JP2005246137A - Method and apparatus for gas separation - Google Patents

Method and apparatus for gas separation Download PDF

Info

Publication number
JP2005246137A
JP2005246137A JP2004056500A JP2004056500A JP2005246137A JP 2005246137 A JP2005246137 A JP 2005246137A JP 2004056500 A JP2004056500 A JP 2004056500A JP 2004056500 A JP2004056500 A JP 2004056500A JP 2005246137 A JP2005246137 A JP 2005246137A
Authority
JP
Japan
Prior art keywords
gas
adsorption
cylinder
regeneration
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004056500A
Other languages
Japanese (ja)
Other versions
JP3869831B2 (en
Inventor
Tatsuji Uragami
達司 浦上
Hideharu Hasegawa
英晴 長谷川
Toru Nagasaka
徹 長坂
Yoshio Ishihara
良夫 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004056500A priority Critical patent/JP3869831B2/en
Publication of JP2005246137A publication Critical patent/JP2005246137A/en
Application granted granted Critical
Publication of JP3869831B2 publication Critical patent/JP3869831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas separation method and an apparatus therefor capable of efficiently removing fine amount gas components such as helium and hydrogen from a gaseous mixture containing high value added gases such as krypton and xenon, and continuously separating, refining, circulating and recycling the high value added gas at a high recovery rate. <P>SOLUTION: An adsorbing process of introducing the gaseous mixture containing the high value gas which is at least one kind of krypton, xenon and neon into an adsorption cylinder filled with an absorbent for which the high value added gas is an easy-to-absorb component, making the adsorbent adsorb the high value added gas and discharging an impurity gas not adsorbed by the adsorbent from the adsorption cylinder, and a regenerating process of evacuating the adsorption cylinder, desorbing the high value added gas from the absorbent, introducing a purge gas from the outside of a system to the absorption cylinder and making the gas inside the cylinder flow out are performed. A part of the gas flowing out from the adsorption cylinder in the regenerating process is circulated to and mixed into the gas mixture and a residual part is recovered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガス分離方法及び装置に関し、詳しくは、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガスを圧力変動吸着分離法で処理することによって前記不純物を除去し、さらに、前記高付加価値ガスを再利用可能な状態まで分離精製して採取するガス分離方法及び装置に関する。   The present invention relates to a gas separation method and apparatus, and more specifically, removes the impurities by treating a mixed gas containing at least one high value-added gas of krypton, xenon and neon by a pressure fluctuation adsorption separation method, The present invention relates to a gas separation method and apparatus for separating and collecting the high value-added gas to a reusable state.

半導体集積回路、液晶パネル、太陽電池及びそのパネル、磁気ディスク等の半導体製品を製造する工程では、不活性ガス雰囲気中でプラズマを発生させ、該プラズマによって半導体製品又は表示装置の各種処理を行う製造設備が広く用いられている。このような処理において、従来は、ヘリウムやアルゴンが不活性ガスとして用いられてきたが、近年は、より高度な処理を行うため、クリプトンやキセノン、ネオン等の高付加価値ガスを使用した処理が注目されている。   In the process of manufacturing a semiconductor product such as a semiconductor integrated circuit, a liquid crystal panel, a solar cell and its panel, a magnetic disk, etc., manufacturing is performed in which plasma is generated in an inert gas atmosphere and the semiconductor product or display device is processed by the plasma. Equipment is widely used. Conventionally, helium or argon has been used as an inert gas in such treatment, but in recent years, treatment using a high value-added gas such as krypton, xenon, or neon has been performed in order to perform more advanced treatment. Attention has been paid.

クリプトンやキセノンは、空気中の存在比及び分離工程の複雑さから極めて高価なガス(高付加価値ガス)であり、このような高付加価値ガスを使用するプロセスを経済的に成立させるためには、使用済みの排ガス中から高付加価値ガスを高回収率で分離精製し、循環再利用することが必須条件である。さらに、回収した高付加価値ガスの不純物濃度は、100ppm以下の高純度が望まれる。   Krypton and xenon are extremely expensive gases (high value-added gases) due to the abundance ratio in the air and the complexity of the separation process, and in order to establish a process using such high value-added gas economically. It is essential to separate and purify high value-added gas from used exhaust gas at a high recovery rate and recycle it. Furthermore, the impurity concentration of the recovered high value-added gas is desired to have a high purity of 100 ppm or less.

