手段による基本燃料噴射量をこれに前記加減速補
正量設定手段による加減速補正量を加算することにより
補正する基本燃料噴射量補正手段 F)前記基本燃料噴射量補正手段により補正して得た基
本燃料噴射量に基づいて燃料噴射量を演算する燃料噴射
量演算手段 また、前記位相進み基本燃料噴射量設定手段Cを位相進
み量を異ならせた2種の位相進み基本燃料噴射量を設定
するようにし、前記加減速補正量設定手段りを前記2種
の位相進み基本燃料噴射量のうち絶対値大のものを選択
して加減速補正量を設定するようにするとよい。
A) First basic fuel injection amount setting means that sets the basic fuel injection amount based on the state quantity of intake air B) Separately from the first basic fuel injection amount setting means, the first basic fuel injection amount setting means sets the throttle valve opening degree and the engine rotation speed. C) A second basic fuel injection amount setting means for setting a basic fuel injection amount from said second basic fuel injection amount setting means. Phase advanced basic fuel injection amount setting means for setting advanced basic fuel injection amount D) Phase advanced basic fuel injection amount by the phase advanced basic fuel injection amount setting device and basic fuel injection amount by the second basic fuel injection amount setting device E) Acceleration/deceleration correction amount setting means for setting an acceleration/deceleration correction amount as the difference between the acceleration/deceleration correction amount and the basic fuel injection amount by the first basic fuel injection amount setting means Basic fuel injection amount correction means for correcting by adding F) Fuel injection amount calculation means for calculating the fuel injection amount based on the basic fuel injection amount corrected by the basic fuel injection amount correction means; The basic fuel injection amount setting means C is configured to set two types of phase advance basic fuel injection amounts having different phase advance amounts, and the acceleration/deceleration correction amount setting means C is configured to set two types of phase advance basic fuel injection amounts having different phase advance amounts. It is preferable to select the one with the largest absolute value and set the acceleration/deceleration correction amount.

(作用) 上記の構成においては、スロットル弁開度と機関回転数
とから基本燃料噴射量を設定し、この基本燃料噴射量の
変化に基づきその変化の方向に位相進み処理して位相進
み基本燃料噴射量を設定し、この位相進み基本燃料噴射
量ともとの基本燃料噴射量との差として加減速補正量を
設定する。
(Function) In the above configuration, the basic fuel injection amount is set from the throttle valve opening degree and the engine speed, and based on the change in the basic fuel injection amount, a phase advance process is performed in the direction of the change to phase advance the basic fuel. The injection amount is set, and the acceleration/deceleration correction amount is set as the difference between this phase-advanced basic fuel injection amount and the original basic fuel injection amount.

これによれば、スロットル弁開度と機関回転数とから求
めた基本燃料噴射量は、吸気脈動の影響を受けることな
く、機関の負荷変動を的確にとらえることができ、位相
進み処理により最適要求量をとらえて、最適な加減速補
正量を求めること力(できる。
According to this, the basic fuel injection amount determined from the throttle valve opening and engine speed can accurately capture engine load fluctuations without being affected by intake pulsation, and the optimal demand can be achieved using phase advance processing. It is possible to determine the optimal acceleration/deceleration correction amount by understanding the amount of acceleration/deceleration.

そして、吸入空気の状態量に基づいて設定した基本燃料
噴射量をこれに加減速補正量を加算することにより補正
し、この補正して得た基本燃料噴射量に基づいて燃料噴
射量を演算するのである。
Then, the basic fuel injection amount set based on the state quantity of the intake air is corrected by adding the acceleration/deceleration correction amount to this, and the fuel injection amount is calculated based on the basic fuel injection amount obtained by this correction. It is.

また、位相進み量を異ならせた2種の位相進み基本燃料
噴射量を設定するようにし、これら2種の位相進み基本
燃料噴射量のうち絶対値大のものを選択して加減速補正
量を設定するようにすれば、加減速の後期に加減速補正
量を徐々に減衰させることができ、より良好となる。
In addition, two types of phase advance basic fuel injection amounts with different phase advance amounts are set, and the one with the largest absolute value is selected from these two types of phase advance basic fuel injection amounts to adjust the acceleration/deceleration correction amount. If this setting is made, the acceleration/deceleration correction amount can be gradually attenuated in the later stages of acceleration/deceleration, resulting in better performance.

