JPH01212717A - Operation of vacuum degassing treatment - Google Patents

Operation of vacuum degassing treatment

Info

Publication number
JPH01212717A
JPH01212717A JP63034979A JP3497988A JPH01212717A JP H01212717 A JPH01212717 A JP H01212717A JP 63034979 A JP63034979 A JP 63034979A JP 3497988 A JP3497988 A JP 3497988A JP H01212717 A JPH01212717 A JP H01212717A
Authority
JP
Japan
Prior art keywords
gas
molten steel
vacuum degassing
vacuum
degassing treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63034979A
Other languages
Japanese (ja)
Inventor
Mamoru Inoue
井上 衛
Hisaaki Kamiyama
久朗 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63034979A priority Critical patent/JPH01212717A/en
Publication of JPH01212717A publication Critical patent/JPH01212717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To reduce unit requirements of oxygen and a deoxidizing agent and to obtain high purity gaseous CO by stopping blowing into a converter at the time when the amt. of C in molten steel is slightly higher than that in an end product, allowing C to react with oxygen in the molten steel and producing gaseous CO by vacuum degassing treatment. CONSTITUTION:Inert gas or the like is blown into a converter and molten steel is subjected to vacuum degassing treatment. Blowing is stopped at the time when the amt. of C in the molten steel is slightly higher than that in an end product. Gaseous CO is then produced by carrying out vacuum degassing treatment until the desired amt. of C is attained. The produced gaseous CO is recovered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真空脱ガス設備でCOガスを発生せしめ、排
ガス中に含まれるCOガスを分離回収し、有効利用をは
かるための真空脱ガス処理の操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vacuum degassing process for generating CO gas in a vacuum degassing facility, separating and recovering the CO gas contained in the exhaust gas, and effectively utilizing the CO gas. Regarding operating methods.

従来の技術 真空脱ガス設備は、溶鋼の脱ガス以外にも溶鋼の品質向
上、成分適中率の向上1合金歩留の向上、溶鋼温度の均
一化など多目的に使用されている。
Conventional technology Vacuum degassing equipment is used for a variety of purposes other than degassing molten steel, such as improving the quality of molten steel, improving component accuracy, improving alloy yield, and uniformizing molten steel temperature.

真空脱ガス設備としては、RHと呼ばれる還流式脱ガス
設備などやD)Iと呼ばれるものなど種々のプロセスが
稼動しているが、原理的にはほぼ同一であるので、ここ
では還流式脱ガス設備を例にして以後述べることにする
Various processes are in operation as vacuum degassing equipment, such as reflux degassing equipment called RH and equipment called D)I, but since they are almost the same in principle, we will use reflux degassing equipment here. This will be explained below using equipment as an example.

脱ガスの原理は溶鋼が真空槽内を還流する時に、溶鋼中
に含有するガスが減圧下で溶解量が減少するために脱離
する現象を利用している。溶鋼を還流させる手段は、不
活性ガスを浸漬管(2本)の一方から吹き込み、エアー
リフトポンプの原理を利用して循環させている。不活性
ガスとして、Arガスや為ガスが一般に利用されるが、
低窒素鋼の製造を目的としてCOガスをAtガスと混合
して使用することも提案されている。
The principle of degassing utilizes the phenomenon that when molten steel flows back in a vacuum chamber, the gas contained in the molten steel is desorbed because the amount of dissolved gas decreases under reduced pressure. The means for refluxing the molten steel is to blow inert gas through one of the immersion pipes (two pipes) and circulate it using the principle of an air lift pump. Ar gas and mineral gas are generally used as inert gases, but
It has also been proposed to use CO gas mixed with At gas for the purpose of manufacturing low nitrogen steel.

真空脱ガス処理で使用されたArガスなどは、はとんど
の場合排ガスとして大気放散されていたのが現実であっ
た。
In reality, Ar gas and the like used in vacuum degassing treatment were, in most cases, released into the atmosphere as exhaust gas.

