JPH01215066A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01215066A
JPH01215066A JP63041253A JP4125388A JPH01215066A JP H01215066 A JPH01215066 A JP H01215066A JP 63041253 A JP63041253 A JP 63041253A JP 4125388 A JP4125388 A JP 4125388A JP H01215066 A JPH01215066 A JP H01215066A
Authority
JP
Japan
Prior art keywords
layer
insulating film
wiring layer
wiring
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63041253A
Other languages
Japanese (ja)
Other versions
JP2676764B2 (en
Inventor
Toshihiko Kondo
俊彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63041253A priority Critical patent/JP2676764B2/en
Priority to KR1019880004752A priority patent/KR920007787B1/en
Priority to US07/202,649 priority patent/US5075762A/en
Publication of JPH01215066A publication Critical patent/JPH01215066A/en
Priority to US07/531,672 priority patent/US5191402A/en
Priority to US08/487,352 priority patent/US5612557A/en
Application granted granted Critical
Publication of JP2676764B2 publication Critical patent/JP2676764B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the degree of integration by arranging a conductor layer composed of one layer or two or more of these layers of combination in a high melting- point metal or an silicide or a nitride thereof on a contact section of a diffusion layer under a second wiring layer. CONSTITUTION:An insulating film 4 is formed onto the surface of a P-type semiconductor substrate 1, and a gate electrode layer consisting of a polycide layer is shaped. A resist pattern 12 is formed onto an insulating film 5 shaped onto the gate electrode layer 7, and the insulating film 5 is removed through reactive etching. A gate electrode 3 is formed through reactive etching, and the pattern 12 is gotten rid of. An N<-> layer is shaped through ion implantation, using the gate electrode 3 as a mask. An inter-layer insulating film 6a formed on the whole surface on the gate electrode 3, and sidewalls 6 are shaped on the sidewalls of the gate electrode 3 through reactive etching. An N<+> layer is formed by employing ion implantation. An inter-layer insulating film 10 is shaped, one parts of the insulating film 5 and the sidewall 6 are taken off through etching, and an opening section 9 is formed. Conductor layers 13 made up of multilayers composed of a high melting-point metal or these silicide or nitride are shaped, and a wiring layer 8 is formed onto the layers 13. Accordingly, the degree of integration can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置特にLDD(Lightly 
 Doped  Drain)構造を有するMOS型半
導体装置の構造及びこれを用いたマスクROM及びこの
マスクROMを用いた集Vi回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention is applicable to semiconductor devices, particularly LDDs (Lightly Devices).
The present invention relates to a structure of a MOS type semiconductor device having a doped drain structure, a mask ROM using the same, and a integrated Vi circuit using the mask ROM.

〔従来の技術〕[Conventional technology]

従来のMOS型半導体装置の構造及び製造工程を−を用
いて説明する。
The structure and manufacturing process of a conventional MOS type semiconductor device will be explained using -.

第6図及び第7図に、従来の構造及び接続部を示す6図
において、1は第一導電型の基板、2は第二導電型の拡
散層、2aは該拡散層の濃度の低い領域、2bは該拡散
層の濃度の′高い領域、3はゲート電極、4はゲート絶
縁膜、5は層間絶縁膜、6はサイドウオール、7は第一
の配線層、8は第二の配線層、9は接続部(コンタクト
部)である。
6 and 7 show a conventional structure and a connecting part, 1 is a substrate of the first conductivity type, 2 is a diffusion layer of the second conductivity type, and 2a is a low concentration region of the diffusion layer. , 2b is a region with a high concentration of the diffusion layer, 3 is a gate electrode, 4 is a gate insulating film, 5 is an interlayer insulating film, 6 is a side wall, 7 is a first wiring layer, and 8 is a second wiring layer. , 9 are connection parts (contact parts).

LDD構造とは、第4図に示すごとく、第二導電型から
なる拡散層2が濃度の低い領域2aと、濃度の高い領域
2bからなり、領域2aの濃度が低いためチャンネル領
域すなわちゲート絶縁膜4の下へ拡散が広がらずチャン
ネル長が確保でき、またこの領域2aによりこの部分の
抵抗が領域2bより高くなるためドレイン近傍で生ずる
電界を緩和し、この電界によってトレイン近傍上のゲー
ト絶縁膜中にキャリアが注入し捕獲されることにより生
ずる閾値等のトランジスタ特性の劣化いわゆるホットキ
ャリア現象を抑制できるため微細化に適するものである
In the LDD structure, as shown in FIG. 4, the diffusion layer 2 of the second conductivity type consists of a region 2a with a low concentration and a region 2b with a high concentration. The channel length can be secured without diffusion spreading under the train 4, and since this region 2a makes the resistance of this part higher than that of the region 2b, the electric field generated near the drain is relaxed, and this electric field causes the inside of the gate insulating film near the train to be It is suitable for miniaturization because it can suppress the so-called hot carrier phenomenon, which is the deterioration of transistor characteristics such as threshold value that occurs when carriers are injected and captured.

