JPH0121588B2 - - Google Patents

Info

Publication number
JPH0121588B2
JPH0121588B2 JP55052132A JP5213280A JPH0121588B2 JP H0121588 B2 JPH0121588 B2 JP H0121588B2 JP 55052132 A JP55052132 A JP 55052132A JP 5213280 A JP5213280 A JP 5213280A JP H0121588 B2 JPH0121588 B2 JP H0121588B2
Authority
JP
Japan
Prior art keywords
sintered body
paste
fiber
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55052132A
Other languages
Japanese (ja)
Other versions
JPS56149767A (en
Inventor
Shuzo Kimura
Masahiko Oshitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP5213280A priority Critical patent/JPS56149767A/en
Publication of JPS56149767A publication Critical patent/JPS56149767A/en
Publication of JPH0121588B2 publication Critical patent/JPH0121588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は密閉型ニツケル−カドミりム蓄電池の
高容量密床化の方法に関するもので、高倚孔床の
ニツケルメツキ鉄繊維焌結䜓に酞化カドミりムを
゚チレングリコヌル、む゜プロピルアルコヌル、
グリセリン等有機溶剀のみによ぀お流動性ペヌス
トずし充填しお䜜成された負極ず埓来のニツケル
粉末焌結䜓に氎酞化ニツケル掻物質を充填した正
極で特に厚み0.8以䞊の厚型正極ずを組み
合わせたこずを特城ずする。その目的は、密閉型
ニツケル−カドミりム電池の容量密床Ah
を向䞊させか぀長寿呜化、コストの倧巟匕き䞋げ
をはかるこずにある。 繊維焌結䜓をアルカリ電池甚正極集電䜓に䜿甚
する詊みは、特公昭50−2249号、特開昭52−
151834号、特開昭55−37745号等に述べられおい
る。公知のごずく、正極反応は NiOH2OH-充電 ―――― ―――― 攟電β−NiOOHH2Oe- による均䞀固盞反応で負極のごずき、溶解析出反
応ずは異なる。NiOH2、NiOOHは金属単䜓ず
異なり非垞に電導性に乏しいものである。それ故
にできうるかぎり比衚面積倧なる集電䜓を必芁ず
するが、埓来より行なわれたる安䟡な切削加工に
よる鉄繊維の䜜成方法においおは珟行のニツケル
粉末焌結䜓の1/10皋床の比衚面積しかなく掻物質
利甚率あるいは高率攟電特性、充電効率等に問題
が残されおいる。 本発明者は衚面積によ぀お性胜の巊右される正
極集電䜓に繊維焌結䜓を䜿甚した堎合はニツケル
粉末焌結䜓に劣る面も倚いが、負極に䜿甚した堎
合は反応機構が異なるため逆にニツケル粉末焌結
䜓よりも性胜が向䞊するこずを芋い出した。負極
反応は充電により掻物質CdOH2が䞀床溶解し
お、CdOH4 2-むオンずなりさらに金属Cdにた
で還元される。攟電はこの逆である。金属カドミ
りムにたで還元されるため掻物質自䜓が電導性を
぀かさどるために、集電䜓の比衚面積が性胜を倧
きく巊右するこずなく、むしろ電解液の䟛絊が各
反応点にスムヌズに䟛絊されるこずが必芁であ
る。10Ό以䞋の现孔がほずんどをしめるニツケル
粉末焌結䜓のごずきものは電解液がブロツキング
されお攟電々圧特性あるいは、掻物質利甚率が悪
い。したが぀おこれらが改良されるためには10ÎŒ
以䞊の现孔が倧半をしめるこずが望たしくその点
で繊維焌結䜓は繊維埄を遞択するこずによ぀お容
易に調節できる。それのみならず、10Ό以䞊の现
孔がほずんどをしめる構造にするず、掻物質充填
方法ずしお、ニツケル粉末焌結䜓に䞍可胜なペヌ
スト方法ずい぀た簡略化された工皋で行うこずが
できる。 近幎密閉型ニツケル−カドミりム蓄電池の高容
量密床化は数癟Ahの小型から数癟Ahの倧型に
いたるたで、党般においお行なわれおいるが、特
に〜5Ah皋床の円筒型密閉蓄電池分野で掻発に
開発されおいる。この分野は誘導灯、非垞灯甚電
源ずしおの特殊甚途があり、この堎合℃〜50℃
ずい぀たこれたでにない広い枩床領域䞋、1/30
皋床の埮電流で充電するずい぀たかこくな䜿甚条
件においおも充分なる高性胜を維持しなくおはな
らない。そのため、たずえばNR−型ず称する
寞法25φ×49mmの円筒型密閉蓄電池では、埓来の
ニツケル粉末焌結䜓による正極、負極を䜿甚した
堎合の公称容量は1.8Ah皋床が限界である。これ
に察し、埓来のニツケル粉末焌結䜓正極ずニツケ
ルメツキ穿孔鋌板を䜿甚した埓来のペヌスト負極
の組合せではいく分向䞊し公称容量2.0Ah皋床が
限界ずなる。本発明はこれらよりもさらに容量密
床を向䞊させたものである。 埓来ニツケルカドミりム蓄電池甚負極板ずしお
は、焌結匏及びペヌスト匏が䞀般的に知られおい
る。しかし焌結匏は高䟡なカヌボニル・ニツケル
粉末を原料に甚いるこず䞊に倧芏暡な蚭備装眮、
煩雑な掻物質含浞工皋を必芁ずするこず、及び容
量密床が小さいこず等が欠点ずなり安䟡で高容量
密床の極板が芁求される今日、焌結匏よりもペヌ
スト匏の方が有利䞀方埓来のペヌスト匏負極板
は、酞化カドミりム、ニツケル粉末、高分子短繊
維等を混合し、有機増粘剀の少量を溶解した粘性
のある氎溶液を加え高粘性ペヌスト液ずしお、ニ
ツケルメツキ穿孔鋌板芯金の䞡面に塗着するこず
によ぀お䜜成する。ペヌスト液に含有される氎ず
Cdo粉末が反応し、Cdo・H2O即ちCdOH2ずし
お粉末間が結合されセメンテヌシペン、塗着
時芯金から脱萜するこずなく保持される。このペ
ヌスト液は、穿孔鋌板等に塗着させる堎合には、
䞊蚘理由により奜郜合な特性を有するが、倚孔性
構造をも぀た繊維基板には、このセメンテヌシペ
ン化により、液の流動性が倱われ现孔内郚にペヌ
スト液を充填するこずができない。埓぀お、流動
性を持ちセメンテヌシペンを生じないペヌスト液
にするこずが䞍可決である。曎に、この埓来ペヌ
スト匏負極板の最倧の欠点は負極掻物質が短繊維
等有機高分子物によ぀おのみ基材に保持されおい
るため、充攟電の繰返し等によ぀お脱萜を起し焌
結匏よりも䞀般に寿呜は短かい。あるいは焌結匏
のようにニツケル粉末が焌結されおおらず、物理
的に混合されおいるだけであるため、電導材ずし
おの䜜甚が䞍充分であり、極板抵抗倀が焌結匏よ
りも倧きく、特に高率攟電時には無芖し埗ぬもの
である。ペヌスト匏負極板性胜は基材構造に巊右
されるこずが倚いため䞊蚘穿孔鋌板以倖にも、゚
キスパンデむドメタル、金網、穿孔鋌板の䞡面に
凹凞を぀けたもの等皮々工倫されおいる。これら
の䞭でぱキスパンデむドメタルがも぀ずも奜た
しいが䟡栌的に高䟡なこずず衚面が鋭利な圢状を
しおいるため䞍織垃等の薄型セパレヌタを䜿甚し
た堎合察極ずの間で短絡を起こしやすいためいた
だ実甚化はされおいない。 本発明のニツケルメツキ鉄繊維焌結䜓は、埓来
のペヌスト匏カドミりム負極板のも぀欠点を改良
し、集電性、掻物質の保持性、機械的匷床、掻物
質利甚率等のすぐれたるペヌスト匏負極板甚基材
を提䟛するものである。 本発明に甚いる鉄繊維は、公知のごずく叀くか
ら行われおいる鉄のワむダヌを数十本の鋞状のナ
むフ䞊を前埌に移動させ切削するこずによ぀お埗
られる。適切な繊維埄は〜100Ό皋床である。
繊維埄は鋞状のナむフのピツチ巟で決定される
が、4Όより现い堎合は、切削䞭に繊維が切断し
たり、あるいは生産速床が極端に䜎䞋しコストが
倧巟に䞊昇する。又、100Όより倪い堎合は、集
電䜓の穎现孔が非垞に荒く、高率攟電性胜の
䜎䞋及び掻物質粒子の脱萜を生じる。この鉄繊維
は非垞に安䟡であるため、䜿い捚おケンマ材ずし
おの分野で䜿甚されおきた。今日のごずき高容量
密床化が芁求されなか぀たこずず鉄繊維補造装眮
が高䟡であるためペヌスト匏負極板基材ずしお䜿
甚されるこずはなか぀た。繊維長は数cmから数10
cmず自由に長繊維のものが䜜成し埗るため、この
ものを焌結させた堎合非垞に匷床が倧なる焌結䜓
が埗られるためにニツケル粉末焌結䜓のごずき、
補匷のための穿孔鋌板等の導電芯䜓を必芁ずしな
い。倚孔床は90〜98皋床のものが䜿甚可胜で
ある。 集電䜓の倚孔床は、高いほど掻物質が倚量に充
填できるため望たしいが、実甚匷床の面より98
が限界である。䞀方、高容量化ず電解液の電極内
郚ぞの拡散より90以䞊でなければならない。90
より小さい堎合は、電極内郚ぞの電解液の拡散
が悪いので、高率攟電性胜が悪く、高芁量も埗ら
れない。この焌結䜓にニツケルメツキをほどこし
たのちペヌスト匏負極基材ずしお䜿甚する。巟
〜30cm、長さ50〜100単䜍で焌結䜓を連続的に
生産させるために、切削加工鉄繊維を亀互にから
