JPH0270949A - Electronic control fuel injection device for internal combustion engine - Google Patents

Electronic control fuel injection device for internal combustion engine

Info

Publication number
JPH0270949A
JPH0270949A JP22052888A JP22052888A JPH0270949A JP H0270949 A JPH0270949 A JP H0270949A JP 22052888 A JP22052888 A JP 22052888A JP 22052888 A JP22052888 A JP 22052888A JP H0270949 A JPH0270949 A JP H0270949A
Authority
JP
Japan
Prior art keywords
fuel injection
amount
change
engine speed
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22052888A
Other languages
Japanese (ja)
Other versions
JPH0833118B2 (en
Inventor
Masuo Kashiwabara
柏原 益夫
Junichi Furuya
純一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP63220528A priority Critical patent/JPH0833118B2/en
Publication of JPH0270949A publication Critical patent/JPH0270949A/en
Publication of JPH0833118B2 publication Critical patent/JPH0833118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent an air-fuel ratio from entering a lean region when an engine speed is sharply reduced due to an increase in a load by a method wherein even when the opening of a throttle valve is kept at an approximately specified value, when a change in the engine speed is high, correction control of a wall flow is performed. CONSTITUTION:Based on a state amount of intake air detected by an intake air state amount detecting means, a fundamental fuel injection amount is computed by a fundamental fuel injection computing means and corrected by a correction means to compute a fuel injection amount. By means of signals from a throttle valve opening change amount detecting means and an engine speed change amount detecting means, it is decided by a deciding means that acceleration occurs, when a change amount exceeds or is below a negative given value, it is decided thereby that deceleration occurs, when a change amount of the engine speed exceeds or is below a positive given value except during decision of acceleration and deceleration, it is decided thereby that transition occurs. During decision of acceleration, an increase amount is corrected by a correction means, during decision of deceleration, a decrease amount is corrected, and during decision of transition, correction is made in an opposite direction to the change direction of the engine speed. This constitution enables prevention of an air-fuel ratio from entering a lean region when the engine speed is sharply reduced due to an increase in a load.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、内燃機関の電子制御燃料噴射装置にに関し、
特に加・減速時の壁流補正制御機能を有するものに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an electronically controlled fuel injection device for an internal combustion engine.
In particular, it relates to a device having a wall flow correction control function during acceleration and deceleration.

〈従来の技術〉 従来、内燃機関の電子制御燃料噴射装置では、吸入空気
の状態量として、吸入空気流量Qを検出し、これと機関
回転数Nとから、基本燃料噴射量Tp=に−Q/N(K
は定数)を演算し、あるいは、吸入空気の状態量として
、吸気圧(吸入負圧)PBを検出し、これに基づいて基
本燃料噴射ITp−K・η7 ・PB−に、A(Kは定
数、η9は体積効率、KTAは吸気温補正係数)を演算
する。尚、吸入空気流量Qによる方式をLジヱトロとい
い、吸気圧PBによる方式をDジェトロという。そして
、空燃比フィードバック補正係数α、水温等に基づく各
種補正係数C0EF及びバッテリ電圧に基づく電圧補正
分子sにより補正して、最終的な燃料噴射量Ti=Tp
 ・α・C0EF+Tsを演算する。
<Prior art> Conventionally, in an electronically controlled fuel injection system for an internal combustion engine, the intake air flow rate Q is detected as the state quantity of the intake air, and from this and the engine speed N, the basic fuel injection amount Tp = -Q /N(K
Alternatively, the intake pressure (intake negative pressure) PB is detected as the state quantity of the intake air, and based on this, the basic fuel injection ITp-K・η7・PB- is calculated by A (K is a constant). , η9 is the volumetric efficiency, and KTA is the intake temperature correction coefficient). Note that the method based on the intake air flow rate Q is called L-JETRO, and the method based on intake pressure PB is called D-JETRO. Then, the final fuel injection amount Ti=Tp is corrected by the air-fuel ratio feedback correction coefficient α, various correction coefficients C0EF based on water temperature, etc., and the voltage correction numerator s based on the battery voltage.
- Calculate α・C0EF+Ts.