また製造方法を、第8図(a)図から第8(e)図に示
す、第8(a)図は、従来の方法によりグー1〜電[3
をゲート絶縁膜4上に形成し、次に第8(b)図のよう
に濃度の低い拡散領域2aを形成し、さらに第8(c)
図のようにサイドウオールを形成するための眉間絶縁l
B16aを形成し、次いで異方性エツチングにより第8
(d)図のようにサイドウオール6を形成し、次に第8
(e)図のように濃度の高い拡散領域2bを形成するも
のであり、以上がLDD構造の形成方法である。
The manufacturing method is shown in FIG. 8(a) to FIG. 8(e).
is formed on the gate insulating film 4, then a low concentration diffusion region 2a is formed as shown in FIG. 8(b), and then a diffusion region 2a with a low concentration is formed as shown in FIG.
Glabellar insulation l to form sidewalls as shown
B16a and then anisotropically etched the eighth
(d) Form the sidewall 6 as shown in the figure, then the 8th
(e) As shown in the figure, a highly concentrated diffusion region 2b is formed, and the above is the method for forming the LDD structure.

〔発明が解決しようとす本課題〕[The problem that the invention seeks to solve]

以上の如き従来のMO8型半導体装置の問題点として、
次の点が挙げられる。
The problems with the conventional MO8 type semiconductor device as described above are as follows.
The following points can be mentioned.

(1)第7図に示す如く、2層間の接続部9は従来穴状
の開口部を形成じていたが、そのため開口部9と1層目
配線層7の金属が短絡しないようにフォトリソグラフィ
ーの組合わせ余裕aが必要であった。このことは高集積
化する上で、余裕aが露光装置の能力で決定されるため
単純に小さく出来す、ネックとなっていた。
(1) As shown in FIG. 7, the connecting portion 9 between the two layers has conventionally formed a hole-shaped opening, but photolithography is required to prevent short-circuiting between the opening 9 and the metal of the first wiring layer 7. A combination margin a was required. This has been a bottleneck in achieving high integration, as the margin a is determined by the capability of the exposure device, and can therefore simply be made smaller.

(2)前項と同様の理由で、組合わせ余裕aのために、
2層目配線層8の長さが縮小出来ず、この抵抗による伝
搬遅延のため高速化が出来ない。
(2) For the same reason as in the previous section, for the combination allowance a,
The length of the second wiring layer 8 cannot be reduced, and the propagation delay due to this resistance makes it impossible to increase the speed.

〈3)前記(1)項と同様の理由で、組合わせ余裕aに
より寄生拡散容量が小さくならず高速化が出来ない。
(3) For the same reason as in the above (1), the parasitic diffusion capacitance is not reduced due to the combinational margin a, and high speed cannot be achieved.

これらは、特に工程中でデーターが書き込まれる読み出
し専用メモリーいわゆるマスクROMやこれを内蔵する
集積回路に顕著で大容量化に伴ない集積化できない大き
な原因となっていた。
These problems are particularly noticeable in read-only memories, so-called mask ROMs, in which data is written during the process, and integrated circuits containing the same, and have been a major reason for the inability to integrate them as the capacity increases.

本発明はかかる課題を解決した半導体装置、マスクRO
M、およびマスクROMを内蔵する集積回路を提供する
ことを目的とするものである。
The present invention is a semiconductor device and a mask RO that solves such problems.
An object of the present invention is to provide an integrated circuit incorporating a mask ROM and a mask ROM.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、LDD構造を有するM OS型半導体装置で
、第一導電型からなる基板上に形成された第二導電型か
らなる拡散層と多結晶シリコンまたは高融点金属または
シリサイドまたは該多結晶シリコンと該高融点金属また
は該シリサイドとの組合せからなるポリサイドからなる
第一の配線層と多結晶シリコンまたは高融点金属または
シリサイドまたはポリサイドまたは金属等からなる第二
の配線層からなり、該拡散層と該第二の配線層の接続部
から該LDD構造を有する第一の配線層からなるゲート
電極部と隣接しかつ該第二の配線層がこの部分にて、該
第一の配線層と交差する構造において、該第二の配線層
と前記拡散層との該接続部の開孔部が、該拡散層のシリ
コン表面と該電極部の側壁絶縁膜との境界より大きく形
成されていることからなることを特徴とする半導体装置
において、少なくとも該第二の配線層の下部の該拡散層
の接触部分に高融点金属または該高融点金属のシリサイ
ドまたは該高融点金属の窒化物のうちの一層またはこれ
らの二層以上の組合せからなる導体層を配置してなるこ
とを特徴とする半導体装置であり、さらに前記拡散層と
前記第二の配線層との接続部において、該拡散層のシリ
コン表面が該第二の配線層の幅より大きいことを′J4
徴とする半導体装置であり、またこのはそ導体装置から
なることを特徴とするマスクROMであり、このマスク
R−OMを用いることを特徴とする集積回路である。
The present invention relates to a MOS type semiconductor device having an LDD structure, in which a diffusion layer of a second conductivity type formed on a substrate of a first conductivity type and a polycrystalline silicon, a high melting point metal, a silicide, or the polycrystalline silicon. A first wiring layer made of polycide made of a combination of and the high melting point metal or the silicide, and a second wiring layer made of polycrystalline silicon, the high melting point metal, silicide, polycide, metal, etc., and the diffusion layer and A connecting portion of the second wiring layer is adjacent to a gate electrode portion of the first wiring layer having the LDD structure, and the second wiring layer intersects with the first wiring layer at this portion. In the structure, the opening of the connection portion between the second wiring layer and the diffusion layer is formed larger than the boundary between the silicon surface of the diffusion layer and the sidewall insulating film of the electrode portion. In the semiconductor device, at least a layer of a high melting point metal, a silicide of the high melting point metal, a nitride of the high melting point metal, or a layer thereof is provided in a contact portion of the diffusion layer under the second wiring layer. A semiconductor device is characterized in that a conductor layer is arranged, which is a combination of two or more layers, and further, in a connection portion between the diffusion layer and the second wiring layer, the silicon surface of the diffusion layer is 'J4 is larger than the width of the second wiring layer.
The present invention is a semiconductor device characterized by a characteristic semiconductor device, a mask ROM characterized by being composed of this diagonal conductor device, and an integrated circuit characterized by using this mask R-OM.