み合わせながら繊維が䞀定の方向性をも぀たプ
ルト状態で生産させる必芁がある。ずころが方向
性をも぀た繊維の焌結䜓であるために、衚本
発明の繊維の方向による特性の違いのごずく繊
維方向に察しおは電導性、匕匵匷床はすぐれおい
るが、長さ方向ず盎角方向に察しおはいく分劣
る。この方向性のために、繊維方向ず盎角方向で
りズ巻き型電池を䜜成した堎合、巻き始めず最倖
呚郚においお極板の切断が起こり倚数の埮现短絡
を生じた。これに察しお、巻き方向を繊維方向に
した堎合、この問題点が解消され、か぀比抵抗も
䞋がり高率攟電特性の向䞊等が認められた。この
ような構成にするこずによ぀お、埓来の焌結匏極
板ず同様の方法で組み立おるこずができる。䞀方
ニツケルメツキをするずメツキ厚みが倧なるに぀
れおこの差が瞮少しお行き2Ό以䞊の厚みになる
ず第図、第図に瀺すごずく実甚䞊無芖しおも
よいず考えられる。 焌結䜓の埮现孔は10〜50Όが適切である。埮现
孔が10Όより小さい堎合は、流動性ペヌストの充
填が困難であり、50Όより倧きい堎合は、䞀旊充
填されたペヌストが流倱し䞍均䞀は極板ずなる。
流動性ペヌスト液は、掻物質粉末ず有機溶剀だけ
で䜜成し、結着剀䟋えばテトラフルオロ゚チレン
あるいはゎム系等を混入しない。このような結着
剀を甚いた堎合は、ペヌストの粘性が増し、现孔
に充填できない。
The present invention relates to a method for increasing the capacity and density of a sealed nickel-cadmium storage battery, in which cadmium oxide is added to a highly porous nickel-plated iron fiber sintered body using ethylene glycol, isopropyl alcohol,
A negative electrode made by filling a fluid paste with only an organic solvent such as glycerin, and a positive electrode made by filling a conventional nickel powder sintered body with a nickel hydroxide active material, especially thick positive electrodes with a thickness of 0.8 m/m or more. It is characterized by a combination of. The purpose is to determine the capacity density (Ah/l) of sealed nickel-cadmium batteries.
The aim is to improve the performance, extend the lifespan, and significantly reduce costs. Attempts to use fiber sintered bodies as positive electrode current collectors for alkaline batteries were published in Japanese Patent Publication No. 50-2249 and Japanese Unexamined Patent Publication No. 1983-1989.
It is described in No. 151834, Japanese Unexamined Patent Publication No. 55-37745, etc. As is well known, the positive electrode reaction is a homogeneous solid-phase reaction involving Ni(OH) 2 +OH - charge --- --- discharge β-NiOOH + H 2 O + e - , and is different from the elution deposition reaction such as that at the negative electrode. Unlike simple metals, Ni(OH) 2 and NiOOH have extremely poor conductivity. Therefore, a current collector with as large a specific surface area as possible is required, but in the conventional method of producing iron fibers by inexpensive cutting, the specific surface area is about 1/10 that of the current nickel powder sintered body. However, problems remain in the active material utilization rate, high rate discharge characteristics, charging efficiency, etc. The present inventor found that when fiber sintered bodies are used for positive electrode current collectors whose performance is affected by surface area, they are inferior to nickel powder sintered bodies in many aspects, but when used for negative electrodes, the reaction mechanism is different. On the contrary, it was found that the performance was improved compared to the nickel powder sintered body. In the negative electrode reaction, the active material Cd(OH) 2 is once dissolved by charging, becomes Cd(OH) 4 2- ions, and is further reduced to metal Cd. Discharge is the opposite. Since the active material itself controls conductivity as it is reduced to metal cadmium, the specific surface area of the current collector does not greatly affect performance, rather the electrolyte is smoothly supplied to each reaction point. is necessary. In the case of sintered nickel powder, which has mostly pores of 10 Όm or less, the electrolyte is blocked, resulting in poor discharge voltage characteristics or active material utilization. Therefore, in order to improve these, 10Ό
It is desirable that most of the above pores be occupied, and in this respect the fiber sintered body can be easily adjusted by selecting the fiber diameter. In addition, by creating a structure in which most of the pores are 10ÎŒ or larger, the active material can be filled with a simplified process such as a paste method, which is impossible for nickel powder sintered bodies. In recent years, the capacity density of sealed nickel-cadmium storage batteries has been increased across the board, from small scale units of several hundred mAh to large scale units of several hundred Ah, but it is particularly active in the field of cylindrical sealed storage batteries of approximately 1 to 5 Ah. being developed. This field has special uses as a power source for guide lights and emergency lights, and in this case 5℃~50℃