また、前記各種補正係数C0EF (−t+Ktw+K
wF+・・・)中には、水温補正係数に?W等の他、壁
流補正係数Kwrがあり、スロットル弁開度の変化量等
より加・減速を判定し、加速判定時には燃料の一部が壁
流となって到達が遅れることを見込んで燃料噴射量を増
量補正し、減速判定時にはそれ以前に噴射されて壁流と
なった燃料が供給されることによる影響を回避すべく燃
料噴射量を減量補正するようにしている(特開昭58−
214629号公報、特開昭58−220931号公報
等参照)。
In addition, the various correction coefficients C0EF (-t+Ktw+K
wF+...) is the water temperature correction coefficient? In addition to W, etc., there is a wall flow correction coefficient Kwr, which determines acceleration/deceleration based on the amount of change in throttle valve opening, etc. When determining acceleration, some of the fuel becomes a wall flow and the arrival of the fuel is delayed, so the fuel The injection amount is corrected to increase, and when determining deceleration, the fuel injection amount is corrected to decrease in order to avoid the influence of the supply of fuel that was previously injected and became a wall flow.
214629, JP-A-58-220931, etc.).

そして、機関回転に同期した所定のタイミングで前記燃
料噴射量Tiに対応するパルス巾の駆動パルス信号を電
磁式の燃料噴射弁に出力し、これにより機関に燃料を噴
射供給する。
Then, at a predetermined timing synchronized with the engine rotation, a drive pulse signal having a pulse width corresponding to the fuel injection amount Ti is outputted to the electromagnetic fuel injection valve, thereby injecting and supplying fuel to the engine.

〈発明が解決しようとする課題〉 しかしながら、従来のようにスロットル弁開度の変化量
より加・減速を判定し、加・減速判定時に壁流補正制御
を行う場合、次のような問題点があった。
<Problems to be Solved by the Invention> However, when acceleration/deceleration is determined based on the amount of change in throttle valve opening as in the past and wall flow correction control is performed at the time of acceleration/deceleration determination, the following problems arise. there were.

すなわち、第7図を参照し、ギアチェンジ時のクラッチ
接続時のように、スロットル弁開度TVOがほぼ一定で
ありながら、負荷の増大により機関回転数Nが大幅に低
下する時に、空燃比がり一ン化する。
That is, referring to Fig. 7, when the throttle valve opening TVO is almost constant but the engine speed N decreases significantly due to an increase in load, such as when the clutch is engaged during a gear change, the air-fuel ratio increases. Unify into one.

これは、スロットル弁部の開口面積をAとし、機関回転
数をNとしたとき、A/Nの値に対して第8図のように
基本体積効率が定まるが、これかられかるように、回転
低下時はΔNの分、吸入空気量の段差ができるので、平
衡付着量の段差が生じ、補正が必要になる。しかし、ス
ロットル弁開度の変化量で補正の有無を判定しているの
で、補正ができず、空燃比がリーン化するのである。
This means that when the opening area of the throttle valve section is A and the engine speed is N, the basic volumetric efficiency is determined for the value of A/N as shown in Figure 8. When the amount of intake air decreases, there is a step difference in the amount of intake air by ΔN, so a step difference in the equilibrium adhesion amount occurs, which requires correction. However, since the presence or absence of correction is determined based on the amount of change in throttle valve opening, correction cannot be made and the air-fuel ratio becomes lean.

本発明は、このような従来の問題点を解決することを目
的とする。
The present invention aims to solve these conventional problems.