〔作 用〕[For production]

従来方法では、1層目配線間隔は第7図に示す如く、1
+2aとなる。ここで、 に一層目配線層間の開口部の大きさ a:合わせ余裕 しかしながら、本発明方法では、合わせ余裕を取る必要
がなく、第2図に示す如く加工制限される最小の配線間
隔でよい。
In the conventional method, the first layer wiring spacing is 1 as shown in Figure 7.
It becomes +2a. Here, the size a of the opening between the first wiring layers is the alignment margin.However, in the method of the present invention, there is no need to provide alignment margin, and the minimum wiring spacing that is subject to processing restrictions as shown in FIG. 2 is sufficient.

例えば、1層目の線幅及び間隔を夫々1.2μm、1.
2μm、合わせ余裕aを1.0μm、jを1.2μmと
すると、 従来方法: j +2a =(1,2+1.0X2)μ
m=3.2 μm本発明法=1.2μm となり、本発明の場合、従来法の約半分以下となる。
For example, the line width and interval of the first layer are respectively 1.2 μm and 1.2 μm.
2μm, alignment margin a is 1.0μm, j is 1.2μm, conventional method: j +2a = (1,2+1.0X2)μ
m = 3.2 μm, method of the present invention = 1.2 μm, and in the case of the present invention, the thickness is about half or less than that of the conventional method.

本発明の半導体装置は以上の如く構成したので、チップ
面積が縮小出来、この分だけソース又はドレインの拡散
層の拡散面積が縮小され寄生8呈が減少する。又同様に
この分だけ2層目の配線長が短くなり、配線抵抗が小さ
くなって、伝搬遅延が減少出来、高速化成コス1〜化に
対応出来る。
Since the semiconductor device of the present invention is constructed as described above, the chip area can be reduced, and the diffusion area of the source or drain diffusion layer is reduced accordingly, thereby reducing parasitics. Similarly, the wiring length of the second layer is shortened by this amount, the wiring resistance is reduced, the propagation delay is reduced, and high-speed conversion cost can be reduced.

〔実 施 例〕〔Example〕

本発明の実施例をNチャンネル型MOSFETに適用し
た例について説明する。
An example in which an embodiment of the present invention is applied to an N-channel MOSFET will be described.

第1図および第2図はそれぞれ本発明の半導体装置およ
びその接続部分の説明図である。
FIG. 1 and FIG. 2 are explanatory diagrams of a semiconductor device of the present invention and its connection parts, respectively.

南国に於いて、第6図〜第8図中の符号と同符号は同−
又は相当部分を示すので繰返しの説明を省略する0図に
於いて、5は第2の配線層3上に一這択的に形成された
眉間絶縁膜、11は開口部9内のゲート電[13の側壁
絶縁膜である。13は第1および第2の配線層間に配置
された導体層である。
In the southern countries, the same symbols as those in Figures 6 to 8 are the same.
In FIG. 0, which shows a corresponding portion and will not be described repeatedly, 5 is an insulating film between the eyebrows selectively formed on the second wiring layer 3, and 11 is a gate electrode in the opening 9. This is the sidewall insulating film of No. 13. 13 is a conductor layer arranged between the first and second wiring layers.

第1図に於いて1はシリコン単結晶からなるP′型半導
体基板又はN−型半導体基板上に形成されたP−領域で
あり、2はN“型の拡散層で2aは濃度の低い拡散層で
、2bは濃度の高い拡散層である。3は第1の配線金属
で、多結晶シリコンMO,W等の高融点金属、Mo5t
、WSi、TiSi等のシリサイドが用いられ、第2図
ではゲート電極部と示している。4は主としてゲート絶
縁膜として用いられる基板1上に形成される8102な
どの絶縁膜、5は第1の配線3上に選択的に設けられた
5i02 、Si”s N4等の眉間絶縁膜であり、こ
れにより第1と第2の配線の分離しており、単に従来技
術のみで第2図に示す様な開口部を形成すれば2つの配
線層はゲートt@3上で短絡してしまう、ゆえにこの層
間絶縁WA5の形成が本発明のポイン1へであり、この
点は後述する製造方法の実施例の中で説明する。またこ
の膜5は熱酸化やCVD法により形成された5i02又
はCVD法で形成された3i3N4等の絶縁膜が用いら
れる。6は主として第1の配線M3の両側面部に異方性
エツチングにより設けられたサイドウオールであり、ゲ
ート電極部に於いてはソースおよびドレインとして用い
られる一対の半導体領域をより隔離し実効チャンネル長
を十分確保するために用いられる。
In Fig. 1, 1 is a P- region formed on a P' type semiconductor substrate or an N- type semiconductor substrate made of silicon single crystal, 2 is an N'' type diffusion layer, and 2a is a low concentration diffusion layer. In the layer, 2b is a high concentration diffusion layer.3 is the first wiring metal, which is a high melting point metal such as polycrystalline silicon MO, W, etc., or Mo5t.
, WSi, TiSi, or the like is used, and is shown as a gate electrode portion in FIG. 4 is an insulating film such as 8102 formed on the substrate 1 which is mainly used as a gate insulating film, and 5 is a glabellar insulating film such as 5i02 or Si's N4 selectively provided on the first wiring 3. As a result, the first and second wiring layers are separated, and if an opening as shown in FIG. 2 is simply formed using conventional techniques, the two wiring layers will be short-circuited on the gate t@3. Therefore, the formation of this interlayer insulation WA5 is the first point of the present invention, and this point will be explained in the embodiment of the manufacturing method described later.Also, this film 5 is formed by thermal oxidation or CVD method or CVD method. An insulating film such as 3i3N4 formed by a method is used. Reference numeral 6 denotes a side wall provided by anisotropic etching mainly on both sides of the first wiring M3, and in the gate electrode part, it is used as a source and a drain. It is used to further isolate the pair of semiconductor regions used and to ensure a sufficient effective channel length.