ここで、分離精製の対象となる高付加価値ガスを含む排ガスは、雰囲気ガスである高付加価値ガスと半導体製造設備の真空排気手段に導入される窒素とが主要ガス成分となった混合ガスの状態となっている。排ガス中のその他の成分としては、半導体の製造目的に応じて添加されるガス成分が含まれる。例えば、プラズマ酸化であれば酸素が含まれ、プラズマ窒化であれば窒素、水素、アンモニア、酸化窒素化合物が含まれ、プラズマCVDであれば金属水素化物系ガスが含まれ、リアクティブイオンエッチングであればハロゲン化炭化水素系ガスが含まれるなどである。さらに、プラズマ処理の反応副生成物として、水、一酸化炭素、二酸化炭素、水素、炭化水素が含まれることになり、半導体の基体の冷却に用いられるヘリウム等も含まれることになる。   Here, the exhaust gas containing the high value-added gas to be separated and refined is a mixed gas in which the high-value-added gas that is the atmosphere gas and nitrogen introduced into the vacuum exhaust means of the semiconductor manufacturing facility are the main gas components. It is in a state. Other components in the exhaust gas include gas components that are added depending on the purpose of manufacturing the semiconductor. For example, oxygen is included in plasma oxidation, nitrogen, hydrogen, ammonia, and nitric oxide compounds are included in plasma nitridation, and metal hydride-based gases are included in plasma CVD. For example, a halogenated hydrocarbon gas is included. Furthermore, water, carbon monoxide, carbon dioxide, hydrogen, hydrocarbons are included as reaction byproducts of the plasma treatment, and helium used for cooling the semiconductor substrate is also included.

以下、半導体製造装置の工程と、各工程時に排出されるガス成分について、さらに詳細に説明する。まず、プラズマ処理の対象となる基体を挿入する前のチャンバ内は、窒素を通気しながら真空排気することで清浄な窒素雰囲気とされる。その後、基体が処理チャンバ内に挿入されるが、清浄窒素雰囲気を保持するために、窒素の通気と真空排気は継続される。   Hereinafter, the process of a semiconductor manufacturing apparatus and the gas component discharged | emitted at each process are demonstrated in detail. First, the inside of the chamber before inserting the substrate to be subjected to plasma processing is made a clean nitrogen atmosphere by evacuating it while ventilating nitrogen. Thereafter, the substrate is inserted into the processing chamber, but nitrogen aeration and evacuation are continued to maintain a clean nitrogen atmosphere.

次いで、チャンバ内に流通しているガスが窒素から高付加価値ガスに切り替わり、処理チャンバ内が高付加価値ガス雰囲気になった後、プラズマ処理を開始させる。したがって、プラズマ処理中にチャンバから排気されるガスは、主に高付加価値ガスで占められることになるが、製造目的に応じて添加されたガス成分及び反応副生成物も含まれる。   Next, after the gas flowing in the chamber is switched from nitrogen to a high value-added gas and the inside of the processing chamber is in a high value-added gas atmosphere, plasma processing is started. Therefore, the gas exhausted from the chamber during the plasma processing is mainly occupied by high-value-added gas, but also includes gas components and reaction byproducts added depending on the manufacturing purpose.

プラズマ処理終了後、半導体製造装置では、高周波印加を停止してプラズマを停止させる。このとき、流通ガスが高付加価値ガスから窒素に切り替わり、その後基体が取り出される。したがって、この間に排気されるガスは、窒素が主要ガス成分となるが、系内に残存している高付加価値ガス及び基体の冷却に使用されるヘリウム等も含まれる。   After the plasma processing is completed, the semiconductor manufacturing apparatus stops the plasma by stopping the high frequency application. At this time, the circulating gas is switched from the high added value gas to nitrogen, and then the substrate is taken out. Therefore, the gas exhausted during this period includes nitrogen as a main gas component, but also includes high value-added gas remaining in the system and helium used for cooling the substrate.

また、処理チャンバと真空排気システムとの間では、真空排気システムからの不純物の逆拡散を防止するために、工程に関わらず窒素が通気される。この逆拡散防止用の窒素は、処理チャンバから排気されたガスと共に排気される。さらに、大気巻き込み防止用として真空ポンプの軸受け部にも窒素が通気される。この窒素の一部は、真空排気系内部に流入し、上述のガスと一緒に排気される。   Also, nitrogen is vented between the processing chamber and the evacuation system regardless of the process in order to prevent back diffusion of impurities from the evacuation system. The nitrogen for preventing back diffusion is exhausted together with the gas exhausted from the processing chamber. Further, nitrogen is also vented to the bearing portion of the vacuum pump for preventing air entrainment. A part of this nitrogen flows into the vacuum exhaust system and is exhausted together with the above-mentioned gas.

