JPH01290939A - Fuel supply control device of internal combustion engine - Google Patents

Fuel supply control device of internal combustion engine

Info

Publication number
JPH01290939A
JPH01290939A JP12252388A JP12252388A JPH01290939A JP H01290939 A JPH01290939 A JP H01290939A JP 12252388 A JP12252388 A JP 12252388A JP 12252388 A JP12252388 A JP 12252388A JP H01290939 A JPH01290939 A JP H01290939A
Authority
JP
Japan
Prior art keywords
amount
supply amount
engine
fuel
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12252388A
Other languages
Japanese (ja)
Other versions
JP2668940B2 (en
Inventor
Hatsuo Nagaishi
初雄 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63122523A priority Critical patent/JP2668940B2/en
Priority to DE8989107545T priority patent/DE68900704D1/en
Priority to US07/343,204 priority patent/US4949694A/en
Priority to EP89107545A priority patent/EP0339603B1/en
Publication of JPH01290939A publication Critical patent/JPH01290939A/en
Application granted granted Critical
Publication of JP2668940B2 publication Critical patent/JP2668940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide enhanced accuracy of the fuel supply control and responsiveness even though there is response delay in an air flow meter at transient or ripple error by correcting the smoothing supply amount with a prefetch correction amount computed on the basis of the change amount of the air flow amount. CONSTITUTION:In a control unit 30, the fundamental fuel supply amount is calculated on the basis of the suction air amount sensed by an air flow meter 7 and the number of revolutions sensed by a crank angle sensor 10. This fundamental supply amount is smoothened, and the smoothened supply amount is computed. The suction air amount is calculated from the degree of opening of a throttle valve 8 sensed by a throttle opening sensor 9 and the number of revolutions of an engine 1, and the prefetch correction amount is computed on the basis of the change amount of the suction air amount. The smoothing supply amount is corrected with this prefetch correction amount, and the final fuel supply amount is calculated. This allows smoothing the fundamental pulse width of an injector 4 with high accuracy and good response, and the pulse width corresponding to the flow rate in the injector 4 part can be corrected properly with the prefetch correction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等内燃機関の燃料供給制御装置に係り
、詳しくは吸入空気量に基づいて燃料供給量を演算する
燃料供給制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel supply control device for an internal combustion engine such as an automobile, and more particularly to a fuel supply control device that calculates a fuel supply amount based on an intake air amount.

(従来の技術) 近時、自動車等内燃機関に対する要求が高度化しており
、有害な排出ガスの低減、裔出力、低燃費等の互いに相
反する課題について何れも裔レベルでその達成が求めら
れる傾向にある。また24、二のような要求は加速時に
ついても同様であり、。加速安定性の精度向上が望まれ
る。
(Prior art) In recent years, demands on internal combustion engines such as automobiles have become more sophisticated, and there is a tendency for mutually contradictory issues such as reduction of harmful exhaust gas, descendant output, and low fuel consumption to be achieved at the descendant level. It is in. Further, the requirements like 24.2 are the same when accelerating. It is desired to improve the accuracy of acceleration stability.

従来のこの種の燃料供給制御装置では、絞弁上流側に設
けたエアフローメータの出力からエンジンの単位回転当
たりの要求負荷を求め、これから燃料噴射量を演算して
いる。また、過渡時には燃料噴射量を補正することで、
対処している。
In this type of conventional fuel supply control device, the required load per unit revolution of the engine is determined from the output of an air flow meter provided upstream of the throttle valve, and the fuel injection amount is calculated from this. In addition, by correcting the fuel injection amount during transient periods,
I'm dealing with it.

しかしながら、従来の装置では、エアフローメータの取
付位置と噴射弁(インジェクタ)の取り行位置との間に
おける吸気管の容量、すなわち吸気ボリュウムを考左し
た適切な噴射量演算(特に、壁流補正)が行われておら
ず、過渡時の噴射特性がエンジンの要求特性から遅れて
運転性能が悪いという問題点があった。
However, with conventional devices, appropriate injection amount calculation (especially wall flow correction) takes into consideration the capacity of the intake pipe between the installation position of the air flow meter and the intake position of the injection valve (injector), that is, the intake volume. There was a problem that injection characteristics during transient times were delayed from the required characteristics of the engine, resulting in poor driving performance.

そこで本出願人は、かかる不具合を解決するために先に
燃料供給制御装置(特開昭60−162066参照)を
提案し7ている。この先願に係る装置では、噴射弁部を
流れる空気量を精度良く求めるためにエアフローメータ
の出力を一次遅れで平滑化し、その平滑化した空気量を
基に燃料噴射量(以下、単に平滑噴射量;AvTpとい
う)を算出している。なお、AvTpはシリンダ空気量
相当パルス幅として演算されるがその演算方法は後述の
実施例と同様であり、後に詳述する。
In order to solve this problem, the present applicant has previously proposed a fuel supply control device (see Japanese Patent Laid-Open No. 162066/1983). In the device related to this prior application, in order to accurately determine the amount of air flowing through the injection valve, the output of the air flow meter is smoothed by a first-order lag, and based on the smoothed air amount, the amount of fuel injection (hereinafter simply referred to as smoothed injection amount) is calculated. ; AvTp) is calculated. Note that AvTp is calculated as a pulse width equivalent to the cylinder air amount, and the calculation method is the same as in the embodiment described later, and will be described in detail later.

(発明が解決しようとする課題) ところで、このような先順に係る装置にあっては、平滑
噴射11AvTpを用いて燃料噴射を行う構成となって
いるため、AvTpは空燃比の安定化には寄与するもの
の、平滑化の精度が必ずしも十分とはいえなかったこと
から、過渡時に空燃比が目標値(例えば、λ=1)から
外れてしまうことがある。また、A v T pは加速
の状態によってはエアフローメータの応答遅れや脈動誤
差の影響(第13図(B)参照)を敏感に受けて同図(
C)に示すようにある遅れが生じてしまうことがある。
(Problem to be Solved by the Invention) Incidentally, in such a device related to the prior order, since the fuel injection is performed using smooth injection 11AvTp, AvTp does not contribute to stabilizing the air-fuel ratio. However, since the smoothing accuracy was not necessarily sufficient, the air-fuel ratio may deviate from the target value (for example, λ=1) during a transient period. In addition, A v T p is sensitive to the influence of response delay and pulsation error of the air flow meter depending on the acceleration state (see Fig. 13 (B)).
A certain delay may occur as shown in C).