また10は第一の配線層と第2の配線層との眉間絶縁膜
であり、11は第1の配線層と第2の配線WA8との接
触をとる開口部内にあるゲート電極3の側壁の絶縁膜で
ゲート絶縁膜4の上部に異方性エツチングにより形成さ
れた側壁絶縁膜であり、この側壁絶縁膜は第1としてL
DDm造のサイドウオール、第2としてこのサイドウオ
ールと層間絶縁膜10を異方性エツチングで開口部(第
2図に於いては9)を形成する際に該サイドウオールと
同様のメカニズムにて形成されるry!1N絶縁膜との
組み合わせによってできる側壁絶縁膜であり、これらの
違いが該開口部のエツチングの際のオーバーエツチング
により説明される。つまりオーバーエツチングが長いと
層間絶縁膜10がゲート電極3のrm壁に於いても全て
エツチングされ側壁絶縁膜11はサイドウオールのみと
なり逆にエツチングの量をへらすと第2の状態となる。
Further, 10 is an insulating film between the eyebrows of the first wiring layer and the second wiring layer, and 11 is a side wall of the gate electrode 3 in the opening that makes contact between the first wiring layer and the second wiring WA8. This sidewall insulating film is an insulating film formed on the upper part of the gate insulating film 4 by anisotropic etching.
The sidewall of the DDm structure is formed by the same mechanism as the sidewall when forming the opening (9 in FIG. 2) by anisotropic etching the sidewall and the interlayer insulating film 10. It will be done! This is a sidewall insulating film formed in combination with a 1N insulating film, and the difference between these is explained by overetching during etching of the opening. In other words, if the over-etching is long, the interlayer insulating film 10 will be completely etched even on the rm wall of the gate electrode 3, and the sidewall insulating film 11 will become only the sidewall. Conversely, if the amount of etching is reduced, the second state will occur.

また13は第一の配線と第2の配線との間に形成された
高融点金属またはそのシリサイド又はその窒化物のうち
1ないし2つの組み合わせからなる導体層で、これがな
いと、たとえば第4図の様に第2の配線層がAL等のS
Lと低温で反応しやすい金属の場合、側壁絶縁膜11と
Si表面との境界近傍(図中矢印部)でAL等の金属が
第2層目配線層の熱処理により拡散層2−a又は2aと
2bとの境界部をつき抜けてしまう、ゆえに、これを防
止するなめ導体層13を形成する。この導体層はTi、
W、MO等の高融点金属又はそのシリサイド、又は窒化
物が適し、これらのうち−屑でも良いし、2種以上の組
み合わせでも良い、またこの導体層は第2の配線層下全
体に形成しても良いし、第1および第2の配線層間の接
続部分のSi表面上のみに形成しても良い、一方これに
より、前記第一と第2の配a層の接続部分の接触抵抗も
下げることができる。
Reference numeral 13 denotes a conductor layer formed between the first wiring and the second wiring and made of a combination of one or two of a high melting point metal, a silicide thereof, or a nitride thereof. As shown in the figure, the second wiring layer is S such as AL.
In the case of a metal that easily reacts with L at low temperatures, the metal such as AL forms a diffusion layer 2-a or 2a near the boundary between the sidewall insulating film 11 and the Si surface (arrowed part in the figure) due to heat treatment of the second wiring layer. Therefore, a diagonal conductor layer 13 is formed to prevent this from penetrating through the boundary between and 2b. This conductor layer is made of Ti,
Refractory metals such as W and MO, their silicides, or nitrides are suitable; scraps or a combination of two or more of these metals may be used; this conductor layer may be formed entirely under the second wiring layer. Alternatively, it may be formed only on the Si surface of the connecting portion between the first and second interconnection layers.On the other hand, this also reduces the contact resistance of the connecting portion of the first and second wiring layers. be able to.