混合ガスから目的とするガス成分を分離回収する方法として、圧力変動吸着分離(PSA)法が広く知られている。例えば、空気を原料として酸素を製品として得る場合には、ゼオライトを吸着剤として用い、加圧下で空気を流通させることで易吸着成分である窒素を吸着剤に吸着固定させ、難吸着成分である酸素を製品として採取する。次いで、吸着剤層を空気の流通工程より十分に低い圧力条件下におけば、吸着剤に吸着されていた窒素が脱着する。相対的に高い圧力での吸着操作と相対的に低い圧力での再生操作とを繰り返すPSA操作は、短時間での吸着−再生の切り替えが可能なため、吸着剤当たりの製品発生量を高めやすく、装置をコンパクトにし易いという利点を有している。   As a method for separating and recovering a target gas component from a mixed gas, a pressure fluctuation adsorption separation (PSA) method is widely known. For example, when air is used as a raw material and oxygen is obtained as a product, zeolite is used as an adsorbent, and air is circulated under pressure to adsorb and fix nitrogen, which is an easily adsorbed component, to the adsorbent. Collect oxygen as a product. Next, when the adsorbent layer is placed under a pressure condition sufficiently lower than the air flow step, the nitrogen adsorbed on the adsorbent is desorbed. The PSA operation, which repeats the adsorption operation at a relatively high pressure and the regeneration operation at a relatively low pressure, can be switched between adsorption and regeneration in a short time, so it is easy to increase the amount of product generated per adsorbent. This has the advantage that the device can be easily made compact.

また、原料ガス中の微量不純物を除去する方法としては、温度変動吸着分離(TSA)法が広く知られている。例えば、深冷空気分離装置では、原料空気中の微量成分である水や二酸化炭素を除去するために、TSA法を用いた前処理装置が用いられている。この前処理装置では、活性アルミナやゼオライト等の吸着剤充填層に空気を通気させることで、易吸着成分である水や二酸化炭素等の不純物を吸着除去している。吸着飽和に達した吸着剤は、加温されたパージガスを流通させることで容易に再生できる。   As a method for removing trace impurities in the source gas, a temperature fluctuation adsorption separation (TSA) method is widely known. For example, in a cryogenic air separation device, a pretreatment device using a TSA method is used to remove water and carbon dioxide, which are trace components in raw material air. In this pretreatment device, impurities such as water and carbon dioxide, which are easily adsorbed components, are adsorbed and removed by passing air through an adsorbent packed bed of activated alumina or zeolite. The adsorbent that has reached adsorption saturation can be easily regenerated by circulating a heated purge gas.

半導体製造装置等で使用された高付加価値ガスを再利用するためには、回収した混合ガス中に含まれる微量の不純物、反応副生成物、パージガス等の不要なガス成分を取り除く必要がある。混合ガス中の不要ガス成分を除去するには、上述の従来技術の組み合わせでもある程度は達成できる。例えば、水、二酸化炭素、アンモニア等の微量なガス成分であれば、ゼオライト、活性アルミナ等の吸着剤を用いたTSA法によって吸着除去できる。また、窒素等が比較的多く含まれるガス成分であれば、吸着剤の平衡吸着量差あるいは吸着速度差を利用したPSA法によって選択除去できる(例えば、特許文献1参照。)。
特開2002−126435号公報
In order to reuse the high value-added gas used in a semiconductor manufacturing apparatus or the like, it is necessary to remove unnecessary gas components such as trace impurities, reaction byproducts, and purge gas contained in the collected mixed gas. The removal of unnecessary gas components in the mixed gas can be achieved to some extent even by the combination of the above-described conventional techniques. For example, a trace gas component such as water, carbon dioxide, and ammonia can be adsorbed and removed by the TSA method using an adsorbent such as zeolite and activated alumina. In addition, a gas component containing a relatively large amount of nitrogen or the like can be selectively removed by a PSA method using a difference in equilibrium adsorption amount or adsorption rate of an adsorbent (see, for example, Patent Document 1).
JP 2002-126435 A