〈実施例) 以下に本発明の一実施例(Lジェトロの場合)を説明す
る。
<Example> An example of the present invention (in the case of L-JETRO) will be described below.

第2図において、機関lには、エアクリーナ2から、ア
クセルペダルに連動するスロットル弁3、及び、該スロ
ットル弁3をバイパスする補助空気通路4に介装した補
助空気制御弁5を介し、さらに吸気マニホールド6を介
して、空気が吸入される。
In FIG. 2, air is supplied to the engine l from an air cleaner 2 through a throttle valve 3 linked to an accelerator pedal and an auxiliary air control valve 5 installed in an auxiliary air passage 4 that bypasses the throttle valve 3. Air is sucked in through the manifold 6.

吸気マニホールド6の各ブランチ部には各気筒毎に燃料
噴射弁7が設けられている。燃料噴射弁7はソレノイド
に通電されて開弁し通電停止されて閉弁する電磁式燃料
噴射弁であって、後述するコントロールユニット9から
の駆動パルス信号により通電されて開弁し、図示しない
燃料ポンプにより圧送されてプレッシャレギエレータに
より所定の圧力に調整された燃料を噴射する。尚、この
例はいわゆるマルチポイントインジエクシテンシステム
であるが、スロットル弁上流などに全気筒共通に単一の
燃料噴射弁を設けるシングルポイントインジェクション
システムであってもよい。
A fuel injection valve 7 is provided in each branch of the intake manifold 6 for each cylinder. The fuel injection valve 7 is an electromagnetic fuel injection valve that opens when the solenoid is energized and closes when the energization is stopped. Fuel is injected under pressure by a pump and adjusted to a predetermined pressure by a pressure regulator. Although this example is a so-called multi-point injection system, it may also be a single-point injection system in which a single fuel injection valve is provided in common to all cylinders, such as upstream of the throttle valve.

機関1の燃焼室には点火栓8が設けられていて、これに
より火花点火して混合気を着火燃焼させる。
An ignition plug 8 is provided in the combustion chamber of the engine 1, which ignites a spark to ignite and burn the air-fuel mixture.

コントロールユニット9は、CPU、ROM。The control unit 9 includes a CPU and a ROM.

RAM、A/’D変換器、入出力インターフェイスを含
んで構成されるマイクロコンピュータを備え、各種のセ
ンサからの入力信号に基づいて演算処理し、燃料噴射弁
7.補助空気制御弁5及び点火栓8の作動を制御する。
Equipped with a microcomputer including a RAM, an A/'D converter, and an input/output interface, it performs arithmetic processing based on input signals from various sensors and controls the fuel injection valve 7. Controls the operation of the auxiliary air control valve 5 and the spark plug 8.

但し、以下では燃料噴射弁7による燃料噴射量の制御に
ついてのみ説明する。
However, below, only the control of the fuel injection amount by the fuel injection valve 7 will be explained.

前記各種のセンサとしては、スロットル弁3上流の吸気
通路に熱線式のエアフローメータlOが設けられていて
、吸入空気流量Qを検出する。尚、Dジェトロの場合は
、吸気マニホールドに吸気圧センサが設けられていて、
吸気圧(吸入負圧)PBを検出する。
As the various sensors mentioned above, a hot wire type air flow meter IO is provided in the intake passage upstream of the throttle valve 3, and detects the intake air flow rate Q. In addition, in the case of D-JETRO, an intake pressure sensor is installed in the intake manifold.
Detects intake pressure (inhalation negative pressure) PB.

また、クランク角センサ11が設けられていて、例えば
4気筒の場合、クランク角180°毎の基準信号REF
とクランク角1〜2°毎の単位信号PO3とを出力する
。ここで、基準信号REFの周期、あるいは所定時間内
における単位信号PO3の発生数を計測することにより
、機関回転数Nを算出可能である。
Further, a crank angle sensor 11 is provided, and for example, in the case of a four-cylinder engine, a reference signal REF is provided for each crank angle of 180°.
and a unit signal PO3 for every 1 to 2 degrees of crank angle. Here, the engine speed N can be calculated by measuring the period of the reference signal REF or the number of occurrences of the unit signal PO3 within a predetermined time.

また、スロットル弁3にポテンショメータ式のスロット
ルセンサ12が設けられていて、スロットル弁開度αを
検出する。
Further, the throttle valve 3 is provided with a potentiometer-type throttle sensor 12 to detect the throttle valve opening degree α.