その場合、同図(D)に示すよ・)6ご空燃比が−・時
的にリーン化してリーン失火やリーントルク落ち等運転
性の悪化が発生するおそれがあった。何れにせよ過渡時
に空燃比がλ−1からずれてしまうことで、三元触媒の
転化率が低下j7て排気エミッション特性が悪化してし
まう。
In that case, as shown in FIG. 6(D), the air-fuel ratio may become lean at times, leading to deterioration in drivability such as lean misfire or drop in lean torque. In any case, when the air-fuel ratio deviates from λ-1 during a transient period, the conversion rate of the three-way catalyst decreases, and the exhaust emission characteristics deteriorate.

(発明の目的) そこで本発明は、基本供給量を平滑化して平滑供給量を
演算するとともに、絞弁開度とエンジンの回転数とから
求めた吸入空気量の変化量に基づいて先取り補正量を演
算し7、該平滑供給量を該先取り補正量で先取り補正し
て最終供給量を演算することにより、過渡時にエアフロ
ーメータの応答遅れや脈動誤差があっても、燃料供給制
御の精度−や応答性を高めて、空燃比のずれをなくし、
運転性や排気エミッション特性を向上させることを目的
としている。
(Purpose of the Invention) Therefore, the present invention calculates a smooth supply amount by smoothing the basic supply amount, and also calculates a preemptive correction amount based on the amount of change in the intake air amount obtained from the throttle valve opening and the engine rotation speed. By calculating the final supply amount by preemptively correcting the smooth supply amount using the preemption correction amount, the accuracy of fuel supply control and Improving responsiveness and eliminating deviations in air-fuel ratio,
The purpose is to improve drivability and exhaust emission characteristics.

(課題を解決するための手段) 本発明による内燃機関の燃料供給制御装置は上記目的達
成のため、エンジンの吸入空気量を検出する吸気量検出
手段aと、エンジンの回転数を検出する回転数検出手段
すと、絞弁の開度を検出する開度検出手段Cと、絞弁の
開度とエンジン回転数とからエンジンの吸入空気量を演
算する空気量演算手段dと、エンジンの吸入空気量およ
び回転数に基づいて燃料の基本供給量を演算し、該基本
供給量を平滑化して平滑供給量を演算する平滑供給量演
算手段eと、空気量演算手段により演算されだ吸入空気
量の変化量に基づいて前記平滑供給量を先取り補正する
ための先取り補正量を演算する補正量演算手段fと、平
滑供給量演算手段の出力および補正量演算手段の出力に
基づいて燃料の最終供給量を演算する供給量演算手段g
と、供給量演算手段の出力に基づいてエンジンに燃料を
供給する燃料供給手段りと、を備えている。
(Means for Solving the Problems) In order to achieve the above object, the fuel supply control device for an internal combustion engine according to the present invention includes an intake air amount detection means a for detecting the intake air amount of the engine, and a rotation speed for detecting the engine rotation speed. The detecting means includes an opening detecting means C for detecting the opening of the throttle valve, an air amount calculating means d for calculating the intake air amount of the engine from the opening of the throttle valve and the engine rotational speed, and an air amount calculating means d for calculating the intake air amount of the engine from the opening of the throttle valve and the engine rotation speed. smooth supply amount calculation means e which calculates the basic supply amount of fuel based on the amount and rotational speed and smoothes the basic supply amount to calculate a smooth supply amount; and the intake air amount calculated by the air amount calculation means. a correction amount calculation means f for calculating a preemptive correction amount for preemptively correcting the smooth supply amount based on the amount of change; and a final supply amount of fuel based on the output of the smooth supply amount calculation means and the output of the correction amount calculation means. supply amount calculation means g that calculates
and a fuel supply means for supplying fuel to the engine based on the output of the supply amount calculation means.

(作用) 本発明では、基本供給量の平滑化により平滑供給量が演
算されるとともに、絞弁開度とエンジン回転数とから吸
入空気量が演算される。そして、該吸入空気量の変化量
に基づいて先取り補正量が演算され、該先取り補正量で
前記平滑供給量が先取り補正されて最終供給量が演算さ
れる。したがって、過渡時にエアフローメータの応答遅
れや脈動誤差があっても、燃料供給制御の精度・応答性
が向上し、空燃比のずれがなくなる。その結果、運転性
や排気エミッション特性が向上する。
(Operation) In the present invention, the smooth supply amount is calculated by smoothing the basic supply amount, and the intake air amount is calculated from the throttle valve opening and the engine rotation speed. Then, a preemptive correction amount is calculated based on the amount of change in the intake air amount, and the smooth supply amount is preemptively corrected using the preemptive correction amount to calculate the final supply amount. Therefore, even if there is a response delay or pulsation error of the air flow meter during a transient period, the accuracy and responsiveness of fuel supply control are improved, and deviations in the air-fuel ratio are eliminated. As a result, drivability and exhaust emission characteristics are improved.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜10図は本発明に係る内燃機関の空燃比制御装置
の第1実施例を示す図である。まず、構成を説明する。
2 to 10 are diagrams showing a first embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention. First, the configuration will be explained.