しかし、発生ガスの回収方法としては、転炉の吹錬中に
発生する転炉ガスを回収して燃料ガスとして活用する方
法が公知であるほか、特開昭50−98404にAOD
転炉からArガスの回収方法が、特開昭55−5041
8に底吹き転炉のAr回収方法が提案されている。しか
しながら、真空脱ガス設備で積極的にCOガスを発生さ
せ回収する操業方法については未だ見当らない。
However, as a method for recovering generated gas, there is a known method of recovering converter gas generated during converter blowing and utilizing it as fuel gas.
A method for recovering Ar gas from a converter was published in Japanese Patent Application Laid-Open No. 55-5041.
No. 8 proposes an Ar recovery method using a bottom-blown converter. However, no operational method has yet been found for actively generating and recovering CO gas using vacuum degassing equipment.

発明が解決しようとする課題 真空脱ガス設備は前記の如く、溶鋼の脱ガスのみならず
数多くの目的で使用されているが、真空脱ガス設備で発
生したガスを回収し、有効成分に分離して再活用すると
いう操業方法はほとんど考えられていなかった。特殊鋼
ばかりでなく一般鋼をも真空脱ガス設備で処理するよう
になったのは、連続鋳造設備の完備によって鋳造温度が
上昇したことや、合金歩留の向上を狙ったことによる。
Problems to be Solved by the Invention As mentioned above, vacuum degassing equipment is used for many purposes other than degassing molten steel. Almost no consideration had been given to the operation method of reusing the waste. The reason why not only special steel but also general steel began to be treated with vacuum degassing equipment was due to the rise in casting temperature due to the availability of continuous casting equipment, and the aim of improving alloy yield.

このように特殊処理としてではなく、通常の製鋼工程の
1つとして利用されてきている真空脱ガス処理の排ガス
処理として従来はとんど返り見られず、単に大気放散さ
れていたのは実に不経済なことであった0本発明は積極
的にCOガスを発生させ回収する操業方法を提供するも
のである。
It is indeed unfortunate that the exhaust gas treatment of vacuum degassing treatment, which has been used not as a special treatment but as one of the normal steelmaking processes, has rarely been seen in the past and has simply been released into the atmosphere. The present invention provides an operating method that actively generates and recovers CO gas.

課題を解決するための手段 本願発明の要旨は溶鋼を真空脱ガス処理するに際し、転
炉で溶鋼の最終C値より高めのCで吹止めを行ない、次
いで、真空脱ガス処理にてCOガスを生成せしめ、最終
C値になるよう処理を行ない、該生成したCOガスを回
収するようにした真空脱ガス処理の操業方法である。
Means for Solving the Problems The gist of the present invention is that when molten steel is subjected to vacuum degassing treatment, blow-stopping is performed in a converter at a higher C value than the final C value of the molten steel, and then CO gas is removed by vacuum degassing treatment. This is an operating method for vacuum degassing treatment in which CO gas is generated, treated to a final C value, and the generated CO gas is recovered.

作用 真空脱ガス設備から有効ガスを分離回収するに当って、
まず排ガスの分析を実施したところ、処理の初期にCO
ガスが多量に発生することが判明した。
Function When separating and recovering effective gas from vacuum degassing equipment,
First, we analyzed the exhaust gas and found that CO
It was found that a large amount of gas was generated.

すなわち溶鋼中の9と9の平衡溶解度曲線は第2図に知
られる如く、圧力によって大きく変化する。転炉の吹き
止めをA点、真空脱ガス槽の真空度を 100Torr
とすれば、 C+O→ CO の反応を起こしながらA点→B点へ変化し、COガスが
発生する。したがって目標のカーボン値を3点とするよ
うに転炉の吹き止めカーボン値をA点に制御すればよく
、これによって、必要酸素量を低減できるばかりでなく
、高価なMなどの脱酸剤の使用量も削減が可能である。
That is, the equilibrium solubility curve of 9 and 9 in molten steel changes greatly depending on the pressure, as shown in FIG. The blow stop of the converter is set to point A, and the vacuum degree of the vacuum degassing tank is set to 100 Torr.
Then, the reaction changes from point A to point B while causing the reaction C+O→CO, and CO gas is generated. Therefore, it is only necessary to control the blow-stop carbon value of the converter to point A so that the target carbon value is 3 points.This not only reduces the amount of oxygen required, but also reduces the need for expensive deoxidizers such as M. The amount used can also be reduced.