Under an unprecedentedly wide temperature range, 1/30C
When charged with a moderate current, sufficient performance must be maintained even under harsh usage conditions. Therefore, for example, in a cylindrical sealed storage battery called NR-C type with dimensions of 25 φ x 49 mm, the nominal capacity is limited to about 1.8 Ah when using conventional positive and negative electrodes made of sintered nickel powder. On the other hand, the combination of a conventional nickel powder sintered positive electrode and a conventional paste negative electrode using a nickel-plated perforated steel plate improves somewhat, but the nominal capacity is limited to about 2.0 Ah. The present invention further improves the capacity density. Conventionally, sintered type and paste type negative electrode plates for nickel cadmium storage batteries are generally known. However, the sintering method uses expensive carbonyl/nickel powder as raw materials and requires large-scale equipment and equipment.
In today's world, where inexpensive and high capacity density electrode plates are required due to the disadvantages of requiring a complicated active material impregnation process and low capacity density, the paste type is more advantageous than the sintered type, while the conventional Paste-type negative electrode plates are made by mixing cadmium oxide, nickel powder, short polymer fibers, etc., adding a viscous aqueous solution containing a small amount of an organic thickener, and applying the paste to both sides of a nickel-metallic perforated steel core. Created by painting. The water contained in the paste liquid and
The Cdo powder reacts and is bonded together as Cdo·H 2 O, or Cd(OH) 2 (cementation), and is retained without falling off the core metal during coating. When applying this paste liquid to perforated steel plates, etc.,
Although it has advantageous characteristics for the above reasons, a fiber substrate with a porous structure loses the fluidity of the liquid due to this cementation, making it impossible to fill the inside of the pores with the paste liquid. Therefore, it is essential to create a paste solution that has fluidity and does not cause cementation. Furthermore, the biggest drawback of this conventional paste-type negative electrode plate is that the negative electrode active material is held to the base material only by organic polymers such as short fibers, which can cause it to fall off and burn out due to repeated charging and discharging. Generally, the lifespan is shorter than that of a condensate. Or, unlike the sintered type, the nickel powder is not sintered, but only physically mixed, so its action as a conductive material is insufficient, and the plate resistance value is lower than that of the sintered type. It is large and cannot be ignored, especially during high rate discharge. Since the performance of paste-type negative electrode plates is often influenced by the structure of the base material, in addition to the above-mentioned perforated steel plates, various other devices have been devised, such as expanded metal, wire mesh, and perforated steel plates with irregularities on both sides. Among these, expanded metal is preferable, but it is still not practical because it is expensive and has a sharp surface that tends to cause a short circuit with the opposite electrode when using a thin separator such as non-woven fabric. It has not been converted. The nickel-plated iron fiber sintered body of the present invention improves the drawbacks of conventional paste-type cadmium negative electrode plates, and provides paste-type negative electrodes with excellent current collection properties, active material retention, mechanical strength, active material utilization rate, etc. The present invention provides a base material for a board. The iron fibers used in the present invention can be obtained by cutting an iron wire by moving it back and forth over dozens of serrated knives, as has been known for a long time. A suitable fiber diameter is about 4 to 100 microns.