第2図は本装置の全体構成を示す図である。第2図にお
いて、1はエンジンであり、吸入空気はエアクリーナ2
から吸気管3を通り、燃料は噴射信号Siに基づきイン
ジェクタ(燃料供給手段)4から噴射される。そし、て
、気筒内で燃焼した排気は排気管5を通して触媒コンバ
ータ6に導入され、触媒コンバータ6内で排気中の有害
成分(Co、HCSNoχ)を三元触媒により清浄化し
て排出される。
FIG. 2 is a diagram showing the overall configuration of this device. In Fig. 2, 1 is an engine, and intake air is supplied to an air cleaner 2.
The fuel passes through the intake pipe 3 and is injected from the injector (fuel supply means) 4 based on the injection signal Si. Then, the exhaust gas combusted in the cylinder is introduced into the catalytic converter 6 through the exhaust pipe 5, where the harmful components (Co, HCSNo.chi.) in the exhaust gas are purified by a three-way catalyst, and the exhaust gas is discharged.

吸入空気の流iQaはホットワイヤ式のエアフローメー
タ(吸気量検出手段)7により検出され、吸気管3内の
絞弁8によって制御される。なお、エアフローメータ7
のタイプとしては、ホットフィルム弐でもよく、要は吸
入空気の流量を測定するものであればよい。したがって
、フラップ式のものでもよいが、負圧センサは除かれる
The intake air flow iQa is detected by a hot wire type air flow meter (intake air amount detection means) 7 and controlled by a throttle valve 8 in the intake pipe 3. In addition, air flow meter 7
The type may be a hot film, and in short, any type that measures the flow rate of intake air may be used. Therefore, a flap type may be used, but the negative pressure sensor is excluded.

絞弁8の開度TVOは絞弁開度センサ(開度検出手段)
9により検出され、エンジン10回転数Nはクランク角
センサ(回転数検出手段)10により検出される。また
、ウォータジャケントを流れる冷却水の温度Twは水温
センサ11により検出され、排気中の酸素濃度は酸素セ
ンサ(空燃比検出手段)12により検出される。酸素セ
ンサ12は理論空燃比でその出力Vsが急変する特性を
も・つもの等が用いられる。さらに、エンジン1のアイ
ドル状態はアイドルスイッチ13により検出される。
The opening TVO of the throttle valve 8 is determined by the throttle valve opening sensor (opening detection means).
9, and the engine 10 rotation speed N is detected by a crank angle sensor (rotation speed detection means) 10. Further, the temperature Tw of the cooling water flowing through the water jacket is detected by a water temperature sensor 11, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor (air-fuel ratio detection means) 12. The oxygen sensor 12 used has a characteristic that its output Vs changes suddenly at the stoichiometric air-fuel ratio. Further, the idle state of the engine 1 is detected by an idle switch 13.

上記エアフローメータ7、絞弁開度センサ9、クランク
角センサlO1および水温センサ11は運転状態検出手
段14を構成しており、運転状態検出手段14、酸素セ
ンサ12およびアイドルスイッチ13からの出力はコン
トロールユニット20に入力される。
The air flow meter 7, throttle valve opening sensor 9, crank angle sensor lO1, and water temperature sensor 11 constitute the operating state detecting means 14, and the outputs from the operating state detecting means 14, oxygen sensor 12, and idle switch 13 are controlled. input to unit 20.

コントロールユニッ)20は、空気7演算手段、平滑供
給量演算手段、補正量演算手段および供給量演算手段と
しての機能を有し、CP U21、ROM22、RAM
23およびI10ポート24により構成される。CPU
21はROM22に書き込まれているプログラムに従、
ってI10ボート24より必要とする外部データを取り
込んだり、またRAM23との間でデータの授受を行っ
たりしながら平滑吸気量や空燃比制御に必要な処理値を
演算処理し、必要に応じて処理したデータをI10ポー
ト24へ出力する。I10ボート24にばセンサ群7.
9.10.11.12.13からの信号が入力されると
ともに、I10ボート24からは噴射信号Siが出力さ
れる。
The control unit) 20 has functions as an air 7 calculation means, a smooth supply amount calculation means, a correction amount calculation means, and a supply amount calculation means, and includes a CPU 21, a ROM 22, and a RAM 22.
23 and I10 port 24. CPU
21 according to the program written in ROM22,
While importing necessary external data from the I10 boat 24 and exchanging data with the RAM 23, it calculates and processes the processing values necessary for smooth intake air amount and air-fuel ratio control, and performs processing as necessary. The processed data is output to the I10 port 24. I10 boat 24 sensor group 7.
The signals from 9.10.11.12.13 are input, and the I10 boat 24 outputs the injection signal Si.

ROM22はCP U21における演算プログラムを格
納しており、RAM23は演算に使用するデータマツプ
等の形で記憶している。
The ROM 22 stores calculation programs for the CPU 21, and the RAM 23 stores data in the form of data maps used in calculations.

次に、作用を説明する。Next, the effect will be explained.

本実施例のメインプログラムは第5図のように示される
が、このメインプログラムにおいて演算されるT I(
S T Pはサブルーチンで演算される。
The main program of this embodiment is shown in FIG. 5, and the T I(
S T P is calculated in a subroutine.

説明の都合上、最初にTH3TPを求めるサブルーチン
から述べる。
For convenience of explanation, the subroutine for determining TH3TP will be described first.

第3図は先取り補正パルス幅T)ISTPを求めるサブ
ルーチンである。
FIG. 3 is a subroutine for calculating the prefetch correction pulse width T) ISTP.

まず、P、でα−N流量Qhoに基づいて第4図に示す
テーブルマツプから先取り補正パルス幅テーブル値TT
H3TPをルックアップし、P2で次式■に従って所定
時間(例えば10m s )毎の差(変化量)Aを演算
する。なお、α−N流量とは絞弁開度TVOとエンジン
回転数Nから空気流量を求めるものであり、既に公知の
ものである。
First, at P, based on the α-N flow rate Qho, a prefetched correction pulse width table value TT is obtained from the table map shown in FIG.
Look up H3TP, and calculate the difference (amount of change) A for each predetermined time (for example, 10 ms) according to the following equation (2) in P2. Note that the α-N flow rate is the air flow rate determined from the throttle valve opening TVO and the engine rotational speed N, and is already known.