しかも発生したCOは回収して精製し、脱窒素処理など
に有効に利用すれば一石二鳥の効果である。
Moreover, if the generated CO is recovered, purified, and effectively used for denitrification treatment, it will be possible to kill two birds with one stone.

第3図に真空脱ガス処理における代表的な排ガス成分変
化を示す、COガス成分は処理開始の1分前後から急激
に上昇し、徐々に減少してゆく、効率よ<GOを分離す
るにはこの初期排ガスを選択的に回収するのが望ましい
、一方Arガスは吹き込みガスが一定であるので最後ま
で安定して発生する。
Figure 3 shows typical changes in exhaust gas components during vacuum degassing treatment.The CO gas component rises rapidly from around 1 minute after the start of the treatment, and then gradually decreases. It is desirable to selectively recover this initial exhaust gas. On the other hand, since the blown gas is constant, Ar gas is generated stably until the end.

以下、本発明方法の構成について詳細に説明する。真空
脱ガス設備は第1図に示す如くここではRH(Rhei
ngtahl−Heraus)として説明を進めること
とする。真空槽lの下部に吸引用と排出用の2木の浸漬
管2が取り付けられており、吸引側の浸漬管2の内部か
らArガスなどの不活性ガスを吹き込み、エアリフトポ
ンプの原理によって取鍋3内の溶鋼を逐次真空槽内を循
環させて脱ガスするものである。真空槽l内は1〜10
0H10OHに保持されるため、大気が吸引されやすい
、したがって接合部はできるだけシール構造をしっかり
しないと大気の混入で排ガスが薄まってしまいよくない
Hereinafter, the configuration of the method of the present invention will be explained in detail. The vacuum degassing equipment is RH (Rhei) as shown in Figure 1.
The explanation will be given as ngtahl-Heraus). Two immersion tubes 2 for suction and discharge are attached to the bottom of the vacuum tank 1. Inert gas such as Ar gas is blown into the immersion tube 2 on the suction side, and the ladle is heated using the principle of an air lift pump. The molten steel in 3 is sequentially circulated through the vacuum chamber and degassed. 1 to 10 in vacuum chamber l
Since it is maintained at 0H10OH, the atmosphere is easily sucked in. Therefore, the sealing structure of the joint must be as strong as possible, otherwise the exhaust gas will be diluted by the mixture of atmosphere, which is not good.

また酸素ガスや粉体吹き込み用のノズル4からアルゴン
や酸素や窒素ガスが目的に応じてそれぞれ吹き込まれる
。真空槽1で発生した排ガスはガスクーラー5、ブース
ター6、凝縮器7に導入され水洗される。真空度は凝縮
器7、エジェクター8、ミストセパレーター9からなる
真空脱気装置によって制ipされる。従来はミストセパ
レーター9を出た排ガスを大気放散管10から排出して
いたが1本発明においては、COガス濃度の高い初期排
ガスをコンプレッサー12によって圧縮して、ガスホル
ダー13へ貯蔵するようになっている。
Further, argon, oxygen, and nitrogen gas are blown in from the nozzle 4 for blowing oxygen gas and powder, depending on the purpose. The exhaust gas generated in the vacuum chamber 1 is introduced into a gas cooler 5, a booster 6, and a condenser 7, where it is washed with water. The degree of vacuum is controlled by a vacuum degassing device consisting of a condenser 7, an ejector 8, and a mist separator 9. Conventionally, the exhaust gas exiting the mist separator 9 was discharged from the atmosphere diffusion pipe 10, but in the present invention, the initial exhaust gas with a high CO gas concentration is compressed by the compressor 12 and stored in the gas holder 13. ing.

排ガス中からCOガスを分離精製するために、排ガス中
の水分を事前処理塔14でまず除去する0次にガス分離
膜15によってC02ガス1B、を分離する。
In order to separate and purify the CO gas from the exhaust gas, the moisture in the exhaust gas is first removed in the pretreatment tower 14, and then the CO2 gas 1B is separated by the gas separation membrane 15.