さらに導体層13は、第2の配線層とのエツチングの際
の選択比が大きいものを用いれば(たとえば第2配線層
がPo1y−siで導体層がMOStなど)第5図(a
)(b)の様に第2の配線層8が開口部9に於いてその
Si表面より、配線幅が小さいとき、第2配線層のエツ
チングの際、Si表面がエツチングされて溝ができたり
、これによりALが断線するなどの不具合が生じない。
Furthermore, if the conductor layer 13 has a high etching selectivity with respect to the second wiring layer (for example, the second wiring layer is Poly-Si and the conductor layer is MOSt), as shown in FIG.
) When the wiring width of the second wiring layer 8 is smaller than that of the Si surface in the opening 9 as shown in (b), when the second wiring layer is etched, the Si surface is etched and a groove is formed. , This prevents problems such as AL disconnection.

(尚、14は素子分離絶縁膜である。)本発明の半導体
装置は第一図に示すが如く、(1)開口部9は第1図に
示す様に、基板表面に於いて拡散層領域とサイドウオー
ル又は側壁絶縁膜11の境界より大きく形成され、これ
によってデザインルール上の合わせ余裕を全くとってい
ない。
(14 is an element isolation insulating film.) As shown in FIG. 1, the semiconductor device of the present invention has the following features: (1) As shown in FIG. This is formed to be larger than the boundary between the sidewall or the sidewall insulating film 11, and as a result, there is no margin for alignment based on design rules.

しかし、パターン上では、合わせ余裕aはなくすことが
できるが、フォトリソグラフィーの第一の配線層7と開
口部9との合わせズレはまだ存在し、それにより第一と
第2の配線層の間の開口部9内の実質的な接触面積が小
さくなってしまい、接触抵抗が大きくなってしまう、こ
のため開口部9の1層目配線1m7の上部まで至るよう
にすることによりこの合わせズレを回避できた。
However, although the alignment margin a can be eliminated on the pattern, there is still a misalignment between the first wiring layer 7 and the opening 9 formed by photolithography. The actual contact area within the opening 9 becomes smaller and the contact resistance increases. Therefore, by making the opening 9 reach the top of the first layer wiring 1m7, this misalignment can be avoided. did it.

(2)上記(1)の様な構造を従来の工程に於いて導入
すると第一と第2の配線層が短絡してしまう。
(2) If a structure like the above (1) is introduced in a conventional process, the first and second wiring layers will be short-circuited.

ゆえに第1の配線層上にのみ選択的に絶縁[5を形成す
ることにより分離している。
Therefore, isolation is achieved by selectively forming an insulator [5] only on the first wiring layer.

(3)また第1の配線層の側面に於いては、サイドウオ
ールまたは側壁絶縁膜である11によって、第2の配線
層と自己整合的に分離している。
(3) Also, on the side surface of the first wiring layer, it is separated from the second wiring layer in a self-aligned manner by a sidewall or a sidewall insulating film 11.

(4)また第二の配線層と拡散層との接続部で両者の間
に高融点金属、またはこれのシリサイド又はこれの窒化
物のうち1層ないし2層の組み合わせによる導体層を有
する。
(4) Further, at the connection portion between the second wiring layer and the diffusion layer, there is provided a conductor layer between them, which is made of a combination of one or two layers of a high melting point metal, a silicide thereof, or a nitride thereof.

等、従来の装置と異なるものである。etc., which is different from conventional devices.

次に第3図<a)〜第3図(j! ’)に基づいて、本
発明の半導体装置の製造方法の一実施例について述べる
Next, an embodiment of the method for manufacturing a semiconductor device of the present invention will be described based on FIGS. 3<a) to 3(j!').

図において12はフォトレジストパターンである。In the figure, 12 is a photoresist pattern.

本発明の半導体装置の製造方法は、 (1)先ず、第3図(a)に示す如く、p型の半導体基
板1の表面にゲート絶縁膜4を形成した後、酸化膜多結
晶シリコン層又は高融責合1!J!又はこの2つの組合
せからなるポリサイド層のゲート電極層(IXjI目配
fa層7)を形成する。
The method for manufacturing a semiconductor device of the present invention is as follows: (1) First, as shown in FIG. 3(a), after forming a gate insulating film 4 on the surface of a p-type semiconductor substrate 1, High loan agreement 1! J! Alternatively, a gate electrode layer (IXjI matrix fa layer 7) of a polycide layer made of a combination of these two is formed.

(2)次に第3図(b)に示す如く、ゲート電極層7上
にCVDにより絶縁WA5を形成する。(この場合、又
はゲート電極7層の酸化熱処理等によってもよく、膜と
しては3i02 、Si3 Naを用いる。) −(3)第3図(c)に示す如く、絶縁膜5上にフォト
レジストパターン12を形成する。
(2) Next, as shown in FIG. 3(b), an insulation WA5 is formed on the gate electrode layer 7 by CVD. (In this case, the gate electrode 7 layer may be subjected to oxidation heat treatment, etc., and 3i02, Si3 Na is used as the film.) -(3) As shown in FIG. 3(c), a photoresist pattern is formed on the insulating film 5. form 12.

(4)第3図(d)に示す如く、反応性エツチング(R
IE)により、絶縁膜5をエツチング除去する0次に、
第3図(e)に示す如く、同じく反応性エツチングによ
りゲート′!:h%3を形成せしめ、フォトレジス1−
パターン12を除去する。
(4) As shown in Figure 3(d), reactive etching (R
IE) to remove the insulating film 5 by etching.
As shown in FIG. 3(e), gate ′! :h%3 and photoresist 1-
Remove pattern 12.