く課題を解決するための手段〉 このため、本発明は、第1図に示すように、機関に吸入
される吸入空気の状態量を検出する吸入空気状態量検出
手段と、吸入空気の状態量に基づいて基本燃料噴射量を
演算する基本燃料噴射量演算手段と、この基本燃料噴射
量を補正して燃料噴射量を演算する補正手段とを備える
内燃機関の電子側′a燃料噴射装置において、スロット
ル弁開度の変化量を検出するスロットル弁開度変化量検
出手段と、機関回転数の変化量を検出する機関回転数変
化量検出手段と、スロットル弁開度の変化量が正の所定
値以上のときに加速と判定する加速判定手段と、スロッ
トル弁開度の変化量が負の所定値以下のときに減速と判
定する減速判定手段と、加・減速判定時以外で機関回転
数の変化量が正の所定値以上あるいは負の所定値以下の
時に過渡と判定する過渡判定手段とを設けると共に、前
記補正手段として、加速判定時に燃料噴射量を増量補正
する加速時増量補正手段と、減速判定時に燃料噴射量を
減量補正する減速時減量補正手段と、過渡判定時に燃料
噴射量を機関回転数の変化方向と反対方向に補正する過
渡補正手段とを設ける構成とする。
Means for Solving the Problems> Therefore, as shown in FIG. In an electronic side 'a fuel injection device for an internal combustion engine, the electronic side 'a fuel injection device for an internal combustion engine includes a basic fuel injection amount calculation means for calculating a basic fuel injection amount based on the basic fuel injection amount, and a correction means for calculating the fuel injection amount by correcting the basic fuel injection amount, A throttle valve opening change amount detection means for detecting a change amount in the throttle valve opening degree, an engine rotation speed change amount detection means for detecting a change amount in the engine speed, and a predetermined value for which the change amount in the throttle valve opening degree is positive. Acceleration determining means determines acceleration in the above cases, deceleration determining means determines deceleration when the amount of change in throttle valve opening is less than a predetermined negative value, and change in engine speed other than when determining acceleration/deceleration. Transient determination means for determining a transient state when the amount of fuel injection is greater than or equal to a positive predetermined value or less than or equal to a negative predetermined value; The present invention is configured to include a deceleration reduction correction means for reducing the fuel injection amount at the time of determination, and a transient correction means for correcting the fuel injection amount in the opposite direction to the change direction of the engine speed at the time of transient determination.

く作用〉 上記の構成においては、スロットル弁開度がほぼ一定で
あっても、機関回転数の変化が大のときは、過渡と判定
され、燃料噴射量が機関回転数の変化方向と反対方向に
補正される。従って、例えば、ギアチェンジ時のクラッ
チ接続時のように、スロットル弁開度がほぼ一定であり
ながら、負荷の増大により機関回転数が大幅に低下する
時は、増量補正がなされ、空燃比のリーン化を防止する
ことができる。
In the above configuration, even if the throttle valve opening is almost constant, if the engine speed changes significantly, it is determined to be transient, and the fuel injection amount is changed in the opposite direction to the engine speed change direction. It is corrected to Therefore, for example, when the throttle valve opening is almost constant but the engine speed drops significantly due to an increase in load, such as when the clutch is engaged during a gear change, an increase correction is made and the air-fuel ratio is lean. It is possible to prevent

〈実施例) 以下に本発明の一実施例(Dジェトロの場合)を説明す
る。
<Example> An example of the present invention (in the case of D-JETRO) will be described below.

第2図において、機関1には、エアクリーナ2から、吸
気ダクト3.スロットルチャンバ4のスロットル弁5.
吸気マニホごルド6を介して、空気が吸入される。
In FIG. 2, an engine 1 is connected to an air cleaner 2 through an intake duct 3. Throttle valve of throttle chamber 4 5.
Air is drawn in via the intake manifold 6.

吸気マニホールド6の各ブランチ部には各気筒毎に燃料
噴射弁7が設けられている。燃料噴射弁7はソレノイド
に通電されて開弁じ通電停止されて閉弁する電磁式燃料
噴射弁であって、後述するコントロールユニット9から
の駆動パルス信号により通電されて開弁じ、図示しない
燃料ポンプにより圧送されてプレッシャレギュレータに
よIQ 所定の圧力に調整された燃料を噴射する。
A fuel injection valve 7 is provided in each branch of the intake manifold 6 for each cylinder. The fuel injection valve 7 is an electromagnetic fuel injection valve whose solenoid is energized to open the valve, and whose energization is stopped to close the valve.The fuel injection valve 7 is energized by a drive pulse signal from a control unit 9 to be described later to open the valve, and is opened by a fuel pump (not shown). Fuel is pressure-fed and adjusted to a predetermined pressure by a pressure regulator, and then injected.

機関1の燃焼室には点火栓8が設けられていて、これに
より火花点火して混合気を着火燃焼させる。
An ignition plug 8 is provided in the combustion chamber of the engine 1, which ignites a spark to ignite and burn the air-fuel mixture.