また、機関1のウォータジャケットに臨ませて水温セン
サ13が設けられていて、機関冷却水温TWを検出する
Further, a water temperature sensor 13 is provided facing the water jacket of the engine 1 to detect the engine cooling water temperature TW.

ここにおいて、コントロールユニット9に内蔵されたマ
イクロコンピュータ(CPU)は、第3図〜第5図にフ
ローチャートとして示すROM上のプログラムに従って
、演算処理を行い、燃料噴射量を制御する。
Here, a microcomputer (CPU) built into the control unit 9 performs arithmetic processing and controls the fuel injection amount according to a program on a ROM shown as flowcharts in FIGS. 3 to 5.

次に第3図〜第5図のフローチャートを参照しつつコン
トロールユニット9内のマイクロコンピュータの演算処
理の様子を説明する。
Next, the state of the arithmetic processing of the microcomputer in the control unit 9 will be explained with reference to the flowcharts shown in FIGS. 3 to 5.

第3図は、スロットル弁開度α及び機関回転数N(以下
α−Nという)から基本燃料噴射量Tp(以下α−Nか
ら求めたTpをTp”と記す)を求めるルーチンで、所
定時間(例えば10a+s )毎に実行される。
Fig. 3 shows a routine for determining the basic fuel injection amount Tp (hereinafter Tp obtained from α-N will be referred to as "Tp") from the throttle valve opening α and the engine speed N (hereinafter referred to as α-N). (for example, every 10a+s).

ステップ1(図にはSlと記しである。以下同様)テハ
、スロットルセンサ12からの信号に基ツいて検出され
るスロットル弁開度αを読込む。
Step 1 (denoted as Sl in the figure; the same applies hereinafter): The throttle valve opening degree α detected based on the signal from the throttle sensor 12 is read.

ステップ2では、スロットル弁開度αよりマツプを参照
して求めたスロットル弁通過空気流量ATVOと、補助
空気制御弁5への開度制御信号である開弁用デエーティ
l5CDUTYよりマツプを参照して求めた補助空気制
御弁通過空気流量Al5Cと、アイドルアジャストスク
リュー等における所定の洩れ分ALEAKとを加算して
、体積流量たる吸入空気流量AQ (rrt/h) =
ATVO+Al5C+ALEAKを求める。
In step 2, the throttle valve passing air flow rate ATVO is calculated from the throttle valve opening α with reference to the map, and the valve opening duty l5CDUTY, which is the opening control signal to the auxiliary air control valve 5, is calculated with reference to the map. Adding the air flow rate Al5C passing through the auxiliary air control valve and the predetermined leakage ALEAK in the idle adjustment screw, etc., the intake air flow rate AQ (rrt/h) = volumetric flow rate.
Find ATVO+Al5C+ALEAK.

ステップ3では、吸気圧に対応する基本燃料噴射量Tp
(後述する第5図のステップ21で求めたもの、Dジェ
トロの場合は吸気圧PBを用いることができる)からマ
ツプを参照して吸入負圧特性ψ(%)を求める。
In step 3, the basic fuel injection amount Tp corresponding to the intake pressure is
(The intake pressure PB obtained in step 21 of FIG. 5, which will be described later, can be used in the case of D-JETRO) and the suction negative pressure characteristic ψ (%) is determined by referring to a map.

ステップ4では、吸入空気流量AQに吸入負圧特性ψを
乗じて、質量流量たる吸入空気流量G(廟へ)=AQ・
φを演算する。
In step 4, the intake air flow rate AQ is multiplied by the intake negative pressure characteristic ψ, and the mass flow rate, the intake air flow rate G (to the temple) = AQ・
Calculate φ.

ここで、Gは次式(1)により定まる故、ψを次式(2
)とし、大気圧PA等を一定とした代表大気条件データ
でψのマツプを作成しである。Lジェトロでは、大気圧
センサ、吸気温センサがないからである。尚、ψの値は
、吸気圧PBが所定値(−340■Hg)以下のソニッ
ク領域では一定に保たれ、吸気圧P、Bが所定値を超え
る領域では吸気圧PBが大きくなるにしたがって減少す
る特性を有する。
Here, since G is determined by the following formula (1), ψ is determined by the following formula (2
), and a map of ψ is created using representative atmospheric condition data with atmospheric pressure PA etc. constant. This is because L-JETRO does not have an atmospheric pressure sensor or an intake temperature sensor. The value of ψ is kept constant in the sonic region where the intake pressure PB is below a predetermined value (-340■Hg), and decreases as the intake pressure PB increases in the region where the intake pressures P and B exceed the predetermined value. It has the characteristics of