The fiber diameter is determined by the pitch width of the serrated knife, but if it is thinner than 4Ό, the fiber may break during cutting, or the production speed will be extremely reduced, resulting in a significant increase in cost. If the thickness is larger than 100Ό, the holes (pores) in the current collector are very rough, resulting in a decrease in high rate discharge performance and drop-off of active material particles. Since this iron fiber is very cheap, it has been used in the field as disposable bamboo material. Because there was no demand for high capacity density as there is today, and because iron fiber manufacturing equipment was expensive, it was never used as a paste-type negative electrode plate base material. Fiber length ranges from several centimeters to several tens of centimeters
cm, long fibers can be freely created, and when sintered, a sintered body with extremely high strength can be obtained, such as a sintered nickel powder.
A conductive core such as a perforated steel plate for reinforcement is not required. Porosities of about 90% to 98% can be used. The higher the porosity of the current collector, the more active material can be filled, which is desirable, but from the viewpoint of practical strength, it is 98%.
is the limit. On the other hand, the capacity must be higher than 90% and the electrolyte must diffuse into the electrode. 90
If it is smaller than %, the electrolytic solution will not diffuse well into the electrode, resulting in poor high rate discharge performance and a high required amount cannot be obtained. After applying nickel plating to this sintered body, it is used as a paste-type negative electrode base material. Width 5
In order to continuously produce sintered bodies in units of ~30 cm and lengths of 50 to 100 m, it is necessary to produce a felt state in which the cut iron fibers are alternately intertwined with each other and the fibers have a certain directionality. However, since it is a sintered body of oriented fibers, it has excellent electrical conductivity and tensile strength in the fiber direction, as shown in the table (Differences in properties depending on the fiber direction of the present invention), but the length It is somewhat inferior in the direction and perpendicular direction. Due to this directionality, when a spiral-wound battery was fabricated in a direction perpendicular to the fiber direction, the electrode plate was cut at the beginning of winding and at the outermost periphery, resulting in numerous minute short circuits. On the other hand, when the winding direction was made to be in the fiber direction, this problem was solved, and the specific resistance was also lowered and high rate discharge characteristics were improved. With this configuration, it can be assembled in the same manner as a conventional sintered electrode plate. On the other hand, when using nickel plating, this difference decreases as the plating thickness increases, and when the thickness becomes 2Ό or more, it can be practically ignored as shown in FIGS. 1 and 2. The appropriate size of the micropores in the sintered body is 10 to 50Ό. If the micropores are smaller than 10Ό, it is difficult to fill with fluid paste, and if the micropores are larger than 50Ό, the paste once filled will be washed away, resulting in uneven electrode plates.
The fluid paste solution is prepared from only the active material powder and an organic solvent, and no binder such as tetrafluoroethylene or rubber is mixed therein. When such a binder is used, the viscosity of the paste increases, making it impossible to fill the pores.