(5)第3図(f)に示す如く、ゲート電f!3をマス
クとして畢板1にP+又は”As+のイオン打込みによ
り、n−層(濃度の低い拡散層2a)を形成する。
(5) As shown in FIG. 3(f), the gate voltage f! 3 as a mask, an n- layer (low concentration diffusion layer 2a) is formed by ion implantation of P+ or As+ into the base plate 1.

(6)第3図(g)に示す如く、CVDによりF−間絶
縁膜6aをゲート電極3上全面に形成する。
(6) As shown in FIG. 3(g), an F-inter insulating film 6a is formed over the entire surface of the gate electrode 3 by CVD.

この絶縁膜はSiO2又はSi3N4を用いる。This insulating film uses SiO2 or Si3N4.

(7)第3図(h)に示す如く、全面を反応性エツチン
グにより全面エツチング除去し、サイドウオール6をゲ
ート電極3の側壁に形成する。
(7) As shown in FIG. 3(h), the entire surface is etched away by reactive etching to form sidewalls 6 on the sidewalls of the gate electrodes 3.

(8)次に、第3図(i)に示す−如く、基板1に31
P1又は”As+のイオン打込みを用いてn”層(濃い
拡散層2b)を形成する。
(8) Next, as shown in FIG. 3(i), 31
An n layer (dense diffusion layer 2b) is formed using P1 or As+ ion implantation.

(9)第3図(j)に示す如く、CVDにより眉間絶縁
膜10を形成する。この膜は5i02、又はSi3N4
を用いる。
(9) As shown in FIG. 3(j), a glabellar insulating film 10 is formed by CVD. This film is 5i02 or Si3N4
Use.

(10)第3図(k)に示す如く、前記層間絶縁膜10
の所定部分の下の眉間絶縁膜5及びサイドウオール6一
部をエツチングにより除去し、サイドウオール11及び
接続部の開口部9を形成する。
(10) As shown in FIG. 3(k), the interlayer insulating film 10
A part of the glabellar insulating film 5 and the sidewall 6 under a predetermined portion of is removed by etching to form the sidewall 11 and the opening 9 of the connection part.

尚、このとき層間絶縁膜5、サイドウオール6形成時の
オーバエツチング層、層間絶縁膜10と接続部の開口部
つとエツチング条件を!&適化することにより1層目配
線N7と2層目配線層8間の絶縁膜5又は11が膜の最
小で500Å以上に調節することにより両者間のリーク
を防止し、耐圧の確保をする。
At this time, the etching conditions for the interlayer insulating film 5, the overetching layer when forming the sidewall 6, the interlayer insulating film 10, and the opening of the connection part are as follows! By adjusting the insulation film 5 or 11 between the first wiring layer N7 and the second wiring layer 8 to a minimum thickness of 500 Å or more, leakage between the two can be prevented and a breakdown voltage can be ensured. .

(11)fi後に、第3図(1)に示す如く、MOlW
、Ti等の高融点金属、またはこれらのシリサイド、ま
たはこれらの窒化物からなる導体層の一層または二層以
上の組み合わせからなる多層の導体層をスパッタリング
、またはCVD法により形成し、さらにその上に第2の
配線層を形成する。
(11) After fi, as shown in Figure 3 (1), MOLW
A multilayer conductor layer consisting of one or a combination of two or more conductor layers made of a high melting point metal such as , Ti, silicide, or nitride of these is formed by sputtering or CVD, and then A second wiring layer is formed.

この際、第二の配線層下全面にこの導体層を形成すると
きには前記導体層の形成と第二の配線層の形成を連続的
に行い、レジストパターン形成後、第二の配線層のエツ
チングと導体層のエツチングを一度に行うか、又は2段
階でエツチングしてこの構造が形成できる。このとき同
時にエレクトロマイグレーションの耐性の向上も実現で
きる。
At this time, when forming this conductor layer on the entire surface under the second wiring layer, the formation of the conductor layer and the formation of the second wiring layer are performed continuously, and after the resist pattern is formed, the etching and etching of the second wiring layer are performed. This structure can be formed by etching the conductor layer in one step or in two steps. At the same time, it is also possible to improve resistance to electromigration.

一方第二の配線層と拡散層のSi表面の間又はこの近傍
のみに導体層を形成をするときは第3図(k)状態で全
面に導体層を形成し、前者は熱処理によってSi表面の
みシリサイド化し、そののち選択エツチングにてSi表
面上にのみシリサイド膜を形成する方法があり、Tiな
どを用いると形成できる。また、後者は同機に導体層形
成後必要部分にのみレジストパターンを形成後その部分
のエツチングをした後、従来方法により2層目配線8を
形成することにより、本発明の構造が実現でき、さらに
これを用いたM A S K ROM、またこのM A
 S K ROMを内蔵する集積回路が実現できた。
On the other hand, when forming a conductor layer only between or near the Si surface of the second wiring layer and the diffusion layer, the conductor layer is formed on the entire surface in the state shown in Fig. 3 (k), and the former is only formed on the Si surface by heat treatment. There is a method of siliciding and then selectively etching to form a silicide film only on the Si surface, and this can be done by using Ti or the like. In the latter case, the structure of the present invention can be realized by forming a resist pattern only in the necessary part after forming the conductor layer on the same machine, etching that part, and then forming the second layer wiring 8 by the conventional method. MA S K ROM using this, also this MA
An integrated circuit with built-in S K ROM has been realized.