A=TTH3TP−旧TTH3TP・・・・・・■次い
で、Plで変化量Aの絶対値を所定の補正判定レベルL
ADTP#と比較し、l A l >LADTP#のと
きは所定の過渡時であると判断してP4で変化量への正
負を判別する。A≧0のときは加速時であると判断して
P、で変化iAを先取り補正パルス幅TH3TPとして
(TH3TP=Aとして)P8に進み、Agoのときは
変化量が負(すなわち、減速時)であると判断して次式
■に従ってT HS T Pを演算する。
A=TTH3TP-Old TTH3TP...■Next, use Pl to set the absolute value of the amount of change A to a predetermined correction judgment level L
It is compared with ADTP#, and when l A l >LADTP#, it is determined that a predetermined transition is occurring, and the sign or negative of the amount of change is determined in P4. When A≧0, it is determined that the process is accelerating, and at P, the change iA is preemptively corrected pulse width TH3TP (as TH3TP=A), and the process proceeds to P8, and when Ago, the amount of change is negative (that is, during deceleration). It is determined that T HS T P is calculated according to the following equation (2).

T HS T P = A x A D T P G 
# −・−−−−■但し、ADTPG#:減速修正率 一方、P:l T: I A I ≦LADTP#(7
)ときはエンジンが緩加速か定常状態にあり過渡時では
ないと判断して変動対策のためP7でTHSTP=0と
してP、に進む。P、では今回ルックアップしたTTH
3TPを所定のメモリにストアして本ルーチンを終了す
る。
T H S T P = A x A D T P G
# -・----■ However, ADTPG#: Deceleration correction rate On the other hand, P: l T: I A I ≦LADTP# (7
), it is determined that the engine is in a slow acceleration or steady state and is not in a transient state, and as a countermeasure against fluctuations, THSTP is set to 0 at P7 and the process proceeds to P. P, then the TTH that I looked up this time.
3TP is stored in a predetermined memory and this routine ends.

第5図は噴射弁部流量相当パルス幅(平滑噴射血)Av
Tpを演算するプログラムを示すフローチャートであり
、本プロゲラJ、は、例えば10m s毎に一度実行さ
れる。まず、Pliで次式■に従って平滑前基本パルス
幅Tpoを演算し、Tpoを次式■に従ってフラン)A
/F修正して基本パルス幅Tpを演算する。
Figure 5 shows the pulse width equivalent to the flow rate of the injection valve (smooth injection blood) Av
This is a flowchart showing a program for calculating Tp, and this program is executed once every 10 ms, for example. First, Pli calculates the basic pulse width Tpo before smoothing according to the following formula (■), and Tpo is calculated according to the following formula (Fran) A
/F correction and calculate the basic pulse width Tp.

N 但し、K;定数 Tp=TpoXK目a t −−=■ ■式において、KflatはフラットA/F補正係数で
あり、エンジン回転数Nとα−N流量Qh。
N However, K; Constant Tp = Tpo

(従来例ではTp o)どによりρ1付けられたマツプ
から補間計算付で求める。すなわち、H/W(ホットワ
イヤエアフローメータ)出力の脈動誤グ:はシリンダ・
\の体積流量依存度が高く、大気圧変化や吸気温変化等
の影容を受は易い、そこで、本実施例ではα−N流1Q
hoと回転数Nとにより割付けられたKflatでTp
oを補正して、第6図(B)実線に示すように脈動誤差
を低減させている。次いで、PIZでWOT (Wid
e open throtle:全速量)時のパルス幅
変動を残少させるため、1/2”入れ換え加重平均によ
ってTPO脈動を平滑化してフラソl−A/F修正基本
パルス幅TrTPを求める。ここで、NDは脈動平滑指
数であり、第6図(C)に示すように運転状態に応じて
WOT用(ND=3’)、定常(あるいはアイドル)用
(ND=1:l、過渡用(ND=0)との3段階にそれ
ぞれ切換られる。したがって、過渡時にあっては加重平
均が行われず、TrTpがそのまま用いられて応答性が
確保され、また、WOT時には適切な加重平均によ、っ
−ζパルス幅の脈動が平滑化される。次いで、P+3で
絞弁開度TVOとエンジン回転数Nとからα−N流鼠Q
hoを演算(第6図(D)参照)し、P+4で第3図に
示し2だサブルーチンにより先取り補正パルス幅T H
S TPを演算する(第6図(E)ハツチング部分参照
)、、このTH3TPは絞弁8の変化を先取りして噴射
量を応答性良(補正する項である。次いで、I)1.で
次式■に従って噴射弁部空気量相当パルス幅A、 V 
T pを演算する。
(Tpo in the conventional example) from the map to which ρ1 is added, with interpolation calculation. In other words, the H/W (hot wire air flow meter) output pulsation error is caused by the cylinder.
\ is highly dependent on the volumetric flow rate and is easily affected by atmospheric pressure changes, intake temperature changes, etc. Therefore, in this example, α-N flow 1Q
Tp with Kflat assigned by ho and rotation speed N
By correcting o, the pulsation error is reduced as shown by the solid line in FIG. 6(B). Next, WOT (Wid
In order to minimize the pulse width fluctuation at full speed), the TPO pulsation is smoothed by 1/2" swapping weighted average to obtain the corrected basic pulse width TrTP of the flora l-A/F. Here, ND is the pulsation smoothing index, and as shown in Fig. 6 (C), it can be used for WOT (ND = 3'), for steady (or idle) (ND = 1:l, and for transient (ND = 0) depending on the operating condition. ). Therefore, during transient periods, weighted averaging is not performed and TrTp is used as is to ensure responsiveness, and during WOT, appropriate weighted averaging is performed to The width pulsation is smoothed.Next, at P+3, α-N flow Q is calculated from the throttle valve opening TVO and the engine speed N.
ho (see FIG. 6(D)), and at P+4, the prefetch correction pulse width T H is determined by the 2 subroutine shown in FIG. 3.
STP is calculated (see the hatched part in FIG. 6 (E)), and this TH3TP is a term that anticipates changes in the throttle valve 8 and corrects the injection amount with good response.Next, I) 1. According to the following formula (■), the pulse width A, V corresponds to the air amount at the injection valve part.
Calculate T p.