コントロールユニット9は、CPU、ROM。The control unit 9 includes a CPU and a ROM.

RAM、A/D変換器、入出力インターフェイスを含ん
で構成されるマイクロコンピュータを備え、各種のセン
サからの入力信号に基づいて演算処理し、燃料噴射弁7
及び点火栓8の作動を制御する。
Equipped with a microcomputer that includes a RAM, an A/D converter, and an input/output interface, it performs arithmetic processing based on input signals from various sensors, and controls the fuel injection valve 7.
and controls the operation of the spark plug 8.

但し、以下では燃料噴射弁7による燃料噴射量の制御に
ついてのみ説明する。
However, below, only the control of the fuel injection amount by the fuel injection valve 7 will be explained.

前記各種のセンサとしては、吸気マニホールド6に吸入
空気状態量検出手段としての吸気圧センサ10が設けら
れていて、吸気圧(吸入負圧)PBを検出する。
Among the various sensors described above, an intake pressure sensor 10 as an intake air state quantity detection means is provided in the intake manifold 6, and detects the intake pressure (intake negative pressure) PB.

また、吸気温センサ11が設けられていて、吸気温Ta
を検出する。
Further, an intake temperature sensor 11 is provided, and the intake temperature Ta
Detect.

また、クランク角センサ12が設けられていて、例えば
4気筒の場合、クランク角180°毎の基準信号REF
と、クランク角1〜2°毎の単位信号PO3とを出力す
る。これらの信号から機関回転数Nを算出可能である。
Further, a crank angle sensor 12 is provided, and for example, in the case of a 4-cylinder engine, a reference signal REF is provided for each crank angle of 180°.
and a unit signal PO3 for each crank angle of 1 to 2 degrees. The engine speed N can be calculated from these signals.

また、スロットル弁5にポテンショメータ式のスロット
ルセンサ13が設けられていて、スロットル弁開度TV
Oを検出する。
Further, the throttle valve 5 is provided with a potentiometer-type throttle sensor 13, and the throttle valve opening degree TV
Detect O.

また、機関1の排気マニホールドに02センサ14が設
けられていて、排気中の酸素濃度を介して空燃比のリッ
チ・リーンを検出する。
Further, an 02 sensor 14 is provided in the exhaust manifold of the engine 1, and detects whether the air-fuel ratio is rich or lean via the oxygen concentration in the exhaust gas.

また、機関1のウォータジャケットに臨ませて水温セン
サ15が設けられていて、冷却水温Twを検出する。
Further, a water temperature sensor 15 is provided facing the water jacket of the engine 1 to detect the cooling water temperature Tw.

ここにおいて、コントロールユニット9に内蔵されたマ
イクロコンピュータ(CPU)は、第3図〜第5図にフ
ローチャートとして示すROM上のプログラムに従って
、演算処理を行い、燃料噴射量を制御する。
Here, a microcomputer (CPU) built into the control unit 9 performs arithmetic processing and controls the fuel injection amount according to a program on a ROM shown as flowcharts in FIGS. 3 to 5.

次に第3図〜第5図のフローチャートを参照しつつコン
トロールユニット9内のマイクロコンピュータの演算処
理の様子を説明する。
Next, the state of the arithmetic processing of the microcomputer in the control unit 9 will be explained with reference to the flowcharts shown in FIGS. 3 to 5.

第3図は、燃料噴射量Ti演算ルーチンである。FIG. 3 is a fuel injection amount Ti calculation routine.

ステップ1(図にはSlと記しである。以下同様)では
、吸入空気の状態量として、吸気圧センサ10からの信
号に基づいて検出される吸気圧PBを読込む。但し、こ
の吸気圧PBとしては平均化処理されたものが用いられ
る。
In step 1 (denoted as Sl in the figure; the same applies hereinafter), the intake pressure PB detected based on the signal from the intake pressure sensor 10 is read as the state quantity of intake air. However, this intake pressure PB is averaged.