しかしながら、ヘリウム、水素の除去に関しては、従来技術の組み合わせでは困難である。すなわち、ヘリウム及び水素は、吸着剤にほとんど吸着されない性質を持つことから、易吸着成分を選択的に吸着除去するTSA法は適用できない。一方、PSA法を用いた場合には、難吸着成分であるヘリウムや水素を製品側に濃縮することができるが、高付加価値ガスを高回収率で回収するには、排ガス中の高付加価値ガスの濃度を十分低下させ、回収ガス中のヘリウム、水素を十分なガス濃度に高める必要がある。   However, it is difficult to remove helium and hydrogen by a combination of conventional techniques. That is, since helium and hydrogen have a property of being hardly adsorbed by the adsorbent, the TSA method for selectively adsorbing and removing easily adsorbed components cannot be applied. On the other hand, when the PSA method is used, helium and hydrogen, which are hard-to-adsorb components, can be concentrated on the product side, but in order to recover high value-added gas at a high recovery rate, high value added in exhaust gas is required. It is necessary to sufficiently reduce the gas concentration and increase the helium and hydrogen in the recovered gas to a sufficient gas concentration.

装置コスト及び設置スペースを考慮した場合、混合ガス中に含まれる微量のヘリウム、水素を所定の濃度まで高めることは現実的ではない。また、水素除去に限定した方法として、触媒筒内で外部から注入し酸素と水素とを反応させて水に変化させた後、TSA法等で水を吸着除去する方法も考えられる。しかし、水素を処理するためにパラジウム触媒等を用いた触媒筒及びTSA法を利用した吸着筒を追加する必要があるだけでなく、装置系外から酸素を供給する必要があるなど、装置構成が複雑になるという問題があった。   In consideration of the apparatus cost and installation space, it is not realistic to increase a small amount of helium and hydrogen contained in the mixed gas to a predetermined concentration. In addition, as a method limited to hydrogen removal, a method may be considered in which water is adsorbed and removed by the TSA method or the like after injecting from the outside in a catalyst cylinder and reacting oxygen and hydrogen to change to water. However, in order to treat hydrogen, it is not only necessary to add a catalyst cylinder using a palladium catalyst or the like and an adsorption cylinder using the TSA method, but it is necessary to supply oxygen from outside the apparatus system. There was a problem of becoming complicated.

また、その他の分離方法として、膜分離法を利用することも考えられるが、何れにしても、装置構成が複雑になり、装置コストの上昇、設置スペースの増大は避けられなかった。   As another separation method, it is conceivable to use a membrane separation method, but in any case, the configuration of the apparatus becomes complicated, resulting in an increase in apparatus cost and an increase in installation space.

そこで本発明は、クリプトン、キセノン等の高付加価値ガスを雰囲気ガスとして用いる半導体製品又は表示装置の製造設備から排出される排ガスから高付加価値ガスを分離精製して循環再利用するにあたり、排ガス中に含まれるヘリウム、水素等の微量ガス成分を効率良く除去することができ、さらに、高付加価値ガスを高回収率で連続的に分離精製して循環再利用することが可能なガス分離方法及び装置を提供することを目的としている。   Therefore, the present invention provides a method for separating and refining high-value-added gas from exhaust gas discharged from manufacturing equipment for semiconductor products or display devices that use high-value-added gas such as krypton and xenon as an atmospheric gas. Gas separation method capable of efficiently removing trace gas components such as helium, hydrogen, etc. contained in the gas, and capable of continuously separating and refining a high value-added gas at a high recovery rate and reusing it, and The object is to provide a device.