AvTp=TrTpXF1oad+AvTp−B@sX
 (1−Fload) +TH3TP−−■但し、A 
v T p −+oas  :前回のAvTp■弐にお
いて、F 1oadは加重平均係数であり、F ]oa
d= Tfload + K 2 D (減速のみ)に
よって与えられる。Tfloadは吸気ボリュウムのみ
の関数とするため、絞弁8によって決まる流量面積AA
と(回転数×排気量)NMVとから第7図に示すマツプ
により求めるつしたがって、0式の第1項および2項は
エアフローメータ7の出力を脈動修正した値に基づいて
演算されたフラン)A/F修正基本パルス幅TrTpに
ついて、F 1oadを用いて加重平均した値、言い換
えればTrTpの一次遅れを計算により(ソフトにより
)算出する部分に相当する。また、0式の第3項は絞弁
開度T■0による先取り補正の部分であり、この部分は
先願には無く、本実施例で初めて開示するものである。
AvTp=TrTpXF1oad+AvTp−B@sX
(1-Fload) +TH3TP-- ■However, A
v T p −+oas: In the previous AvTp■2, F 1oad is a weighted average coefficient, and F ]oa
Given by d=Tfload+K2D (deceleration only). Since Tfload is a function only of the intake volume, the flow area AA determined by the throttle valve 8
(Rotational speed x displacement) NMV is calculated from the map shown in Fig. 7. Therefore, the first and second terms of equation 0 are the francs calculated based on the pulsation-corrected value of the output of the air flow meter 7. Regarding the A/F correction basic pulse width TrTp, it corresponds to the part where the weighted average value using F 1oad, in other words, the first-order delay of TrTp is calculated (by software). Furthermore, the third term in Equation 0 is a preemptive correction based on the throttle valve opening T■0, and this part is not found in the prior application and is disclosed for the first time in this embodiment.

次いで、P(bでAvTpをA v T p最大制限値
T pmaxに制限して今回のルーチンを終了する。
Next, AvTp is limited to the AvTp maximum limit value Tpmax at P(b, and the current routine ends.

T pmaxは回転数Nにより割付けられたマツプから
補間計算付で求めたテーブル値T tpmaxに空気密
度学習係数Adenstを乗算後、ゆとり分YUTOR
■#を加えて求める。また、AdenstはWOT時T
PとテーブルT pmax値の比率とする。この場合T
 pmaxは次式■で示される。
T pmax is the table value T tpmax obtained with interpolation calculation from the map assigned by the rotation speed N. After multiplying the air density learning coefficient Adenst, the allowance is YUTOR
■Add # to find. Also, Adenst is T at WOT.
Let it be the ratio of P and table T pmax value. In this case T
pmax is expressed by the following formula (■).

Tpmax=WOT時Tp+YUTORI#・・・・・
・■ このような1゛pの平滑化やT HS T Pを加えた
効果は第6図のように示される。第6図において、ある
タイミングで加速した場合、絞弁開度の変化にやや遅れ
て基本パルス幅Tpo、Tpが変化し、Tpo、Tpを
修正した波形はフラットA/F修正基本パルス輻TrT
pとして同図(C)のように変化する。一方、α−N 
?fLit Q h oは絞弁8の開き具合に応じて同
図(D)に示すようにステップ的に変化しており、この
開度変化量により遅れ修正パルス幅T )i S T 
Pが演算される。また、噴射弁部流量相当パルス幅(平
滑噴射ff1) A V TpはTrTpの一次遅れで
与えられ、′r HS T Pなしの従来の位相制御の
場合は図中の一点鎖線で示す変化となり、応答性に欠け
る。このとき、吸入負圧は破線で示され、噴射弁部(イ
ンジェクタ4部)の空気流巨に略等しいが、これとて絞
弁8の開度変化に遅れなく追随できるものではない。ま
た、吸気ボリュウムにより吸気管3の壁面への燃料付着
量にも影響を与える。
Tpmax=Tp+YUTORI# at WOT...
・■ The effect of such 1゛p smoothing and addition of THSTP is shown in FIG. In Fig. 6, when acceleration occurs at a certain timing, the basic pulse widths Tpo and Tp change slightly after the change in the throttle valve opening, and the waveform obtained by correcting Tpo and Tp is a flat A/F corrected basic pulse width TrT.
p changes as shown in the same figure (C). On the other hand, α−N
? fLitQho changes in a stepwise manner as shown in FIG.
P is calculated. In addition, the pulse width equivalent to the injection valve part flow rate (smooth injection ff1) A V Tp is given by the first-order lag of TrTp, and in the case of conventional phase control without 'r HS T P, the change is shown by the dashed-dotted line in the figure. Lacks responsiveness. At this time, the suction negative pressure is shown by a broken line and is approximately equal to the airflow of the injection valve section (injector 4 section), but this cannot follow the change in the opening degree of the throttle valve 8 without delay. In addition, the intake volume also affects the amount of fuel deposited on the wall surface of the intake pipe 3.

これに対して、本実施例のAvTpは図中実線で示すよ
うに、TH3TPなる補正項がα−Nの先取り補正(1
0’msの先取り補正)として加えられているから、極
めて応答性が良く、実際の空気流量変化にマンチしたも
のとなる。なお、高地の例も図示している。
On the other hand, in AvTp of this embodiment, as shown by the solid line in the figure, the correction term TH3TP is α-N prefetch correction (1
Since it is added as a 0'ms advance correction), it has extremely good responsiveness and is able to match actual air flow rate changes. An example of a highland area is also shown.