ステップ2では、吸気圧PBを基に、基本燃料噴射量’
rp=K・η9 ・PBL−KyA(Kは定数、η9は
体積効率、K TAは吸気温補正係数)を演算する。こ
の部分が基本燃料噴射量演算手段に相当する。
In step 2, based on the intake pressure PB, the basic fuel injection amount'
rp=K·η9·PBL-KyA (K is a constant, η9 is volumetric efficiency, and KTA is an intake air temperature correction coefficient). This part corresponds to the basic fuel injection amount calculation means.

ステップ3では、燃料噴射量Ti=Tp・α・C0EF
+Tsを演算する。αは空燃比フィードバック補正係数
、C0EFは各種補正係数、Tsは電圧補正骨である。
In step 3, the fuel injection amount Ti=Tp・α・C0EF
+Ts is calculated. α is an air-fuel ratio feedback correction coefficient, C0EF is various correction coefficients, and Ts is a voltage correction factor.

この部分が補正手段に相当する。This part corresponds to the correction means.

ここで、各種補正係数C0EFは以下の式により演算さ
れる。)(twは水温補正係数、KwFは壁流補正係数
である。
Here, various correction coefficients C0EF are calculated by the following formulas. ) (tw is the water temperature correction coefficient, KwF is the wall flow correction coefficient.

COE F ”” 1 + Ktw+ Kwr+−そし
て、壁流補正係数に8Fは、後述の第4図及び第5図の
ルーチンによって設定され、設定の仕方により、加速時
増量補正手段、fJIi速時減量補正手段及び過渡補正
手段として機能する。
COE F "" 1 + Ktw+ Kwr+-The wall flow correction coefficient 8F is set by the routines shown in FIGS. 4 and 5, which will be described later. It functions as a means and a transient correction means.

このようにして、燃料噴射量Tiが演算されると、この
Tiに対応するパルス巾の駆動パルス信号が機関回転に
同期した所定のタイミングで燃料噴射弁7に出力され、
燃料噴射が行われる。
When the fuel injection amount Ti is calculated in this way, a drive pulse signal with a pulse width corresponding to this Ti is output to the fuel injection valve 7 at a predetermined timing synchronized with the engine rotation.
Fuel injection takes place.

第4図は、加・減速及び過渡判定ルーチンで、単位時間
(例えば10m5 )毎に実行される。
FIG. 4 shows an acceleration/deceleration and transient determination routine, which is executed every unit time (for example, 10 m5).

ステップ11ではスロットルセンサ13により検出され
るスロットル弁開度TVOと、クランク角センサ12か
らの信号に基づいて算出される機関回転数Nとを読込む
In step 11, the throttle valve opening TVO detected by the throttle sensor 13 and the engine speed N calculated based on the signal from the crank angle sensor 12 are read.

ステップ12では検出されたスロットル弁開度TVOの
前回値TVO0,4に対する変化量ΔTVO=TVO−
TVO014を演算し、また、検出された機関回転数N
の前回値N。I4に対する変化量ΔN = N  N 
0t aを演算する。
In step 12, the amount of change in the detected throttle valve opening TVO with respect to the previous value TVO0, 4 is ΔTVO=TVO−
Calculate TVO014 and also calculate the detected engine speed N
Previous value N. Amount of change ΔN with respect to I4 = N N
Calculate 0t a.

ステップ13では次回の演算のためTVO,Nをそれぞ
れT V 00ta 、  N0taに代入する。
In step 13, TVO and N are substituted into TV 00ta and N0ta, respectively, for the next calculation.

ここで、ステップ11〜13の部分がスロットル弁開度
変化量検出手段及び機関回転数変化量検出手段に相当す
る。
Here, steps 11 to 13 correspond to the throttle valve opening change amount detection means and the engine rotational speed change amount detection means.

ステップ14ではΔTVOを正の所定値+A(例えば+
〇、96deg)と比較し、ΔTVO≧+Aのときは加
速と判定し、ステップ18へ進んで、増量フラグFlを
立てる。この部分が加速判定手段に相当する。
In step 14, ΔTVO is set to a positive predetermined value +A (for example, +
〇, 96 degrees), and when ΔTVO≧+A, it is determined that acceleration is occurring, and the process proceeds to step 18, where an increase flag Fl is set. This part corresponds to the acceleration determining means.