上記目的を達成するため、本発明のガス分離方法は、第1の構成として、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離方法であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒の入口側から前記混合ガスを相対的に高い圧力で導入して前記吸着剤に前記高付加価値ガスを吸着させるとともに吸着剤に吸着しなかったガスを吸着筒の出口側から排出する吸着工程と、該吸着工程を終了した吸着筒を相対的に低い圧力に減圧して前記吸着剤から高付加価値ガスを脱着させるとともに、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスを系外から吸着筒の出口側に導入して筒内ガスを吸着筒の入口側に押し出して流出させる再生工程とを交互に繰り返して行い、該再生工程の前半で吸着筒の入口側から流出する再生排ガスを前記混合ガスに循環混合させ、該再生工程の後半で吸着筒の入口側から流出する再生排ガスを回収ガスとして回収することを特徴としている。さらに、本発明のガス分離方法は、前記第1の構成において、前記パージガスは、酸素、窒素及びアルゴンの少なくとも1種であることを特徴としている。   In order to achieve the above object, the gas separation method of the present invention has, as a first configuration, an impurity component in a mixed gas containing at least one high value-added gas of krypton, xenon, and neon by a pressure fluctuation adsorption separation method. A gas separation method for separating, wherein the mixed gas is introduced at a relatively high pressure from an inlet side of an adsorption cylinder filled with an adsorbent containing the high added value gas as an easily adsorbing component, and the high adsorbent is introduced into the adsorbent. An adsorption process for adsorbing the value-added gas and discharging the gas not adsorbed to the adsorbent from the outlet side of the adsorption cylinder, and reducing the pressure of the adsorption cylinder after the adsorption process to a relatively low pressure from the adsorbent In addition to desorbing the high value-added gas, a purge gas composed of the gas other than the high value-added gas and the impurity component in the mixed gas is introduced from the outside of the system to the outlet side of the adsorption cylinder, and the in-cylinder gas is introduced into the adsorption cylinder. A regeneration step of extruding and flowing out to the mouth side alternately, and regenerating exhaust gas flowing out from the inlet side of the adsorption cylinder in the first half of the regeneration process is circulated and mixed with the mixed gas, and in the latter half of the regeneration process, the adsorption cylinder It is characterized in that the regenerated exhaust gas flowing out from the inlet side is recovered as recovered gas. Furthermore, the gas separation method of the present invention is characterized in that, in the first configuration, the purge gas is at least one of oxygen, nitrogen and argon.

本発明のガス分離方法の第2の構成は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離方法であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒の入口側から相対的に高い圧力で前記混合ガスを導入して前記第1吸着剤に少なくとも高付加価値ガスを吸着させるとともに、該第1吸着剤に吸着せずに第1吸着筒の出口側から流出したガスを系外に排出する第1吸着工程と、該第1吸着工程を終了した第1吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第1吸着剤に吸着したガスを脱着させるとともに、第1吸着筒の出口側から第1パージガスを導入して筒内ガスを第1吸着筒の入口側に押し出して流出させる第1再生工程とを、前記第1吸着筒で交互に繰り返して行い、前記第1再生工程の前半に第1吸着筒の入口側から流出する第1再生排ガスを前記混合ガスに循環混合し、第1再生工程の後半に第1吸着筒の入口側から流出する第1再生排ガスを回収する第1分離プロセスと、この第1分離プロセスで回収した回収ガスを前記高付加価値ガスを難吸着成分とし、該回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒の入口側から相対的に高い圧力で導入し、前記第2吸着剤に前記高付加価値ガスを除くガスを吸着させるとともに、該第2吸着剤に吸着せずに第2吸着筒の出口側から流出した高付加価値ガスを主成分とするガスを採取する第2吸着工程と、該第2吸着工程を終了した第2吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第2吸着剤に吸着したガスを脱着させるとともに、第2吸着筒の出口側から前記第2吸着工程で採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを導入して筒内ガスを第2吸着筒の入口側に押し出して流出させる第2再生工程とを、前記第2吸着筒で交互に繰り返して行い、前記第2再生工程で第2吸着筒の入口側から流出した第2再生排ガスを前記混合ガス又は前記回収ガスに循環混合する第2分離プロセスとを含み、前記第1パージガスは、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入することを特徴としている。   According to a second configuration of the gas separation method of the present invention, the high-value-added gas is obtained by separating an impurity component in a mixed gas containing at least one high-value-added gas of krypton, xenon, and neon by a pressure fluctuation adsorption separation method. The gas separation method is for purifying the mixed gas at a relatively high pressure from the inlet side of the first adsorption cylinder filled with the first adsorbent containing the high added value gas in the mixed gas as an easily adsorbing component. A first adsorption step of introducing and adsorbing at least the high value-added gas to the first adsorbent, and discharging the gas flowing out from the outlet side of the first adsorption cylinder without adsorbing to the first adsorbent to the outside of the system Then, the in-cylinder gas of the first adsorption cylinder that has finished the first adsorption step is caused to flow out from the inlet side, the cylinder pressure is reduced to a relatively low pressure, and the gas adsorbed on the first adsorbent is desorbed. And from the outlet side of the first adsorption cylinder A first regeneration step of introducing one purge gas and pushing out the in-cylinder gas to the inlet side of the first adsorption cylinder and outflowing is alternately repeated in the first adsorption cylinder, and the first regeneration step is performed in the first half of the first regeneration process. A first separation process for circulating and mixing the first regenerated exhaust gas flowing out from the inlet side of the first adsorption cylinder into the mixed gas and recovering the first regenerated exhaust gas flowing out from the inlet side of the first adsorption cylinder in the second half of the first regeneration step. And the recovered gas recovered in the first separation process is filled with a second adsorbent containing the high added value gas as a hardly adsorbed component and a gas excluding the high added value gas in the recovered gas as an easily adsorbed component. Introduced at a relatively high pressure from the inlet side of the two adsorption cylinders, the second adsorbent adsorbs the gas excluding the high added value gas, and does not adsorb to the second adsorbent. The main component is high value-added gas that flows out from the outlet side. A second adsorption step for collecting gas; and the in-cylinder gas of the second adsorption cylinder that has completed the second adsorption process is caused to flow out from the inlet side, and the in-cylinder pressure is reduced to a relatively low pressure to thereby reduce the second adsorption. The gas adsorbed by the agent is desorbed, and the second purge gas consisting of a part of the gas mainly composed of the high added value gas collected in the second adsorption step is introduced from the outlet side of the second adsorption cylinder. A second regeneration step of extruding and flowing out the gas to the inlet side of the second adsorption cylinder is alternately repeated in the second adsorption cylinder, and the second regeneration step flows out from the inlet side of the second adsorption cylinder in the second regeneration step. A second separation process for circulating and mixing the regenerated exhaust gas into the mixed gas or the recovered gas, wherein the first purge gas is a gas excluding high value-added gas and impurity components in the mixed gas, and Gas that is an easily adsorbed component of the second adsorbent Is introduced from outside the system.