ガス分離膜15の素材としてはポリイミドやセルロース
アセテートなどが代表的に知られており、C02ガスが
選択的に有機膜に溶解して透過し他成分と分離すること
ができる。
Polyimide, cellulose acetate, and the like are typically known as materials for the gas separation membrane 15, and C02 gas can be selectively dissolved and permeated through the organic membrane and separated from other components.

分離ll115の必要性は必ずしもないが、高圧の非透
過側に分離しようとするCOガスが残るので、圧力エネ
ルギーを損失なく利用でき、後段のPSA装置の前処理
として有効である。
Although separation 115 is not necessarily necessary, since the CO gas to be separated remains on the high-pressure non-permeate side, pressure energy can be used without loss, and it is effective as a pretreatment for the subsequent PSA device.

PSA (Pressure Swing Adsor
ption)法とは、吸着剤に吸着しやすい成分ガスを
加圧下で選択的に吸着させ、減圧下で回収するもので、
成分ガスによる吸着力の違いによって混合ガスから特定
成分を分離することを原理にしている。
PSA (Pressure Swing Adsor
The method (ption) is a method in which component gases that are easily adsorbed onto an adsorbent are selectively adsorbed under pressure and recovered under reduced pressure.
The principle is to separate specific components from a mixed gas based on the differences in adsorption power between component gases.

COガスを選択的に吸着するためには、ゼオライト系の
モレキュラーシーブが好ましく、銅(1)化合物を保持
させて化学吸着と物理吸着を併用させた吸着剤を使用し
た方がさらに効果的である。吸着工程はふつう吸着(加
圧)→脱着(減圧)→蓄圧(加圧)のサイクルを3つ以
上の吸着塔17を用いて繰り返すように制御されるのが
一般である。
In order to selectively adsorb CO gas, a zeolite-based molecular sieve is preferable, and it is even more effective to use an adsorbent that retains copper (1) compounds and combines chemical and physical adsorption. . The adsorption process is generally controlled so that a cycle of adsorption (pressurization)→desorption (depressurization)→pressure accumulation (pressurization) is repeated using three or more adsorption towers 17.

吸着剤に吸着したCOガスは真空ポンプ18によって脱
着され、脱水素を行なう後処理塔20を経て高純度CO
ガス21として使用される。またCOガス以外の82.
Arはオフガス1Bとして分離することができる。
The CO gas adsorbed on the adsorbent is desorbed by the vacuum pump 18 and passed through the post-treatment tower 20 that performs dehydrogenation to produce high-purity CO.
It is used as gas 21. In addition, 82.
Ar can be separated as off-gas 1B.

このオフガス1BにはN2.ATL、か含有しないので
、これよりArガスを効率よく分離することも可能であ
る。
This off-gas 1B contains N2. Since it does not contain ATL, it is also possible to separate Ar gas more efficiently.

分離精製したCOガスは、真空脱ガス設備の吹込みガス
用として再度循環して使用できるばかりでなく、転炉の
底吹きガス用として利用したり、化学製品の原料ガスと
して外販することも可能である。特に溶鋼の脱窒を促進
するために、真空脱ガス設備においてCOとArの混合
ガスを吹き込む場合に、本発明で得られたCOガスを利
用すると極めて経済的に低窒素鋼を溶製することが可能
となった。
Separated and purified CO gas can not only be recirculated and used as blowing gas in vacuum degassing equipment, but also used as bottom blowing gas in converters or sold externally as raw material gas for chemical products. It is. In particular, when blowing a mixed gas of CO and Ar in vacuum degassing equipment to promote denitrification of molten steel, the CO gas obtained by the present invention can be used to produce low-nitrogen steel extremely economically. became possible.

実施例 以下に本発明を還流式脱ガス設備に適用した実施例につ
いて具体的に説明する。
EXAMPLE Below, an example in which the present invention is applied to a reflux type degassing facility will be specifically described.