ステップ15ではΔTVOを負の所定値−A(例えば−
0,96deg)と比較し、ΔTVO≦−Aのときは減
速と判定し、ステップ19へ進んで、減量フラグF2を
立てる。この部分が減速判定手段に相当する。
In step 15, ΔTVO is set to a negative predetermined value -A (for example -
0.96 deg), and when ΔTVO≦−A, it is determined that deceleration is occurring, and the process proceeds to step 19, where a weight loss flag F2 is set. This part corresponds to deceleration determining means.

加・減速判定時以外はステップ16以降へ進む。When determining acceleration/deceleration, the process proceeds to step 16 and subsequent steps.

ステップ16ではΔNを正の所定値子Bと比較し、ΔN
≧十Bのときは過渡(回転角、上昇)と判定し、ステッ
プ19へ進んで、減量フラグF2を立てる。
In step 16, ΔN is compared with a positive predetermined value B, and ΔN
When ≧10B, it is determined that there is a transition (rotation angle, rise), and the process proceeds to step 19, where a weight loss flag F2 is set.

但し、スロットル弁開度TVOはぼ一定での機関回転数
Nの急上昇は実際にはほとんどあり得ない。
However, it is actually almost impossible for the engine speed N to suddenly increase when the throttle valve opening TVO is approximately constant.

ステップ17ではΔNを負の所定値−Bと比較し、ΔN
≦−Bのときは過渡(回転急下降)と判定し、ステップ
18へ進んで、増量フラグF1を立てる。
In step 17, ΔN is compared with a negative predetermined value -B, and ΔN
When ≦-B, it is determined that there is a transition (sudden decline in rotation), and the process proceeds to step 18, where an increase flag F1 is set.

ここで、ステップ16.17の部分が過渡判定手段に相
当する。
Here, steps 16 and 17 correspond to the transient determination means.

加・減速でなく、かつ過渡でない場合は、ステップ20
へ進んで、増量フラグF1及び減量フラグF2を共にリ
セットする。
If it is not acceleration/deceleration and is not transient, step 20
Then, both the increase flag F1 and the decrease flag F2 are reset.

第5図は、壁流補正係数Kwr設定ルーチンである。FIG. 5 shows a wall flow correction coefficient Kwr setting routine.

ステップ21では増量フラグF1の値を判定し、F1=
1の場合は、ステップ23に進んで、壁流補正係数Kw
Fを正の適当な値に設定する。この部分が加速時増量補
正手段及び過渡補正手段に相当する。
In step 21, the value of the increase flag F1 is determined, and F1=
In the case of 1, proceed to step 23 and calculate the wall flow correction coefficient Kw.
Set F to an appropriate positive value. This portion corresponds to the acceleration increase correction means and the transient correction means.

ステップ22では減量フラグF2の値を判定し、F2=
1の場合は、ステップ24に進んで、壁流補正係数に%
、lFを負の適当な値に設定する。この部分が減速時減
量補正手段及び過渡補正手段に相当する。
In step 22, the value of the weight loss flag F2 is determined, and F2=
If it is 1, proceed to step 24 and set the wall flow correction coefficient as %.
, IF are set to appropriate negative values. This portion corresponds to the deceleration reduction correction means and the transient correction means.

Fl=O,F2=Oの場合は、ステップ25に進んで、
壁流補正係数K。FをOにする 尚、壁流補正係数KWFの値自体は、スロットル弁開度
の変化量ΔTVO,水温Tw、機関回転数N、基本燃料
噴射量Tp等をパラメータとして決定し、時間経過と共
に0に近づける。
If Fl=O, F2=O, proceed to step 25,
Wall flow correction coefficient K. The value of the wall flow correction coefficient KWF itself is determined using parameters such as the amount of change ΔTVO in the throttle valve opening, the water temperature Tw, the engine speed N, and the basic fuel injection amount Tp. get closer to

このような壁流補正制御により、例えば第6図に示すよ
うな、ギアチェンジ時のクラッチ接続時のように、スロ
ットル弁開度TVOがほぼ一定でありながら、負荷の増
大により機関回転数Nが大幅に低下する時は、壁流補正
係数KWFが正の適当な値に設定され、これにより増量
補正がなされて、空燃比のリーン化を防止し、適正なも
のとすることができる。
With this wall flow correction control, for example, as shown in Fig. 6, when the clutch is engaged during a gear change, the engine speed N decreases due to an increase in load while the throttle valve opening TVO remains almost constant. When the air-fuel ratio decreases significantly, the wall flow correction coefficient KWF is set to an appropriate positive value, and an increase correction is performed thereby to prevent the air-fuel ratio from becoming lean and to make it appropriate.