ところで、本実施例では先取り補正として前記吸入負圧
(吸気管内圧)よりも位相が10m5先をいく先取り補
正量としているが、勿論これに限定されず、吸気弁−噴
射弁間の距離により適当な値が設定される。例えば、第
8図(A)に示すような吸気弁と噴射弁の場合、両者の
間の距離をiとすると、−船釣なEGiエンジンでは噴
霧到達時間(噴射弁噴射遅れ)は第8図(B)のように
示される。したがって、この噴霧到達時間を考慮して吸
入力負圧に比べ5−15m5先をいく波形による信号に
よって先取り補正を行うようにすれば噴霧の到達遅れに
よる空燃比の変動をなくすことができる。
Incidentally, in this embodiment, the preemption correction is made to be a preemption correction amount whose phase is 10m5 ahead of the intake negative pressure (intake pipe internal pressure), but it is of course not limited to this, and it may be determined as appropriate depending on the distance between the intake valve and the injection valve. A value is set. For example, in the case of an intake valve and an injection valve as shown in Fig. 8 (A), if the distance between them is i, - In an EGi engine used for boat fishing, the spray arrival time (injector injection delay) is as shown in Fig. 8. It is shown as (B). Therefore, if the spray arrival time is taken into consideration and the preemptive correction is performed using a signal with a waveform that is 5 to 15 m5 ahead of the suction force negative pressure, it is possible to eliminate fluctuations in the air-fuel ratio due to the delay in the arrival of the spray.

第9図は最終噴射量Tiを演算するプログラムを示すフ
ローチャートであり、本プログラムは、例えばIQm 
s毎に一度実行される。PZIで次式■に従って最終噴
射量Tiを演算して本ルーヂンを終了する。
FIG. 9 is a flowchart showing a program for calculating the final injection amount Ti.
Executed once every s. In PZI, the final injection amount Ti is calculated according to the following equation (2), and this routine ends.

T i= (AvTp+Kathos )XTfbya
Xα+Ts          ・・・・・・■但し、
K a thos  :壁流補正パルス幅(過渡補正量
) Tfbya:目標燃空比 α:空空燃比フィードバンク補正 子S:無効パルス幅(電圧補正分) ここで、Kat、hosは吸気系への燃料付着、浮遊燃
料等の影響によるシリンダ流入燃料の遅れに相当する遅
れ補正量であり、正負の値を有し、燃料の付着速度Vm
 f (m s )と補正率Ghf(%)の関数で与え
られる。αは酸素センサ12の出力に基づく空燃比のλ
制御補正係数であり、Tsは基本燃料噴射量を補正する
各補正係数であるが本発明と関係が薄いので詳しい説明
は省略する。そして、最終噴射量TiをI10ボート2
4の出力レジスタに所定のデユーティ値を有する電圧パ
ルス幅としてストアして、所定クランク角度でこのT1
に対応する噴射信号Siをインジェクタ4に出力する。
T i= (AvTp+Kathos)XTfbya
Xα+Ts ・・・・・・■ However,
K a thos: Wall flow correction pulse width (transient correction amount) Tfbya: Target fuel-air ratio α: Air-air-fuel ratio feed bank corrector S: Invalid pulse width (voltage correction amount) Here, Kat and hos are the amount of fuel to the intake system This is a delay correction amount corresponding to the delay in fuel flowing into the cylinder due to the influence of adhesion, floating fuel, etc., and has a positive or negative value, and the fuel adhesion speed Vm
It is given by a function of f (ms) and correction factor Ghf (%). α is the air-fuel ratio λ based on the output of the oxygen sensor 12
These are control correction coefficients, and Ts is each correction coefficient for correcting the basic fuel injection amount, but since it has little relation to the present invention, detailed explanation will be omitted. Then, the final injection amount Ti is set to I10 boat 2.
T1 is stored as a voltage pulse width having a predetermined duty value in the output register of T1 at a predetermined crank angle.
outputs an injection signal Si corresponding to the injector 4 to the injector 4.

以上のように、本実施例では、基本パルス幅の平滑化が
高精度で応答性よく行われるとともに、α−N流量Qh
oに基づく先取り補正T HS T Pによって噴射弁
部流量相当パルス幅AvTpが適切に補正される。した
がって、第10図(A)に示すような危、加速時でも同
図(B)実線に示すように吸入負圧(−噴射弁部流量)
よりも10m5先をいく先取り補正が行われて噴射弁の
遅れや噴霧の遅れ分の悪影響が排除される。その結果、
同図(C)に示すように空燃比のフラット性が高まり、
運転性や排気エミッション特性を大幅に向上させること
ができる。
As described above, in this embodiment, smoothing of the basic pulse width is performed with high precision and good responsiveness, and the α-N flow rate Qh
The injector flow rate equivalent pulse width AvTp is appropriately corrected by the advance correction T HS T P based on o. Therefore, even during acceleration as shown in Fig. 10 (A), the suction negative pressure (-injection valve flow rate) remains as shown by the solid line in Fig. 10 (B).
A look-ahead correction is performed that goes 10m5 ahead of the current position, eliminating the negative effects of the injector delay and spray delay. the result,
As shown in the same figure (C), the flatness of the air-fuel ratio increases,
Drivability and exhaust emission characteristics can be significantly improved.

第11.12図は本発明の第2実施例を示す図であり、
本実施例におけるハード的構成は第1実施例と同一であ
るためその説明を省略する。本実施例はT plIla
x制限後A、 v T pを求める例である。
FIG. 11.12 is a diagram showing a second embodiment of the present invention,
The hardware configuration of this embodiment is the same as that of the first embodiment, so its explanation will be omitted. This example is TplIla
This is an example of finding A, v T p after x restriction.

第11図はAvTpを演算するプログラムを示すフロー
チャートであり、第1実施例の第5図のプログラムと同
一処理を行うステップには同一番号を付してその説明を
省略し、異なるステップにはO印で囲むステップ番号を
(」シてその内容を説明する。
FIG. 11 is a flowchart showing a program for calculating AvTp. Steps that perform the same processing as the program in FIG. 5 of the first embodiment are given the same numbers and explanations are omitted, and different steps are The contents of the steps are explained by marking the step numbers with ('').