【衚】 このニツケルメツキ鉄繊維焌結䜓に、酞化カド
ミりムに゚チレングリコヌル、む゜プロピルアル
コヌル、グリセリン等の氎を含たない有機溶媒の
みからペヌスト液を調合した堎合、セメンテヌシ
ペンが起こらず、ペヌスト液の流動性が倱われな
いこずが刀明した。このペヌスト液を甚いお繊維
焌結䜓に所定量を充填する。しかるのち通垞のペ
ヌスト極板を䜜成するごずく、也燥、ロヌラヌプ
レス、化成、所定寞法に切断を行な぀お負極板ず
なす。埓来のペヌスト匏負極板は電導材ずしお10
〜15wtのニツケル粉末を必芁ずするが、本発
明のニツケルメツキ鉄繊維焌結䜓は繊維自䜓にこ
の働らきがあるために、ニツケル粉末を必芁ずし
ない。又、穿孔鋌板のごずき補匷のための芯䜓も
必芁ずしないこずから、この焌結䜓を基材に䜿甚
した堎合埓来のペヌスト極板にくれべお死容積が
少なくお枈む。基材ずしお非垞に有効に䜜甚する
ために埓来のものよりより高容量密床の極板を䜜
成するこずができる。 正極板においおもこの焌結䜓を集電䜓ずしお䜿
甚できるが、40℃以䞊の高枩䞋、1/30皋床の䜎
率充電においお充電効率がニツケル粉末焌結䜓よ
りも劣぀おいる。このため非垞灯、誘導灯甚電池
においおはニツケル粉末焌結䜓を正極集電䜓ずし
お䜿甚せざるを埗ないが、通垞の宀枩付近で䜿甚
する堎合はさほど問題がないものである。埓来ニ
ツケル粉末焌結䜓は厚み0.7付近が倚く甚
いられおいるが厚みが薄くなるほど穿孔鋌板のご
ずき導電芯䜓のしめる割合が増加するために高容
量密床化するためにはできうるかぎり厚型焌結䜓
の方が望たしい。しかしあたり厚くなりすぎるず
電解液の拡散等に問題を生じるために0.8〜1.0
皋床が有効である。 䜿甚電解液も40℃以䞊の高枩䞋で䜿甚する堎合
埓来のKOH−LiOH系では正極の酞玠過電圧が
充分ではなく、NaOH−LiOH系の方が酞玠過電
圧が倧であるため充電効率がすぐれおいる。
NaOH−LiOH系電解液においおもその濃床によ
぀お電池性胜が巊右され最適なる濃床が存圚す
る。 以䞋本発明の䞀実斜䟋に基き説明する 鉄を切削加工するこずによ぀お10〜30Ό皋床の
繊維埄をも぀た鉄繊維を䜜成する。繊維長さは切
削加工する原料鉄線の長さあるいは鉄の質によ぀
お倉化するが、cm以䞊あれば焌結䜓ずな぀た堎
合の匷床に倧きな圱響を䞎えるこずはない。ここ
では〜10cm皋床のものを甚いた。繊維同志をか
らたせながらも䞀定の方向性をもたせながら巟20
cm、長さ80cmのプルト状態にな぀たものを還元
性雰囲気にお匟力性を陀去した埌、プレスをしお
1000〜1100℃氎玠等還元性雰囲気䞭で焌結せしめ
る。プレス圧ず焌結時間は倚孔床に圱響を䞎える
が、ここで埗られた鉄繊維焌結䜓は平均倚孔床95
皋床である。しかる埌垞法に埓がい、鉄繊維焌
結䜓に〜3Ό厚みの電気ニツケルメツキをほど
こす。この焌結䜓にカレンダヌロヌル法によ぀お
酞化カドミりム゚チレングリコヌルむ゜プロ
ピルアルコヌルがそれぞれ重量比で0.5
のペヌスト状掻物質を塗着埌玄100℃の熱颚によ
぀お10分間也燥せしめた埌、比重1.20のKOH電
解液䞭3mAcm2の充電々流で理論容量の150を
充電し、6mAcm2の攟電々流でOVたで攟電させ
た埌氎掗を行なう垞法の化成凊理によ぀お゚チレ
ングリコヌル、む゜プロピルアルコヌル等有機物
を完党に陀去する。化成終了埌所定寞法に打ち抜
いお極板にする。䞀方正極板は穿孔鋌板にニツケ
ル粉末を焌結させた倚孔床玄80のニツケルプラ
ヌクに硝酞ニツケル溶液を含浞させ、氎酞化ナト
リりム䞭で電解還元を行なう垞法の操䜜を数回く
り返しお掻物質を充填さしめ、しかる埌化成を行
な぀お䞍玔物を陀去する。所定寞法に打抜いた
埌、この極板等およびセパレヌタを䜿甚しお密閉
型電池を䜜成した。䜜成した電池の正極板寞法は
200l×39w×0.85tmm、負極板寞法は240l×39w×
0.65tでセパレヌタにはポリプロピレン䞍織垃を
䜿甚した。電池寞法は25φ×49mmの円筒型密閉電
池で垂販の公称容量1800Ah電池ず同サむズで
ある。䜜成した電池の公称容量は2300Ahであ
る。䜿甚した電解液組成は〜芏定の氎酞化ナ
トリりムおよび0.5〜1.5芏定の氎酞化リチりムの
混合氎溶液ず芏定の氎酞化カリりムず1.0芏定
の氎酞化リチりムの混合氎溶液である。この電池
を宀枩における䞀般的な性胜1/10充電々流で15
時間充電をし1/5、1Cの攟電々流で1.00Vたで
攟電させる方法および℃、45℃における誘導灯
芏栌詊隓による1/30の充電々流で24時間充電し
1Cの攟電々流で1.15Vたで攟電させる方法、䞊び
に45℃における非垞灯芏栌詊隓による1/30の充
電々流で48時間充電をし1Cの攟電々流で1.15Vた
で攟電させる方法にお性胜を調べるず衚に瀺す
ように本発明による電池においお氎酞化ナトリり
ム、氎酞化リチりム混合氎溶液を䜿甚したものの
実容量は2.7〜2.8Ahもあり、公称容量2400〜2500
Ahに盞圓する容量である。䞀方誘導灯、非垞
灯芏栌詊隓においおも珟行のシンタヌ匏正、負極
板を䜿甚した公称容量1800Ah電池よりも高性
胜である。
[Table] When a paste solution is prepared from cadmium oxide and a water-free organic solvent such as ethylene glycol, isopropyl alcohol, or glycerin, no cementation occurs and the paste solution flows. It turns out that sex is not lost. A predetermined amount of this paste liquid is filled into the fiber sintered body. Thereafter, the negative electrode plate is prepared by drying, roller pressing, chemical conversion, and cutting into predetermined dimensions, just as in the case of making a normal paste electrode plate. The conventional paste-type negative electrode plate is used as a conductive material.
Although ~15 wt% of nickel powder is required, the nickel-plated iron fiber sintered body of the present invention does not require nickel powder because the fiber itself has this function. Furthermore, since a reinforcing core such as a perforated steel plate is not required, when this sintered body is used as a base material, the dead volume is smaller than that of a conventional paste electrode plate. Because it acts so effectively as a base material, plates with higher capacitance densities than conventional ones can be made. This sintered body can also be used as a current collector in the positive electrode plate, but the charging efficiency is inferior to that of the nickel powder sintered body at low charging rates of about 1/30 C at high temperatures of 40° C. or higher. For this reason, nickel powder sintered bodies must be used as positive electrode current collectors in batteries for emergency lights and guide lights, but this does not pose much of a problem when used near normal room temperature. Conventionally, nickel powder sintered bodies are often used with a thickness of around 0.7m/m, but as the thickness becomes thinner, the proportion of conductive cores such as perforated steel plates increases, so it is necessary to use as much as possible to achieve high capacity density. A thick sintered body is preferable. However, if it becomes too thick, it will cause problems with electrolyte diffusion, etc.