G=AQ・ψ゛・C・(PA・ρ)ト・・・(1)ステ
ップ5では、吸入空気流量Gと機関回転数Nとに基づき
、基本燃料噴射量Tp’=に’  ・G/N (K’ 
は定数)を演算する。この基本燃料噴射量Tp”はα−
Nから求めた基本燃料噴射量である。
G=AQ・ψ゛・C・(PA・ρ) (1) In step 5, based on the intake air flow rate G and the engine speed N, the basic fuel injection amount Tp'='・G/ N (K'
is a constant). This basic fuel injection amount Tp” is α−
This is the basic fuel injection amount obtained from N.

従って、ステップ1〜ステツプ5の部分が第2の基本燃
料噴射量設定手段に相当する。
Therefore, steps 1 to 5 correspond to the second basic fuel injection amount setting means.

ステップ6では、水温Twよりマツプを参照して求めた
値と、基本燃料噴射量Tpよりマツプを参照して求めた
値とを乗じて、重み付は定数X(−1〜255)を演算
する。
In step 6, a weighting constant X (-1 to 255) is calculated by multiplying the value obtained by referring to the map from the water temperature Tw and the value obtained by referring to the map from the basic fuel injection amount Tp. .

第4図は、α−Nから求めた基本燃料噴射量Tp゛の位
相進み処理を行って位相進み基本燃料噴射量PRETp
を求め、これに基づいて加減速補正量DLTTpを設定
するルーチンで、クランク角センサ11の基準信号RE
Fに同期して4気筒の場合機関%回転毎に実行される。
FIG. 4 shows the basic fuel injection amount PRETp obtained by performing phase advance processing on the basic fuel injection amount Tp' obtained from α-N.
In this routine, the acceleration/deceleration correction amount DLTTp is determined based on the reference signal RE of the crank angle sensor 11.
In the case of a 4-cylinder engine, it is executed every % rotation of the engine in synchronization with F.

ステップ11では、次式に従ってα−Nから求めた基本
燃料噴射量Tp’に基づき位相進み基本燃料噴射量PR
ETpを演算する。Tp”。、4は%回転前のTp”で
ある。
In step 11, the phase advance basic fuel injection amount PR is calculated based on the basic fuel injection amount Tp' obtained from α-N according to the following equation.
Calculate ETp. Tp''., 4 is Tp'' before % rotation.

ここで、’rp”=Tp’。L4+ΔTp’とすれば、
次式の如くとなる。
Here, 'rp'=Tp'.If L4+ΔTp',
It becomes as follows.

従って、重み付は定数Xを1〜255の適当な値に設定
することにより、位相進み処理を行うことができる。
Therefore, for weighting, phase advance processing can be performed by setting the constant X to an appropriate value between 1 and 255.

このステップ11(及び後述するステップ13)の部分
が位相進み基本燃料噴射量設定手段に相当する。
This step 11 (and step 13 to be described later) corresponds to phase advance basic fuel injection amount setting means.

ステップ12では、次回の演算のため、Tp’をTp゛
。、に代入する。
In step 12, Tp' is changed to Tp' for the next calculation. , and assign it to .

ステップ13では、次式に従って減少特性位相進み基本
燃料噴射量PRETp 1を求める。PRETpo*a
は%回転前のPRETP又はPRETplのうち大きい
方である。n、mは定数である。
In step 13, the decreasing characteristic phase advance basic fuel injection amount PRETp1 is determined according to the following equation. PRETpo*a
is the larger of PRETP or PRETpl before % rotation. n and m are constants.

PRETp 1←PRETPoLd   PRETp−
ta例えば、n=8.m−1とすれば、PRETpl−
(7/8)xPRETp、ta となる。
PRETp 1←PRETPoLd PRETp-
For example, n=8. If m-1, PRETpl-
(7/8)xPRETp, ta.