第11図のプログラムにおいて、まず、P31でエアフ
ローメータ7の出力を読み込んで吸入空気間Qaを求め
、P3□で平滑前基本パルス幅Tpoを演算する。次い
で、P、□を経るとP’J3でT r Tpを所定の最
大リミット値Tpmaxと比較し、TrTp>Tpma
xのときはP、!4 でTrTpをTpmaxに制限し
てPl4に進み、TrTp≦T pmaxの七きはP 
34をジャンプしてPl4に進むePI4を経るとPl
、で前記第0式に従ってAvTpを演算する。
In the program shown in FIG. 11, first, in P31, the output of the air flow meter 7 is read to determine the intake air interval Qa, and in P3□, the pre-smoothing basic pulse width Tpo is calculated. Next, after passing through P and □, T r Tp is compared with a predetermined maximum limit value Tpmax at P'J3, and TrTp>Tpmax
When x, P! 4, limit TrTp to Tpmax and proceed to Pl4, and if TrTp≦T pmax, then P
34 and proceed to Pl4. After passing through ePI4, Pl
, AvTp is calculated according to the zeroth equation.

0式において、Floadは加重平均係数であり、第1
2図に示すテーブルマツプから求められる。
In formula 0, Flood is a weighted average coefficient, and the first
It is obtained from the table map shown in Figure 2.

したがって、本実施例では第1実施例と同様の効果を得
ることができる。
Therefore, in this embodiment, the same effects as in the first embodiment can be obtained.

(効果) 本発明によれば、基本供給量を平滑化して平滑供給量を
演算するとともに、絞弁開度とエンジン回転数とから求
めた空気流量の変化量に基づいて先取り補正量を演算し
、該平滑供給量を該先取り補正量で先取り補正して最終
供給量を演算するようにしているので、過渡時にエアフ
ローメータの応答遅れや脈動誤差があっても、供給燃料
の精度や応答性を高めることができ、空燃比のずれをな
くして運転性や排気エミッション特性を向」ニさせるこ
とができる。
(Effects) According to the present invention, the smooth supply amount is calculated by smoothing the basic supply amount, and the preemptive correction amount is calculated based on the amount of change in the air flow rate obtained from the throttle valve opening and the engine speed. The final supply amount is calculated by preemptively correcting the smooth supply amount using the preemption correction amount, so even if there is a response delay or pulsation error of the air flow meter during transient periods, the accuracy and responsiveness of the supplied fuel can be improved. It is possible to improve driveability and exhaust emission characteristics by eliminating deviations in air-fuel ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本概念図、第2〜10図は本発明に
係る内燃機関の燃料供給制御装置の第1実施例を示す図
であり、第2図はその全体構成図、第3図はその先取り
補正パルス幅TH3TPを演算するサブルーチンを示す
フローチャート、第4図はその先取り補正パルス幅テー
ブル値TTH3TPを示すテーブルマツプ、第5図はそ
の噴射弁部流量相当パルス幅AvTpを演算するメイン
プログラムを示すフローチャート、第6図はその作用を
説明するためのタイミングチャート、第7図はその加重
平均係数F 1oadを示すテーブルマツプ、第8図は
その噴霧到達時間を説明するための図、第9図はその最
終噴射量Tiを演算するプログラムを示すフローチャー
ト、第10図はその効果を説明するためのタイミングチ
ャート、第11.12図は本発明に係る内燃機関の燃料
供給制御装置の第2実施例を示す図であり1、第11図
はその噴射弁部流量相当パルス幅AvTpを演算するプ
ログラムを示すフローチャート、第12図はその加重平
均係数F 1oadを示すデーブルマ・ツブ、第13図
は従来の内燃機関の燃料供給制御装置を示すその問題点
を説明するためのタイミングチャートである。 1・・・・・・エンジン、 4・・・・・・インジェクタ(燃料供給手段)、7・・
・・・・エアフローメータ(吸気量検出手段)、9・・
・・・・絞弁開度センサ(開度検出手段)、10・・・
・・・クランク角センサ(回転数検出手段)、20・・
・・・・コントロールユニット(空気量演算手段、平滑
供給量演算手段、補正量演算手段、供給量演算手段)。
FIG. 1 is a basic conceptual diagram of the present invention, FIGS. 2 to 10 are diagrams showing a first embodiment of a fuel supply control device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram thereof, and FIG. The figure is a flowchart showing the subroutine for calculating the preemption correction pulse width TH3TP, Figure 4 is a table map showing the preemption correction pulse width table value TTH3TP, and Figure 5 is the main flowchart for calculating the injection valve flow rate equivalent pulse width AvTp Flowchart showing the program, FIG. 6 is a timing chart to explain its action, FIG. 7 is a table map showing its weighted average coefficient F1oad, FIG. 8 is a diagram to explain its spray arrival time, FIG. 9 is a flowchart showing a program for calculating the final injection amount Ti, FIG. 10 is a timing chart for explaining its effect, and FIGS. 1, FIG. 11 is a flowchart showing a program for calculating the pulse width AvTp corresponding to the flow rate of the injection valve, FIG. 12 is a flowchart showing the weighted average coefficient F1oad, and FIG. 1 is a timing chart for explaining problems of a conventional fuel supply control device for an internal combustion engine. 1...Engine, 4...Injector (fuel supply means), 7...
...Air flow meter (intake air amount detection means), 9...
... Throttle valve opening sensor (opening detection means), 10...
...Crank angle sensor (rotation speed detection means), 20...
... Control unit (air amount calculation means, smooth supply amount calculation means, correction amount calculation means, supply amount calculation means).