m/m is effective. When using the electrolyte at high temperatures of 40°C or higher, the conventional KOH-LiOH system does not have sufficient oxygen overvoltage at the positive electrode, and the NaOH-LiOH system has a higher oxygen overvoltage, so it has better charging efficiency. .
Battery performance is also influenced by the concentration of the NaOH-LiOH electrolyte, and there is an optimum concentration. An embodiment of the present invention will be described below. Iron fibers having a fiber diameter of about 10 to 30 microns are created by cutting iron. The fiber length varies depending on the length of the raw material iron wire to be cut or the quality of the iron, but if it is 1 cm or more, it will not have a major effect on the strength of the sintered body. Here, one of approximately 5 to 10 cm was used. Width 20 while maintaining a certain direction while intertwining the fibers.
After removing the elasticity of the 80cm long felt in a reducing atmosphere, press it.
Sinter at 1000-1100°C in a reducing atmosphere such as hydrogen. Press pressure and sintering time affect porosity, but the iron fiber sintered body obtained here has an average porosity of 95.
It is about %. Thereafter, according to a conventional method, the iron fiber sintered body is plated with electric nickel to a thickness of 2 to 3 ÎŒm. Cadmium oxide: ethylene glycol: isopropyl alcohol was added to this sintered body by a calender roll method in a weight ratio of 8:2:0.5.
After applying the active material in paste form and drying it with hot air at approximately 100℃ for 10 minutes, it was charged to 150% of the theoretical capacity with a charging current of 3mA/cm 2 in a KOH electrolyte with a specific gravity of 1.20, and the current was 6mA. Organic substances such as ethylene glycol and isopropyl alcohol are completely removed by a conventional chemical conversion treatment that involves discharging to OV with a discharge current of /cm 2 and then washing with water. After completion of chemical formation, it is punched out to a predetermined size to form an electrode plate. On the other hand, the positive electrode plate is made by impregnating a nickel plaque with a porosity of approximately 80%, which is made by sintering nickel powder onto a perforated steel plate, with a nickel nitrate solution, and repeating the usual process of electrolytic reduction in sodium hydroxide several times to make the active material. After that, chemical conversion is performed to remove impurities. After punching to a predetermined size, a sealed battery was created using the electrode plates and separator. The dimensions of the positive electrode plate of the created battery are
200 l × 39 w × 0.85 t mm, negative electrode plate dimensions are 240 l × 39 w ×
A polypropylene nonwoven fabric was used for the separator at 0.65 t . The battery size is a 25φ x 49mm sealed cylindrical battery, which is the same size as a commercially available battery with a nominal capacity of 1800mAh. The nominal capacity of the created battery is 2300mAh. The electrolyte composition used was a mixed aqueous solution of 3-5N sodium hydroxide and 0.5-1.5N lithium hydroxide, and a mixed aqueous solution of 5N potassium hydroxide and 1.0N lithium hydroxide. The typical performance of this battery at room temperature is 1/10C at a charging current of 15
Charging for 24 hours and discharging to 1.00V with a current of 1/5C and 1C, and charging for 24 hours with a current of 1/30C using an induction light standard test at 5℃ and 45℃.
Performance achieved by discharging to 1.15V with a 1C current, and charging for 48 hours with a 1/30C current according to the emergency lighting standard test at 45℃, then discharging to 1.15V with a 1C current. As shown in the table, the actual capacity of the battery according to the present invention using a mixed aqueous solution of sodium hydroxide and lithium hydroxide is 2.7 to 2.8 Ah, and the nominal capacity is 2400 to 2500 Ah.
The capacity is equivalent to mAh. On the other hand, in the guidance light and emergency light standard tests, it has higher performance than the current 1800mAh battery that uses sintered positive and negative electrode plates.