ステップ14では、l PRETP Iとl PRET
pHとを比較する。
In step 14, l PRETP I and l PRET
Compare with pH.

l PRETp I >l PRETp 11の場合(
加減速初期の場合)は、ステップ15に進んで位相進み
基本燃料噴射量PRETpがら基本燃料噴射量Tp’を
減算することにより位相進み分である加減速補正量DL
TTp=PRETp−T、p’を演算し、次のステップ
16でPRETpをP RE T P otaに代入す
る。
If l PRETp I > l PRETp 11 (
(in the early stage of acceleration/deceleration), the process proceeds to step 15 and the basic fuel injection amount Tp' is subtracted from the phase advanced basic fuel injection amount PRETp to calculate the acceleration/deceleration correction amount DL which is the phase advanced amount.
TTp=PRETp-T, p' is calculated, and in the next step 16, PRETp is assigned to PRETPota.

I PRETp l≦l PRETp 1 lの場合(
加減速後期の場合)は、ステップ17に進んで減少特性
位相進み基本燃料噴射量PRETp 1から基本燃料噴
射量Tp’を減算することにより減少特性位相進み分で
ある加減速補正量DLTTp−PRETpl−Tp’を
演算し、次のステップ18でPRETplをPRETP
−taに代入する。
If I PRETp l≦l PRETp 1 l (
(in the case of the latter half of acceleration/deceleration), the process proceeds to step 17 and subtracts the basic fuel injection amount Tp' from the basic fuel injection amount PRETp 1 with the decreasing characteristic phase advance, thereby accelerating/decelerating correction amount DLTTp-PRETpl- Tp' is calculated, and in the next step 18 PRETpl is changed to PRETP.
-Assign to ta.

ここで、ステップ14.15.17の部分が加減速補正
量設定手段に相当する。
Here, steps 14, 15, and 17 correspond to acceleration/deceleration correction amount setting means.

第5図は、最終的な燃料噴射量TIを演算するルーチン
で、所定時間(例えばioms )毎に実行される。
FIG. 5 shows a routine for calculating the final fuel injection amount TI, which is executed at predetermined time intervals (for example, ioms).

ステップ21では、エアフローメータ10からの信号に
基づいて検出される吸入空気流量Qと、機関回転数Nと
から、基本燃料噴射量Tp=KQ/N(Kは定数)を演
算する。Dジェトロの場合は吸気圧PBに基づいて基本
燃料噴射量Tpを設定する。このステップ21の部分が
第1の基本燃料噴射量設定手段に相当する。
In step 21, the basic fuel injection amount Tp=KQ/N (K is a constant) is calculated from the intake air flow rate Q detected based on the signal from the air flow meter 10 and the engine speed N. In the case of D-JETRO, the basic fuel injection amount Tp is set based on the intake pressure PB. This step 21 corresponds to the first basic fuel injection amount setting means.

ステップ22では、基本燃料噴射量Tpに加減速補正量
DLTTpを加算して次式の如く基本燃料噴射量Tpを
補正する。このステップ22の部分が基本燃料噴射量補
正手段に相当する。
In step 22, the acceleration/deceleration correction amount DLTTp is added to the basic fuel injection amount Tp to correct the basic fuel injection amount Tp as shown in the following equation. This step 22 corresponds to the basic fuel injection amount correction means.

Tp+Tp+DLTTp ステップ23では、次式に従って燃料噴射量TIを演算
する。C0EFは各種補正係数、Tsは電圧補正骨であ
る。このステップ23の部分が燃料噴射量演算手段に相
当する。
Tp+Tp+DLTTp In step 23, the fuel injection amount TI is calculated according to the following equation. C0EF is various correction coefficients, and Ts is voltage correction bone. This step 23 corresponds to the fuel injection amount calculation means.

Ti=Tp−COEF+Ts このようにして、燃料噴射量Tiが演算されると、この
Tiに対応するパルス巾の駆動パルス信号が機関回転に
同期した所定のタイミングで燃料噴射弁7に出力され、
燃料噴射が行われる。
Ti=Tp-COEF+Ts When the fuel injection amount Ti is calculated in this way, a drive pulse signal with a pulse width corresponding to this Ti is output to the fuel injection valve 7 at a predetermined timing synchronized with the engine rotation.
Fuel injection takes place.