第1表は溶鋼成分を示し、第2図に示したように脱ガス
処理後のC[%]が0.04%になるように、転炉の吹
止めC[%]は0.07%と高目に止める。脱ガス処理
の操業条件は第2表に示す如く、lバッチ250tで約
15分間真空槽内を100Torrに保持して、Arを
15ONm3/hr浸漬管の一方より吹込み、溶鋼の還
流を促した。
Table 1 shows the molten steel composition, and as shown in Figure 2, the blow-stop C [%] of the converter is 0.07% so that the C [%] after degassing is 0.04%. I stopped high. As shown in Table 2, the operating conditions for the degassing treatment were as follows: 1 batch was 250 tons, the vacuum chamber was maintained at 100 Torr for about 15 minutes, and Ar was blown into one side of the immersion tube at a rate of 15 ON m3/hr to promote reflux of the molten steel. .

溶鋼中の9と9は反応してCOガスとなり第3図に代表
される如く脱ガス処理の初期1〜5分間に集中して発生
するため、これを選択的にコンプレッサーで7 kg/
am2Gまで昇圧してホルダーに貯蔵した。COガスの
発生はこのように約150ONm3/hrX4〜5分と
間歇的にしか起こらないので、後工程の連続化とコンパ
クト化を考慮してホルダー貯蔵する方が経済的である。
9 and 9 in the molten steel react and become CO gas, which is generated concentratedly during the initial 1 to 5 minutes of degassing as shown in Figure 3.
The pressure was increased to am2G and stored in a holder. Since the generation of CO gas occurs only intermittently at about 150 ONm3/hr x 4 to 5 minutes, it is more economical to store it in a holder in consideration of making the post process continuous and compact.

事前処理塔には活性アルミナを充填して水分を除去し、
C02のガス分離膜に導入した。
The pre-treatment tower is filled with activated alumina to remove moisture.
It was introduced into a C02 gas separation membrane.

第3表にガス分離膜の操業条件および成分変化を示した
0分離膜はポリイミドを素材にしたC02の透過速度の
大きいスパイラル構造の膜を使用した。第4表にはCO
を吸着するPSAの操業条件と実施結果を示した。CO
の純度と回収率を同時に向上させるために、COの吸着
能の大きい銅(1)化合物を保持させたゼオライト系の
吸着剤を用いた。最後に製品ガス中に残留したH2は、
後処理工程でパラジウムを触媒としてH,Oとして完全
に除去するようにした。
Table 3 shows the operating conditions and component changes of the gas separation membrane. The separation membrane used was a spiral structure membrane made of polyimide and having a high C02 permeation rate. Table 4 shows CO
The operating conditions and results of PSA adsorbing are shown. C.O.
In order to improve the purity and recovery rate of CO at the same time, we used a zeolite-based adsorbent that retains a copper (1) compound that has a high CO adsorption capacity. The H2 remaining in the product gas at the end is
In the post-treatment process, palladium was used as a catalyst to completely remove H and O.

第 1 表 溶@成分(%ン 第2表清業条件 第 3 表  ガ゛ス分(至)笛lll漫業請ヰおよび
糸占粟発明の詳細 な説明した如く、本発明方法によれば真空脱ガス設備の
排ガスから、低価格でCOガスを高純度で得ることがで
きる。また転炉の吹止めC値を最終製品より高目に止め
て、溶鋼中の酸素と反応させて、脱炭・脱酸を同時に行
なうことができるので、転炉での酸素原単位を低減でき
るばかりでなく、アルミなどの脱酸剤の原単位低減も図
ることができる。
Table 1 Molten ingredients (%) Table 2 Cleaning conditions Table 3 Vacuum production and yarn production As detailed in the invention, according to the method of the present invention, vacuum High purity CO gas can be obtained from the exhaust gas of degassing equipment at a low cost.In addition, the blow-off C value of the converter is set higher than that of the final product, and it is decarburized by reacting with oxygen in the molten steel. - Since deoxidation can be performed at the same time, not only can the oxygen consumption rate in the converter be reduced, but also the consumption consumption of deoxidizers such as aluminum can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための設備配置の一例を示し
た図である。第2図は溶鋼中のpと9の平衡値を示す図
である。 第3図は本発明を還流式脱ガス設備で実施した場合の代
表的□な排ガス組成を示す図である。 l・・・真空槽、2舎・・浸漬管、3φ・・取鍋、4・
φ・吹込みノズル、5・e・ガスクーラー、6・・Φブ
ースター、70拳拳凝縮器、8・番・エジェクター、9
・・−ミストセパレーター、lO・・Φ大気放散管、1
1・・・LDG 、 12−・・コンプレッサー、13
・・・ガスホルダー、14事前処理塔、15φQ・ガス
分離膜、18・φ・C02ガス、17−−−  PSA
吸着塔、18e * a Ar、 N2ガス、18・命
・真空ポンプ、20・・φ後処理塔、21争Φ・CO製
品ガス。
FIG. 1 is a diagram showing an example of the equipment layout for implementing the present invention. FIG. 2 is a diagram showing the equilibrium values of p and 9 in molten steel. FIG. 3 is a diagram showing a typical exhaust gas composition when the present invention is implemented in a reflux type degassing facility. L...Vacuum tank, 2 chambers...Immersion tube, 3φ...Ladle, 4...
φ・Blowing nozzle, 5・E・Gas cooler, 6・・φ booster, 70 fist condenser, 8・Ejector, 9
・・・Mist separator, lO・・Φ atmosphere diffusion tube, 1
1...LDG, 12-...Compressor, 13
...Gas holder, 14 pre-treatment tower, 15φQ・Gas separation membrane, 18・φ・C02 gas, 17--- PSA
Adsorption tower, 18e*a Ar, N2 gas, 18・Vacuum pump, 20・φ after-treatment tower, 21・φ・CO product gas.