尚、本発明の実施例においては、P型基板又はN基板上
のP−領域に形成されるNチャンネルトランジスタの例
について述べたが当然N型基板又はP基板上に形成され
たN−領域上に形成されるPチャンネルトランジスタに
も適用できることはいうまでもない。
In the embodiments of the present invention, an example of an N-channel transistor formed in a P- region on a P-type substrate or an N-substrate has been described; Needless to say, the present invention can also be applied to P-channel transistors formed in

〔発明の効果〕〔Effect of the invention〕

本発明の半導体装置の構造を用いることにより、(1)
アライメント余裕を除くことができるため第1の配線間
の間隔が小さくなるため高密度化が実現できる。
By using the structure of the semiconductor device of the present invention, (1)
Since the alignment margin can be removed, the interval between the first wirings becomes smaller, so that higher density can be achieved.

(2)2層目配線長を短く出来るため配線抵抗が低減で
き配線遅延が減少できた。
(2) Since the length of the second layer wiring can be shortened, wiring resistance can be reduced and wiring delay can be reduced.

(3)拡散層面積が減少できたため、これにより拡散層
容量の低減とこれによる2層目配線の寄生容量が低減出
来高適化が実現できた。
(3) Since the area of the diffusion layer was reduced, it was possible to reduce the capacitance of the diffusion layer and the parasitic capacitance of the second layer wiring, thereby optimizing the yield.

(4)全体的にチップ面積が小さくなり同一ウニバー内
の有効チップ数が増加しコストが低減できた。
(4) The overall chip area became smaller, the number of effective chips in the same unit increased, and costs were reduced.

等、以上の様な特に高速化、低コスト化が金属のつき抜
けや加工上の不具合なしに可能となり、大きな一効果が
あった。
The above-mentioned speed-up and cost-reduction in particular became possible without metal penetration or processing problems, which had a great effect.

特にチップ面積に関しては、〔作 用〕で述べた例を用
いると、LM  biし MASK  ROMにおいて
、CBLL部分で一片方向が2.0μX1000=20
00μが縮小できた。
In particular, regarding the chip area, using the example described in [Function], in LM bi MASK ROM, one direction in the CBLL portion is 2.0 μ x 1000 = 20
00μ was able to be reduced.