尚、以上ではDジェトロの例を説明したが、Lジェトロ
にも適用できることは勿論である。
Note that although the example of D-JETRO has been described above, it is of course applicable to L-JETRO as well.

〈発明の効果〉 以上説明したように本発明によれば、スロットル弁開度
がほぼ一定であっても、機関回転数の変化が大のときは
、壁流補正制御を行うようにしたので、例えばギアチェ
ンジ時のクラッチ接続時のように、スロットル弁開度が
ほぼ一定でありながら、負荷の増大により機関回転数が
大幅に低下する時に、増量補正により、空燃比のリーン
化を防止することができ、回転急変時における空燃比制
御性が向上し、対エミッション性、燃費、運転性も向上
する。
<Effects of the Invention> As explained above, according to the present invention, even if the throttle valve opening is approximately constant, wall flow correction control is performed when the engine speed changes significantly. For example, when the engine speed drops significantly due to an increase in load even though the throttle valve opening is almost constant, such as when the clutch is engaged during a gear change, the increase correction prevents the air-fuel ratio from becoming lean. This improves air-fuel ratio control during sudden changes in rotation, and also improves emissions, fuel efficiency, and drivability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す機能ブロック図、第2図は
本発明の一実施例を示す内燃機関のシステム図、第3図
〜第5図は演算処理内容を示すフローチャート、第6図
は本発明による制御特性図、第7図及び第8図は従来の
問題点を示す線図である。 1・・・機関 ニホールド ールユニント 温センサ ットルセンサ 5・・・スロットル弁 7・・・燃料噴射弁 10・・・吸気圧センサ 12・・・クランク角センサ 6・・・吸気7 9・・・コントロ 11・・・吸気 13・・・スロ 特許出願人 日本電子機器株式会社 代 理 人 弁理士 笹島 富二雄 有3図 第5図
Fig. 1 is a functional block diagram showing the configuration of the present invention, Fig. 2 is a system diagram of an internal combustion engine showing an embodiment of the invention, Figs. 3 to 5 are flow charts showing the contents of calculation processing, and Fig. 6 is a control characteristic diagram according to the present invention, and FIGS. 7 and 8 are diagrams showing conventional problems. 1... Engine temperature sensor Throttle sensor 5... Throttle valve 7... Fuel injection valve 10... Intake pressure sensor 12... Crank angle sensor 6... Intake 7 9. ...Control 11...Intake 13...Slot Patent applicant: Japan Electronics Co., Ltd. Agent: Patent attorney Fujio Yu Sasashima 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 機関に吸入される吸入空気の状態量を検出する吸入空気
状態量検出手段と、吸入空気の状態量に基づいて基本燃
料噴射量を演算する基本燃料噴射量演算手段と、この基
本燃料噴射量を補正して燃料噴射量を演算する補正手段
とを備える内燃機関の電子制御燃料噴射装置において、
スロットル弁開度の変化量を検出するスロットル弁開度
変化量検出手段と、機関回転数の変化量を検出する機関
回転数変化量検出手段と、スロットル弁開度の変化量が
正の所定値以上のときに加速と判定する加速判定手段と
、スロットル弁開度の変化量が負の所定値以下のときに
減速と判定する減速判定手段と、加・減速判定時以外で
機関回転数の変化量が正の所定値以上あるいは負の所定
値以下の時に過渡と判定する過渡判定手段とを設けると
共に、前記補正手段として、加速判定時に燃料噴射量を
増量補正する加速時増量補正手段と、減速判定時に燃料
噴射量を減量補正する減速時減量補正手段と、過渡判定
時に燃料噴射量を機関回転数の変化方向と反対方向に補
正する過渡補正手段とを設けたことを特徴とする内燃機
関の電子制御燃料噴射装置。
an intake air state quantity detection means for detecting a state quantity of intake air taken into the engine; a basic fuel injection quantity calculation means for computing a basic fuel injection quantity based on the state quantity of the intake air; An electronically controlled fuel injection device for an internal combustion engine, comprising a correction means for correcting and calculating a fuel injection amount,
A throttle valve opening change amount detection means for detecting a change amount in the throttle valve opening degree, an engine rotation speed change amount detection means for detecting a change amount in the engine speed, and a predetermined value for which the change amount in the throttle valve opening degree is positive. Acceleration determining means determines acceleration in the above cases, deceleration determining means determines deceleration when the amount of change in throttle valve opening is less than a predetermined negative value, and change in engine speed other than when determining acceleration/deceleration. Transient determination means for determining a transient state when the amount of fuel injection is greater than or equal to a positive predetermined value or less than or equal to a negative predetermined value; An internal combustion engine characterized by comprising: a deceleration reduction correction means for reducing the fuel injection amount at the time of determination, and a transient correction means for correcting the fuel injection amount in the opposite direction to the change direction of the engine rotation speed at the time of transient determination. Electronically controlled fuel injection device.
JP63220528A 1988-09-05 1988-09-05 Electronically controlled fuel injection device for internal combustion engine Expired - Lifetime JPH0833118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63220528A JPH0833118B2 (en) 1988-09-05 1988-09-05 Electronically controlled fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220528A JPH0833118B2 (en) 1988-09-05 1988-09-05 Electronically controlled fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0270949A true JPH0270949A (en) 1990-03-09
JPH0833118B2 JPH0833118B2 (en) 1996-03-29