このような制御により、第6図に示すように、吸気脈動
の影響を受けない位相進み基本燃料噴射量PRETpが
得られ、これを吸気脈動の影響を受ける基本燃料噴射量
Tpに加算して補正しても、補正されたTpについても
との吸気脈動分が増幅されることはない、また、加速後
期には位相進み基本燃料噴射量として減少特性のPRE
Tplを用いるので、加速後期に加減速補正量を徐々に
減衰させてより良好な運転性をも得ることができる。
Through such control, as shown in Fig. 6, a phase advance basic fuel injection amount PRETp that is not affected by intake pulsation is obtained, and this is added to the basic fuel injection amount Tp that is affected by intake pulsation to correct it. Even if the corrected Tp is used, the original intake pulsation component will not be amplified.In addition, in the late acceleration period, the PRE with a decreasing characteristic will be used as the phase advance basic fuel injection amount.
Since Tpl is used, better drivability can be obtained by gradually attenuating the acceleration/deceleration correction amount in the latter half of acceleration.

(発明の効果〉 以上説明したように本発明によれば、スロットル弁開度
と機関回転数とから吸気脈動の影響を受けることなく機
関の負荷変動を的確にとらえうる基本燃料噴射量を設定
し、この基本燃料噴射量を位相進み処理して、位相進み
基本燃料噴射量ともとの基本燃料噴射量との差を加減速
補正量として用いるので、過渡時の空燃比制御精度が向
上し、運転性の向上並びにCO,HCの排出量の低減と
いう効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the basic fuel injection amount can be set based on the throttle valve opening and the engine speed to accurately detect engine load fluctuations without being affected by intake pulsation. This basic fuel injection amount is subjected to phase advance processing, and the difference between the phase advance basic fuel injection amount and the original basic fuel injection amount is used as the acceleration/deceleration correction amount, which improves the accuracy of air-fuel ratio control during transients and improves operational efficiency. The effects of improved performance and reduced emissions of CO and HC can be obtained.

また、位相進み量を異ならせた2種の位相進み基本燃料
噴射量を設定するようにし、これら2種の位相進み基本
燃料噴射量のうち絶対値大のものを選択して加減速補正
量を設定するようにすれば、加減速の後期に加減速補正
量を徐々に減衰させることができ、運転性がより良好と
なる。
In addition, two types of phase advance basic fuel injection amounts with different phase advance amounts are set, and the one with the largest absolute value is selected from these two types of phase advance basic fuel injection amounts to adjust the acceleration/deceleration correction amount. If this setting is made, the acceleration/deceleration correction amount can be gradually attenuated in the later stages of acceleration/deceleration, resulting in better drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す機能ブロック図、第2図は
本発明の一実施例を示すシステム図、第3図〜第5図は
制御内容を示すフローチャート、第6図は本発明の場合
の加速時の制御特性図、第7図は先行技術における加速
時の制御特性図である。 1・・・機関  3・・・スロットル弁  7・・・燃
料噴射弁  9・・・コントロールユニット  10・
・・エアフローメータ  11・・・クランク角センサ
  12・・・スロットルセンサ 特許出願人 日本電子機器株式会社 代 理 人 弁理士 笹島 富二雄 第3図 10m5@ チ 第4図 第6図 第7図
FIG. 1 is a functional block diagram showing the configuration of the present invention, FIG. 2 is a system diagram showing an embodiment of the present invention, FIGS. 3 to 5 are flow charts showing control contents, and FIG. FIG. 7 is a control characteristic diagram during acceleration in the prior art. 1... Engine 3... Throttle valve 7... Fuel injection valve 9... Control unit 10.
...Air flow meter 11...Crank angle sensor 12...Throttle sensor Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 3 10m5@chi Figure 4 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)吸入空気の状態量に基づいて基本燃料噴射量を設
定する第1の基本燃料噴射量設定手段と、この第1の基
本燃料噴射量設定手段とは別に、スロットル弁開度と機
関回転数とから基本燃料噴射量を設定する第2の基本燃
料噴射量設定手段と、この第2の基本燃料噴射量設定手
段による基本燃料噴射量の変化に基づきその変化の方向
に位相進み処理して位相進み基本燃料噴射量を設定する
位相進み基本燃料噴射量設定手段と、 この位相進み基本燃料噴射量設定手段による位相進み基
本燃料噴射量と前記第2の基本燃料噴射量設定手段によ
る基本燃料噴射量との差として加減速補正量を設定する
加減速補正量設定手段と、前記第1の基本燃料噴射量設
定手段による基本燃料噴射量をこれに前記加減速補正量
設定手段による加減速補正量を加算することにより補正
する基本燃料噴射量補正手段と、 この基本燃料噴射量補正手段により補正して得た基本燃
料噴射量に基づいて燃料噴射量を演算する燃料噴射量演
算手段と、 を有することを特徴とする内燃機関の電子制御燃料噴射
装置。
(1) A first basic fuel injection amount setting means that sets the basic fuel injection amount based on the state quantity of intake air; a second basic fuel injection amount setting means for setting the basic fuel injection amount from the number; and a phase advancing process in the direction of the change based on a change in the basic fuel injection amount by the second basic fuel injection amount setting means. a phase advance basic fuel injection amount setting means for setting a phase advance basic fuel injection amount; a phase advance basic fuel injection amount by the phase advance basic fuel injection amount setting means; and a basic fuel injection by the second basic fuel injection amount setting means. an acceleration/deceleration correction amount setting means for setting an acceleration/deceleration correction amount as a difference between the acceleration/deceleration correction amount and the basic fuel injection amount by the first basic fuel injection amount setting means; basic fuel injection amount correction means for correcting by adding the basic fuel injection amount, and fuel injection amount calculation means for calculating the fuel injection amount based on the basic fuel injection amount corrected by the basic fuel injection amount correction means. An electronically controlled fuel injection device for an internal combustion engine, characterized in that:
(2)位相進み基本燃料噴射量設定手段が位相進み量を
異ならせた2種の位相進み基本燃料噴射量を設定するも
のであり、加減速補正量設定手段が前記2種の位相進み
基本燃料噴射量のうち絶対値大のものを選択して加減速
補正量を設定するものであることを特徴とする請求項1
記載の内燃機関の電子制御燃料噴射装置。
(2) The phase advance basic fuel injection amount setting means sets two types of phase advance basic fuel injection amounts with different phase advance amounts, and the acceleration/deceleration correction amount setting means sets two types of phase advance basic fuel injection amounts with different phase advance amounts. Claim 1 characterized in that the acceleration/deceleration correction amount is set by selecting one of the injection amounts with a large absolute value.
Electronically controlled fuel injection device for the internal combustion engine as described.
JP3971188A 1988-02-24 1988-02-24 Electronically controlled fuel injection device for internal combustion engine Expired - Lifetime JPH0776538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3971188A JPH0776538B2 (en) 1988-02-24 1988-02-24 Electronically controlled fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3971188A JPH0776538B2 (en) 1988-02-24 1988-02-24 Electronically controlled fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01216041A true JPH01216041A (en) 1989-08-30
JPH0776538B2 JPH0776538B2 (en) 1995-08-16