【衚】【table】

【衚】 泚 衚のは本発明の電池構成によるもの
で公称容量2300Ahであり、は埓来の焌結
匏極板を䜿甚した電池で公称容量1800Ahで
ある。は実容量を調べるために25℃1/10で
15時間充電をし、1/5で終止電圧1.00Vたで
攟電させた時の容量であり、は45℃誘導灯芏
栌詊隓による性胜を瀺し、は℃誘導灯芏栌
詊隓による性胜を瀺し、は45℃非垞灯芏栌詊
隓による性胜を瀺したものである。 攟電々圧特性も第図に瀺すごずくすぐれおい
る。この理由は本発明の負極掻物質利甚率は埓来
のシンタヌ匏にくらべお玄〜10、埓来のペヌ
スト匏にくらべお玄15皋床向䞊しおおりか぀繊
維の特性を考慮し比抵孔をできるかぎり少なくし
たために、負極分極がなく、完党なる正極攟電特
性を瀺し埗るためず考えられる。第図 たた第図は本発明による繊維焌結䜓(A)ず埓来
のニツケル粉末焌結䜓(B)ずの现孔埄分垃を瀺すも
ので、本発明は10Ό以䞊の现孔埄を倧半占めるこ
ずがわかる。 䜎枩℃〜高枩45℃にわた぀おバランスのずれ
た電解液は氎酞化ナトリりム芏定付近、氎酞化
リチりム芏定付近の混合溶液ず考えられる。 以䞊のごずく、本発明は繊維の特性、掻物質の
充填方法、電解液の組成等総合的な改良を行い、
埓来の焌結匏電池をしのぐ高容量密床の電池を実
珟させるこずに成功したものであり、工業的䟡倀
ははなはだ倧なるものである。
[Table] (Note) A in the table is based on the battery configuration of the present invention and has a nominal capacity of 2300 mAh, and B in the table is a battery using a conventional sintered electrode plate and has a nominal capacity of 1800 mAh. is at 25℃1/10C to check the actual capacity.
This is the capacity when charged for 15 hours and discharged to a final voltage of 1.00V at 1/5C. indicates the performance according to the 45℃ induction light standard test, indicates the performance according to the 5℃ induction light standard test, and is 45 This shows the performance according to the °C emergency lighting standard test. The discharge voltage characteristics are also excellent as shown in FIG. The reason for this is that the utilization rate of the negative electrode active material of the present invention is about 7 to 10% higher than the conventional sinter method, and about 15% higher than the conventional paste method. It is thought that this is because, by reducing as much as possible, there is no negative polarization and perfect positive discharge characteristics can be exhibited. (Figure 4) Figure 5 shows the pore size distribution of the fiber sintered body (A) according to the present invention and the conventional nickel powder sintered body (B). It can be seen that it accounts for the majority. An electrolytic solution that is well-balanced at a low temperature of 5°C to a high temperature of 45°C is considered to be a mixed solution containing around 4N of sodium hydroxide and around 1N of lithium hydroxide. As described above, the present invention comprehensively improves fiber properties, active material filling method, electrolyte composition, etc.
This work succeeded in creating a battery with a higher capacity density than conventional sintered batteries, and its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第図、第図は本発明の繊維焌結䜓のニツケ
ルメツキの厚さによる特性倉化を瀺すもので、
が繊維方向、が繊維ず盎角方向である。第図
のは本発明の電池、は埓来の焌結匏極板䜿甚
電池の45℃誘導灯芏栌詊隓における攟電々圧特性
である。第図は本発明の負極板、は埓来の
焌結極板、は埓来のペヌスト匏極板の掻物質利
甚率倉化を瀺したものである。第図は氎銀ポロ
シメヌタヌによる焌結䜓の现孔埄分垃を衚わした
ものでがニツケル粉末焌結䜓、がニツケルメ
ツキ鉄繊維焌結䜓を瀺す。
Figures 1 and 2 show changes in characteristics depending on the thickness of the nickel plating of the fiber sintered body of the present invention.
is the fiber direction, and B is the direction perpendicular to the fibers. In FIG. 3, A shows the discharge voltage characteristics of the battery of the present invention and B shows the discharge pressure characteristics of the conventional battery using sintered electrode plates in the 45°C guide light standard test. FIG. 4A shows the change in the active material utilization rate of the negative electrode plate of the present invention, B shows the conventional sintered electrode plate, and C shows the conventional paste-type electrode plate. FIG. 5 shows the pore size distribution of the sintered body measured by a mercury porosimeter, where B indicates the nickel powder sintered body and A indicates the nickel-plated iron fiber sintered body.