また、本発明のガス分離装置における第1の構成は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離装置であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒と、吸着筒の入口側に入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、吸着筒の出口側から流出するガスを出口弁を介して排出する排ガス出口経路と、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスをパージ弁を介して吸着筒の出口側に導入するパージガス入口経路と、吸着筒の入口側から流出する再生排ガスを再生ガス出口弁を介して取り出す再生ガス出口径路と、該再生ガス出口径路に取り出した再生排ガスを前記混合ガス入口経路に循環弁を介して循環させる循環経路と、前記再生排ガスを回収弁を介して回収する回収経路とを備えていることを特徴としている。   The first configuration of the gas separation apparatus of the present invention is a gas separation apparatus that separates impurity components in a mixed gas containing at least one high value-added gas of krypton, xenon, and neon by a pressure fluctuation adsorption separation method. An adsorbing cylinder filled with an adsorbent containing the high value-added gas as an easily adsorbing component, and a mixed gas inlet path for introducing the mixed gas to the inlet side of the adsorbing cylinder through an inlet valve at a relatively high pressure An exhaust gas outlet path for discharging the gas flowing out from the outlet side of the adsorption cylinder through the outlet valve, and a purge gas composed of a gas excluding the high added value gas and the impurity component in the mixed gas through the purge valve A purge gas inlet path to be introduced on the outlet side of the gas generator, a regeneration gas outlet path for taking out the regeneration exhaust gas flowing out from the inlet side of the adsorption cylinder via the regeneration gas outlet valve, and the regeneration gas outlet path. A circulation path for circulating the regeneration gas through the circulation valve to the mixed gas inlet path and is characterized in that it comprises a recovery path for recovering the playback exhaust gas via a recovery valve.