Family

ID=12560575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3971188A Expired - Lifetime JPH0776538B2 (en) 1988-02-24 1988-02-24 Electronically controlled fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0776538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290939A (en) * 1988-05-18 1989-11-22 Nissan Motor Co Ltd Fuel supply control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290939A (en) * 1988-05-18 1989-11-22 Nissan Motor Co Ltd Fuel supply control device of internal combustion engine

Also Published As

Publication number Publication date
JPH0776538B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US4886030A (en) Method of and system for controlling fuel injection rate in an internal combustion engine
JPH0240054A (en) Air-fuel ratio control device for internal combustion engine for vehicle
JPS6165038A (en) Air-fuel ratio control system
JP3378640B2 (en) Idling control method
US5159913A (en) Method and system for controlling fuel supply for internal combustion engine coupled with supercharger
JPH11303669A (en) Fuel injection control device for internal combustion engine
JPH01216041A (en) Electronic control fuel injection device for internal combustion engine
JP3397584B2 (en) Electric throttle type internal combustion engine
JPH1162658A (en) Control device for internal combustion engine
JPH057546B2 (en)
US5103788A (en) Internal combustion engine ignition timing device
JPS60261947A (en) Accelerative correction of fuel injector
JPH0325622B2 (en)
JP2855383B2 (en) Interrupt injection control device for electronically controlled fuel injection type internal combustion engine
JPH0710048Y2 (en) Fuel supply control device for internal combustion engine
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JPH0368221B2 (en)
JPH0452450Y2 (en)
JPH0734193Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3203468B2 (en) Fuel injection amount control device for starting internal combustion engine
JPH08504Y2 (en) Electronically controlled fuel injection type internal combustion engine interrupt injection control device
JPS6035153A (en) Control method of fuel injection in internal-conbustion engine
JPH0270949A (en) Electronic control fuel injection device for internal combustion engine
JPH01147131A (en) Electronic control fuel injection system for internal combustion engine
JPH0612085B2 (en) Fuel supply control device for internal combustion engine