また、この効果は同様にROMを内蔵する集積回路につ
いてもROM部分の面積の縮小を可能にしな。
Furthermore, this effect also makes it possible to reduce the area of the ROM portion of an integrated circuit incorporating a ROM.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の半導体装置およびその
接続部の説明図、第3図(a)〜(j )は本発明の詳
細な説明図、第4図および第5図(a)(b)は本発明
の構造の必要性の説明図、第6図および第7図は従来の
半導体装置の構造および接続部の説明図、第8図(a)
〜(e)は、LDD構造の説明図である。 1・・・Si基板 2・・・拡散層 2a・・・濃度の低い拡散層 2b・・・濃度の高い拡散層 3・・・第1の配線層のゲート電極部 4・・・デー1〜絶縁膜 5・・・第1の配線層上にのみ形成された絶縁膜 6・・・サイドウオール 6a・・・サイドウオールを形成するための絶縁膜 7・・・第1の配線層 8・・・第2の配線層 9・・・接続部 10・・・第1および第2の配線間の眉間絶縁膜 11・・・側壁絶縁膜 12・・・フォトレジスト 13・・・導体層 14・・・素子分離絶縁膜 尚、図中同符号は同−又は相当部分を示す。 以上 出願人 セイコーエプソン株式会社
1 and 2 are explanatory diagrams of the semiconductor device of the present invention and its connection parts, FIGS. 3(a) to (j) are detailed explanatory diagrams of the present invention, and FIGS. 4 and 5 (a). )(b) is an explanatory diagram of the necessity of the structure of the present invention, FIGS. 6 and 7 are explanatory diagrams of the structure and connection parts of a conventional semiconductor device, and FIG. 8(a) is an explanatory diagram of the necessity of the structure of the present invention.
-(e) are explanatory diagrams of the LDD structure. 1...Si substrate 2...Diffusion layer 2a...Low concentration diffusion layer 2b...High concentration diffusion layer 3...Gate electrode portion 4 of first wiring layer...Day 1~ Insulating film 5...Insulating film 6 formed only on the first interconnect layer...Side wall 6a...Insulating film 7 for forming the side wall...First interconnect layer 8...・Second wiring layer 9...Connection part 10...Glabella insulating film 11 between the first and second wirings...Side wall insulating film 12...Photoresist 13...Conductor layer 14... - Element isolation insulating film Note that the same reference numerals in the figures indicate the same or equivalent parts. Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)LDD構造を有するMOS型半導体装置で、第一
導電型からなる基板上に形成された第二導電型からなる
拡散層と多結晶シリコンまたは高融点金属またはシリサ
イドまたは該多結晶シリコンと該高融点金属または該シ
リサイドとの組合せからなるポリサイドからなる第一の
配線層と多結晶シリコンまたは高融点金属またはシリサ
イドまたはポリサイドまたは金属等からなる第二の配線
層からなり、該拡散層と該第二の配線層の接続部が該L
DD構造を有する第一の配線層からなるゲート電極部と
隣接しかつ該第二の配線層がこの部分にて、該第一の配
線層と交差する構造において、該第二の配線層と前記拡
散層との該接続部の開孔部が、該拡散層のシリコン表面
と該電極部の側壁絶縁膜との境界より大きく形成されて
いることからなることを特徴とする半導体装置において
、少なくとも該第二の配線層の下部の該拡散層の接触部
分に高融点金属または該高融点金属のシリサイドまたは
該高融点金属の窒化物のうちの一層またはこれらの二層
以上の組合せからなる導体層を配置してなることを特徴
とする半導体装置。
(1) A MOS semiconductor device having an LDD structure, in which a diffusion layer of a second conductivity type formed on a substrate of a first conductivity type, polycrystalline silicon, a high melting point metal, silicide, or the polycrystalline silicon is formed on a substrate of a first conductivity type. A first wiring layer made of polycide made of a high melting point metal or a combination with the silicide, and a second wiring layer made of polycrystalline silicon, a high melting point metal, silicide, polycide, metal, etc. The connection part of the second wiring layer corresponds to L.
In a structure in which the second wiring layer is adjacent to the gate electrode portion made of the first wiring layer having a DD structure and the second wiring layer intersects the first wiring layer at this portion, the second wiring layer and the first wiring layer are adjacent to each other. A semiconductor device characterized in that the opening of the connection portion with the diffusion layer is formed larger than the boundary between the silicon surface of the diffusion layer and the sidewall insulating film of the electrode portion. A conductor layer made of a refractory metal, a silicide of the refractory metal, or a nitride of the refractory metal, or a combination of two or more of these layers, is provided at the contact portion of the diffusion layer under the second wiring layer. A semiconductor device comprising:
(2)前記拡散層と前記第二の配線層との接続部におい
て、該拡散層のシリコン表面が該第二の配線層の幅より
大きいことを特徴とする第1項記載の半導体装置。
(2) The semiconductor device according to item 1, wherein at a connection portion between the diffusion layer and the second wiring layer, a silicon surface of the diffusion layer is larger than a width of the second wiring layer.
JP63041253A 1986-10-27 1988-02-24 Semiconductor device Expired - Lifetime JP2676764B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63041253A JP2676764B2 (en) 1988-02-24 1988-02-24 Semiconductor device
KR1019880004752A KR920007787B1 (en) 1987-06-09 1988-04-27 Manufacturing method of semiconductor and its device
US07/202,649 US5075762A (en) 1987-06-09 1988-06-07 Semiconductor device having an inter-layer insulating film disposed between two wiring layers and method of manufacturing the same
US07/531,672 US5191402A (en) 1986-10-27 1990-06-01 Semiconductor device having an inter-layer insulating film disposed between two wiring layers
US08/487,352 US5612557A (en) 1986-10-27 1995-06-07 Semiconductor device having an inter-layer insulating film disposed between two wiring layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041253A JP2676764B2 (en) 1988-02-24 1988-02-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01215066A true JPH01215066A (en) 1989-08-29
JP2676764B2 JP2676764B2 (en) 1997-11-17

Family

ID=12603277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041253A Expired - Lifetime JP2676764B2 (en) 1986-10-27 1988-02-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2676764B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669838B1 (en) * 2000-01-31 2007-01-18 챠터드 세미컨덕터 매뉴팩춰링 리미티드 Layout method for scalable design of the aggressive RAM cells using a poly-cap mask

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243452A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243452A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669838B1 (en) * 2000-01-31 2007-01-18 챠터드 세미컨덕터 매뉴팩춰링 리미티드 Layout method for scalable design of the aggressive RAM cells using a poly-cap mask

Also Published As

Publication number Publication date
JP2676764B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5447875A (en) Self-aligned silicided gate process
US5252502A (en) Method of making MOS VLSI semiconductor device with metal gate
JP3256048B2 (en) Semiconductor device and manufacturing method thereof
JPH022139A (en) Manufacture of integrated circuit
US6841472B2 (en) Semiconductor device and method of fabricating the same
US5247198A (en) Semiconductor integrated circuit device with multiplayered wiring
US5576572A (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH10189770A (en) Semiconductor device
US6787857B2 (en) Contact structure a semiconductor device and manufacturing method thereof
JPH06151736A (en) Semiconductor integrated circuit device and manufacture thereof
US7449749B2 (en) Semiconductor device for limiting leakage current
US6627528B1 (en) Semiconductor device and its manufacturing process
US6130463A (en) Field effect transistor and method of manufacturing same
JP4943576B2 (en) MIS field effect transistor and manufacturing method thereof
JP3419597B2 (en) Method for manufacturing semiconductor integrated circuit device
US20020093051A1 (en) Semiconductor device and process for same
JPH01215066A (en) Semiconductor device
JP2753301B2 (en) Semiconductor integrated circuit device
JP2666325B2 (en) Semiconductor device
JP3104322B2 (en) Semiconductor device
JPH01765A (en) semiconductor equipment
JPH0621374A (en) Complementary type semiconductor device
JP2701828B2 (en) Semiconductor device and manufacturing method thereof
JP3380069B2 (en) Method for manufacturing MOS semiconductor device
JPS61194764A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11