さらに、本発明のガス分離装置における第2の構成は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離装置であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒と、第1吸着筒の入口側に第1入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、第1吸着筒の出口側から流出するガスを第1出口弁を介して排出する排ガス出口経路と、第1吸着筒の出口側に第1パージ弁を介して第1パージガスを導入する第1パージガス入口経路と、第1吸着筒の入口側から流出する第1再生排ガスを第1再生ガス出口弁を介して取り出す第1再生ガス出口径路と、該第1再生ガス出口径路に取り出した第1再生排ガスを前記混合ガス供給手段に第1循環弁を介して循環させる第1循環経路と、該第1再生ガス出口径路に取り出した第1再生排ガスを回収弁を介して回収する回収経路とを備えた第1分離部と、前記高付加価値ガスを難吸着成分とし、前記第1分離部の回収経路に回収した回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒と、前記回収ガスを第2吸着筒の入口側に第2入口弁を介して相対的に高い圧力で導入する回収ガス入口経路と、第2吸着筒の出口側から流出する高付加価値ガスを主成分とするガスを第2出口弁を介して採取する製品出口経路と、該製品出口経路に採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを第2パージ弁を介して第2吸着筒の出口側に導入する第2パージガス入口経路と、第2吸着筒の入口側から流出する第2再生排ガスを第2再生ガス出口弁を介して取り出す第2再生ガス出口径路と、該第2再生ガス出口径路に取り出した第2再生排ガスを第2循環弁を介して前記混合ガス供給手段又は前記回収経路に循環させる第2循環経路とを備えた第2分離部とを含み、第1パージガス入口経路は、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入する経路であることを特徴としている。   Furthermore, the second configuration of the gas separation apparatus according to the present invention is configured to separate the impurity component in the mixed gas containing at least one high value-added gas of krypton, xenon, and neon by a pressure fluctuation adsorption separation method, and thereby perform the high addition. A gas separation device for purifying a value gas, wherein a first adsorption cylinder filled with a first adsorbent having an easily adsorbed component as a high added value gas in the mixed gas, and a first adsorber cylinder on the inlet side of the first adsorption cylinder A mixed gas inlet path for introducing the mixed gas at a relatively high pressure via the inlet valve, an exhaust gas outlet path for discharging the gas flowing out from the outlet side of the first adsorption cylinder via the first outlet valve, A first purge gas inlet path for introducing a first purge gas to the outlet side of the first adsorption cylinder via the first purge valve; and a first regeneration exhaust gas flowing out from the inlet side of the first adsorption cylinder via the first regeneration gas outlet valve. The first regeneration gas A first circulation path for circulating the first regeneration exhaust gas taken out to the first regeneration gas outlet passage to the mixed gas supply means through the first circulation valve, and the first regeneration gas outlet passage to the first regeneration gas outlet passage A first separation part having a recovery path for recovering the first regenerated exhaust gas via a recovery valve; and the high added-value gas as a hardly adsorbed component, and in the recovered gas recovered in the recovery path of the first separation part A second adsorbing cylinder filled with a second adsorbent containing a gas other than the high value-added gas as an easily adsorbing component, and a relatively high pressure of the recovered gas on the inlet side of the second adsorbing cylinder via the second inlet valve The recovery gas inlet path to be introduced in step 2, the product outlet path for collecting the gas mainly composed of the high added-value gas flowing out from the outlet side of the second adsorption cylinder through the second outlet valve, and the product outlet path Made of a part of the gas mainly composed of high added value gas A second purge gas inlet path for introducing purge gas to the outlet side of the second adsorption cylinder via the second purge valve, and a second regeneration exhaust gas flowing out from the inlet side of the second adsorption cylinder via the second regeneration gas outlet valve A second regeneration gas outlet path to be taken out; and a second circulation path for circulating the second regeneration exhaust gas taken out to the second regeneration gas outlet path to the mixed gas supply means or the recovery path through a second circulation valve. The first purge gas inlet path includes a gas excluding the high value-added gas and the impurity component in the mixed gas and a gas that is an easily adsorbed component of the second adsorbent. It is characterized by a route introduced from outside the system.

本発明によれば、半導体製造装置等から排出された高付加価値ガスを含む排ガス(混合ガス)中のヘリウム、水素等の微量ガス成分を極めて簡単に除去することができる。さらに、混合ガス中の不要なガス成分は、高付加価値ガスを損なうことなく系外に排出できるため、高付加価値ガスを高回収率で連続的に回収することができる。   ADVANTAGE OF THE INVENTION According to this invention, trace gas components, such as helium and hydrogen, in the waste gas (mixed gas) containing the high added value gas discharged | emitted from the semiconductor manufacturing apparatus etc. can be removed very easily. Furthermore, since unnecessary gas components in the mixed gas can be discharged out of the system without impairing the high value-added gas, the high value-added gas can be continuously recovered at a high recovery rate.

図1及び図2は本発明の第1形態例を示すものであって、図1は一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の前半を行っているときのガスの流れを太線で示す系統図、図2は一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の後半を行っているときのガスの流れを太線で示す系統図である。なお、図において、黒塗りの弁は閉じている状態、白抜きの弁は開いている状態を表している。   FIGS. 1 and 2 show a first embodiment of the present invention. FIG. 1 shows a state in which one adsorption cylinder performs the adsorption process and the other adsorption cylinder performs the first half of the regeneration process. FIG. 2 is a system diagram showing the gas flow in bold lines, with one adsorption cylinder performing the adsorption process and the other adsorption cylinder performing the second half of the regeneration process. is there. In the figure, the black valve represents a closed state and the white valve represents an open state.