Claims (1)

【特許請求の範囲】[Claims] 溶鋼を真空脱ガス処理するに際し、転炉で溶鋼の最終C
値より高めのCで吹止めを行ない、次いで、真空脱ガス
処理にてCOガスを生成せしめ、最終C値になるよう処
理を行ない、該生成したCOガスを回収することを特徴
とする真空脱ガス処理の操業方法。
When molten steel is vacuum degassed, the final C of molten steel is
Vacuum degassing is characterized by performing blow-off at a higher C value, then generating CO gas through vacuum degassing treatment, performing treatment to reach the final C value, and recovering the generated CO gas. How to operate gas processing.
JP63034979A 1988-02-19 1988-02-19 Operation of vacuum degassing treatment Pending JPH01212717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034979A JPH01212717A (en) 1988-02-19 1988-02-19 Operation of vacuum degassing treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034979A JPH01212717A (en) 1988-02-19 1988-02-19 Operation of vacuum degassing treatment

Publications (1)

Publication Number Publication Date
JPH01212717A true JPH01212717A (en) 1989-08-25

Family

ID=12429265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034979A Pending JPH01212717A (en) 1988-02-19 1988-02-19 Operation of vacuum degassing treatment

Country Status (1)

Country Link
JP (1) JPH01212717A (en)

Similar Documents

Publication Publication Date Title
EP1334758B1 (en) Gas separating and purifying method and its apparatus
US4539020A (en) Methods for obtaining high-purity carbon monoxide
KR840005356A (en) How to remove nitrogen gas from N₂ and CO, or a mixture of N₂, CO and CO
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
EP0276309A1 (en) Process for separation of high purity gas from mixed gas
CN113784777B (en) Pressure swing adsorption process for producing hydrogen and carbon dioxide
USRE32590E (en) Methods for obtaining high-purity carbon monoxide
JP5498661B2 (en) Blast furnace gas separation method
EP0640376A2 (en) Method for recovering ethylene from ethylene oxide plant vent gas
JP3169647B2 (en) Pressure swing type suction method and suction device
JP2005246137A (en) Method and apparatus for gas separation
JPH01212717A (en) Operation of vacuum degassing treatment
JP3424951B2 (en) Liquid treatment
JP3219612B2 (en) Method for co-producing carbon monoxide and hydrogen from mixed gas
JPH0112529B2 (en)
JPH0489387A (en) Inert gas recovering device for single crystal pulling up device
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPS62117612A (en) Regenerating method for adsorption tower
JPS6139087B2 (en)
JPH02283608A (en) Method for separating and recovering carbon monoxide
JPH03242313A (en) Purification of carbon monoxide
JPH0768119A (en) Method for separation and recovery of carbon monoxide
JPS60155521A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS6078612A (en) Concentration of carbon monoxide in gaseous mixture containing carbon monoxide by using adsorbing method
JPS60239309A (en) Process for recovering argon