Family

ID=16752412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220528A Expired - Lifetime JPH0833118B2 (en) 1988-09-05 1988-09-05 Electronically controlled fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0833118B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214629A (en) * 1982-06-09 1983-12-13 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device in internal-combustion engine
JPS58220931A (en) * 1982-06-16 1983-12-22 Japan Electronic Control Syst Co Ltd Electronic control system fuel injection device of internal-combustion engine
JPS62223424A (en) * 1986-03-25 1987-10-01 Nissan Motor Co Ltd Air-fuel ratio controller for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214629A (en) * 1982-06-09 1983-12-13 Japan Electronic Control Syst Co Ltd Electronically controlled fuel injection device in internal-combustion engine
JPS58220931A (en) * 1982-06-16 1983-12-22 Japan Electronic Control Syst Co Ltd Electronic control system fuel injection device of internal-combustion engine
JPS62223424A (en) * 1986-03-25 1987-10-01 Nissan Motor Co Ltd Air-fuel ratio controller for internal combustion engine

Also Published As

Publication number Publication date
JPH0833118B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US4800857A (en) Apparatus for learn-controlling air-fuel ratio for internal combustion engine
JPS6165038A (en) Air-fuel ratio control system
JPH05195840A (en) Electronically controlled fuel supply device for internal combustion engine
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JPH0270949A (en) Electronic control fuel injection device for internal combustion engine
JPH0325622B2 (en)
US5050561A (en) Air/fuel ratio control system for internal combustion engine with a high degree of precision in derivation of engine driving condition dependent correction coefficient for air/fuel ratio control
JPH01216040A (en) Electronic control fuel injection device for internal combustion engine
JP3932022B2 (en) Idle rotational speed control device for internal combustion engine
JP2855391B2 (en) Fuel supply control device for internal combustion engine
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JP2519817Y2 (en) Engine protector
JPH03194149A (en) Fuel injection timing controller of engine
JPH01216041A (en) Electronic control fuel injection device for internal combustion engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH04101044A (en) Fuel feeding controller for multicylinder internal combustion engine
JPH0452450Y2 (en)
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JPH048846A (en) Electronically controlled fuel injection device for internal combustion engine
JPS63113140A (en) Decelerating decrement control device for electronic control fuel injection system internal combustion engine
JPS63277837A (en) Air-fuel ratio learning control device for internal combustion engine
JPS62159744A (en) Electronic fuel injection control device for internal combustion engine
JPH0559261B2 (en)
JPH01249934A (en) Electronically controlled fuel injection type internal combustion engine and ignition controller thereof