Claims (1)

【特蚱請求の範囲】  線埄〜100Όの切削加工鉄繊維を䞀定方向
に繊維がならぶようにし、か぀ニツケルメツキ厚
みを2Ό以䞊ずした倚孔床90以䞊の焌結䜓に酞
化カドミりムを゚チレングリコヌル、む゜プロピ
ルアルコヌル、グリセリン等の氎を含たない有機
溶媒のみによ぀お、流動性を維持するペヌスト液
ずし10〜50Όの埮现孔からなる該焌結䜓に充填す
るこずによ぀お埗た負極板を甚いたこずを特城ず
する密閉型ニツケルカドミりム蓄電池。  方向性をも぀た繊維焌結䜓を䜿甚した負極板
をりズ巻き型密閉ニツケルカドミりム電池に䜿甚
する堎合、巻蟌み方向ず繊維方向を䞀臎させたこ
ずを特城ずする特蚱請求の範囲第項の密閉型ニ
ツケルカドミりム蓄電池。  䜿甚電解液の組成が3.5〜4.5芏定の氎酞化リ
チりムず0.5〜1.0芏定の氎酞化リチりムを含む混
合氎溶液であるこずを特城ずする特蚱請求の範囲
第項蚘茉の密閉型ニツケルカドミりム蓄電池。
[Scope of Claims] 1 Cutting iron fibers with a wire diameter of 4 to 100Ό are arranged in a certain direction, and a sintered body with a porosity of 90% or more with a nickel plating thickness of 2Ό or more is coated with cadmium oxide and ethylene glycol. A negative electrode plate obtained by forming a paste solution that maintains fluidity using only a water-free organic solvent such as isopropyl alcohol or glycerin and filling the sintered body with micropores of 10 to 50Ό. A sealed nickel cadmium storage battery characterized by the use of a sealed nickel cadmium storage battery. 2. Claim 1, characterized in that when a negative electrode plate using a directional fiber sintered body is used in a spiral-wound sealed nickel cadmium battery, the winding direction and the fiber direction are made to match. sealed nickel cadmium storage battery. 3. The sealed nickel-cadmium storage battery according to claim 1, wherein the electrolytic solution used is a mixed aqueous solution containing 3.5-4.5N lithium hydroxide and 0.5-1.0N lithium hydroxide.
JP5213280A 1980-04-19 1980-04-19 Sealed nickel-cadmium storage battery Granted JPS56149767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5213280A JPS56149767A (en) 1980-04-19 1980-04-19 Sealed nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5213280A JPS56149767A (en) 1980-04-19 1980-04-19 Sealed nickel-cadmium storage battery

Publications (2)

Publication Number Publication Date
JPS56149767A JPS56149767A (en) 1981-11-19
JPH0121588B2 true JPH0121588B2 (en) 1989-04-21

Family

ID=12906333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5213280A Granted JPS56149767A (en) 1980-04-19 1980-04-19 Sealed nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JPS56149767A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151801B2 (en) * 1995-06-19 2001-04-03 䜏友電気工業株匏䌚瀟 Battery electrode substrate and method of manufacturing the same

Also Published As

Publication number Publication date
JPS56149767A (en) 1981-11-19

Similar Documents

Publication Publication Date Title
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP2015520914A (en) Battery electrode material
US4263383A (en) Zinc electrode
JP2000048823A (en) Non-sintering type electrode and manufacture thereof
EP0803922B1 (en) Method of producing an alkaline battery using spongy metal substrate
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP2008078037A (en) Electrode substrate for battery and electrode for battery
JPH0121588B2 (en)
JPS645421B2 (en)
EP0448854A1 (en) Improved method of making a nickel hydroxide-containing cathode for alkaline batteries
JP2981538B2 (en) Electrodes for alkaline batteries
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
CN112349911B (en) Porous metal current collector, preparation method, negative electrode and battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS60143569A (en) Positive plate for alkaline battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
CN116162974A (en) Preparation method of nano porous zinc and application of nano porous zinc in zinc battery
JP3015455B2 (en) Electrode plate for battery
JP4085434B2 (en) Alkaline battery electrode
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JPH0582027B2 (en)
JP2002298838A (en) Method of producing nickel positive electrode for alkaline storage battery