Claims (1)

【特許請求の範囲】 a)エンジンの吸入空気量を検出する吸気量検出手段と
、 b)エンジンの回転数を検出する回転数検出手段と、 c)絞弁の開度を検出する開度検出手段と、d)絞弁の
開度とエンジン回転数とからエンジンの吸入空気量を演
算する空気量演算手段と、e)エンジンの吸入空気量お
よび回転数に基づいて燃料の基本供給量を演算し、該基
本供給量を平滑化して平滑供給量を演算する平滑供給量
演算手段と、 f)空気量演算手段により演算された吸入空気量の変化
量に基づいて前記平滑供給量を先取り補正するための先
取り補正量を演算する補正量演算手段と、 g)平滑供給量演算手段の出力および補正量演算手段の
出力に基づいて燃料の最終供給量を演算する供給量演算
手段と、 h)供給量演算手段の出力に基づいてエンジンに燃料を
供給する燃料供給手段と、 を備えたことを特徴とする内燃機関の燃料供給制御装置
[Claims] a) intake air amount detection means for detecting the intake air amount of the engine; b) rotation speed detection means for detecting the engine rotation speed; and c) opening degree detection means for detecting the opening degree of the throttle valve. d) air amount calculation means for calculating the intake air amount of the engine from the opening degree of the throttle valve and the engine speed; e) calculating the basic supply amount of fuel based on the engine intake air amount and the engine speed. and smoothing supply amount calculation means for smoothing the basic supply amount to calculate a smooth supply amount; f) Preemptively correcting the smooth supply amount based on the amount of change in the intake air amount calculated by the air amount calculation means. g) supply amount calculation means for calculating the final supply amount of fuel based on the output of the smooth supply amount calculation means and the output of the correction amount calculation means; h) supply amount calculation means A fuel supply control device for an internal combustion engine, comprising: fuel supply means for supplying fuel to the engine based on the output of the quantity calculation means.
JP63122523A 1988-04-26 1988-05-18 Fuel supply control device for internal combustion engine Expired - Lifetime JP2668940B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63122523A JP2668940B2 (en) 1988-05-18 1988-05-18 Fuel supply control device for internal combustion engine
DE8989107545T DE68900704D1 (en) 1988-04-26 1989-04-26 SYSTEM FOR FUEL SUPPLY IN AN INTERNAL COMBUSTION ENGINE.
US07/343,204 US4949694A (en) 1988-04-26 1989-04-26 Fuel supply control system for internal combustion engine
EP89107545A EP0339603B1 (en) 1988-04-26 1989-04-26 Fuel supply control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122523A JP2668940B2 (en) 1988-05-18 1988-05-18 Fuel supply control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01290939A true JPH01290939A (en) 1989-11-22
JP2668940B2 JP2668940B2 (en) 1997-10-27

Family

ID=14837959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122523A Expired - Lifetime JP2668940B2 (en) 1988-04-26 1988-05-18 Fuel supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2668940B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188082A (en) * 1991-03-08 1993-02-23 Nissan Motor Co., Ltd. Fuel injection control system for internal combustion engine
US5427072A (en) * 1992-04-30 1995-06-27 Nissan Motor Co., Ltd. Method of and system for computing fuel injection amount for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184145A (en) * 1986-02-10 1987-08-12 石川県 Shuttle equipped with shuttle feather abrasion preventing means
JPS63289237A (en) * 1987-05-21 1988-11-25 Toyota Motor Corp Fuel injection quantity controlling method for internal combustion engine
JPH01216041A (en) * 1988-02-24 1989-08-30 Japan Electron Control Syst Co Ltd Electronic control fuel injection device for internal combustion engine
JPH01285640A (en) * 1988-05-13 1989-11-16 Toyota Motor Corp Fuel injection quantity control method of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184145A (en) * 1986-02-10 1987-08-12 石川県 Shuttle equipped with shuttle feather abrasion preventing means
JPS63289237A (en) * 1987-05-21 1988-11-25 Toyota Motor Corp Fuel injection quantity controlling method for internal combustion engine
JPH01216041A (en) * 1988-02-24 1989-08-30 Japan Electron Control Syst Co Ltd Electronic control fuel injection device for internal combustion engine
JPH01285640A (en) * 1988-05-13 1989-11-16 Toyota Motor Corp Fuel injection quantity control method of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188082A (en) * 1991-03-08 1993-02-23 Nissan Motor Co., Ltd. Fuel injection control system for internal combustion engine
US5427072A (en) * 1992-04-30 1995-06-27 Nissan Motor Co., Ltd. Method of and system for computing fuel injection amount for internal combustion engine

Also Published As

Publication number Publication date
JP2668940B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPS639093B2 (en)
JP2969540B2 (en) Air-fuel ratio control device for internal combustion engine
JP3610839B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62162919A (en) Detector for suction air quantity of engine
JPH01244138A (en) Fuel injection control device for engine for automobile
JPH0585742B2 (en)
JPS6278449A (en) Fuel injection controller of internal combustion engine
JPH01290939A (en) Fuel supply control device of internal combustion engine
KR100428343B1 (en) Method of controlling air flow for gasoline vehicles
JP2550145B2 (en) Air amount detection device for internal combustion engine
JPS61116051A (en) Method for processing engine control signal
JPS62101855A (en) Fuel-injection control device for internal combustion engine
JPH01290949A (en) Air amount sensing device of internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2759545B2 (en) Air-fuel ratio control device for internal combustion engine
JP2514627B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01110852A (en) Air-fuel ratio controller for internal combustion engine
JPH0968094A (en) Air-fuel ratio control device of internal combustion engine
JP2631587B2 (en) Fuel supply control device for internal combustion engine
JP2627826B2 (en) Fuel supply control device for internal combustion engine
JPH01290951A (en) Air amount sensing device of internal combustion engine
JP2688216B2 (en) Fuel injection amount control method for internal combustion engine
JPH01244139A (en) Fuel feed control device for internal combustion engine
JPS6355340A (en) Air-fuel ratio controller for internal combustion engine
JPH0794809B2 (en) Air amount detection device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

EXPY Cancellation because of completion of term