本形態例に示すガス分離装置は、クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス、例えば、半導体製品製造設備から排出される排ガス中の不純物成分を、前記高付加価値ガスを易吸着成分とする吸着剤を充填した複数の吸着筒11A,11Bを使用し、この吸着筒11A,11Bを、吸着工程と再生工程とにそれぞれ交互に切り替えて行う圧力変動吸着分離法により分離するようにしている。   The gas separation device shown in the present embodiment includes a mixed gas containing at least one high value-added gas of krypton, xenon, and neon, for example, an impurity component in exhaust gas discharged from a semiconductor product manufacturing facility. A plurality of adsorption cylinders 11A, 11B filled with an adsorbent containing gas as an easily adsorbing component are used, and the adsorption cylinders 11A, 11B are alternately switched between an adsorption process and a regeneration process by a pressure fluctuation adsorption separation method. Try to separate.

前記吸着筒11A,11Bには、吸着筒11A,11Bの入口側(図において下方側)に入口弁12A,12Bを介して前記混合ガスを導入する混合ガス入口経路13A,13Bと、吸着工程のときに吸着筒11A,11Bの出口側(図において上方側)から流出するガスを出口弁14A,14Bを介して排出する排ガス出口経路15A,15Bと、再生工程のときに吸着筒11A,11Bの出口側にパージ弁16A,16Bを介してパージガスを導入するパージガス入口経路17A,17Bと、再生工程のときに吸着筒11A,11Bの入口側から流出する再生排ガスを再生ガス出口弁18A,18Bを介して取り出す再生ガス出口径路19A,19Bとが設けられている。   In the adsorption cylinders 11A and 11B, mixed gas inlet paths 13A and 13B for introducing the mixed gas to the inlet sides (lower side in the drawing) of the adsorption cylinders 11A and 11B via the inlet valves 12A and 12B, and an adsorption process Exhaust gas outlet passages 15A and 15B for discharging gas flowing out from the outlet side (upper side in the figure) of the adsorption cylinders 11A and 11B through the outlet valves 14A and 14B, and the adsorption cylinders 11A and 11B during the regeneration process The purge gas inlet passages 17A and 17B for introducing the purge gas to the outlet side via the purge valves 16A and 16B, and the regeneration gas outlet valves 18A and 18B for the regeneration exhaust gas flowing out from the inlet side of the adsorption cylinders 11A and 11B during the regeneration process. And regenerative gas outlet paths 19A and 19B.

混合ガス入口経路13A,13Bには、混合ガスを貯留する混合ガス貯留槽20と、混合ガス貯留槽20内の混合ガスを抜き出して所定圧力に圧縮する圧縮機21とを有する混合ガス導入経路22が設けられており、混合ガス貯留槽20には、半導体製品製造設備から排出される排ガスが流入する排ガス流入経路23が設けられている。   In the mixed gas inlet paths 13A and 13B, a mixed gas introduction path 22 having a mixed gas storage tank 20 for storing the mixed gas and a compressor 21 for extracting the mixed gas in the mixed gas storage tank 20 and compressing it to a predetermined pressure. The mixed gas storage tank 20 is provided with an exhaust gas inflow path 23 through which exhaust gas discharged from the semiconductor product manufacturing facility flows.

前記再生ガス出口径路19A,19Bは、一つの経路にまとまった後、循環弁24を有する循環経路25と、回収弁26を有する回収経路27とに分岐しており、循環経路25は前記混合ガス貯留槽20に接続し、回収経路27は高付加価値ガスが濃縮された再生排ガスを回収ガスとして貯留する回収ガス貯留槽28に接続している。また、前記排ガス出口経路15A,15Bは、排気調節弁29を備えたガス排気経路30にまとめられている。   After the regeneration gas outlet paths 19A and 19B are combined into one path, the regeneration gas outlet paths 19A and 19B are branched into a circulation path 25 having a circulation valve 24 and a recovery path 27 having a recovery valve 26. The circulation path 25 is the mixed gas. Connected to the storage tank 20, the recovery path 27 is connected to a recovery gas storage tank 28 that stores the regenerated exhaust gas enriched in high added-value gas as recovery gas. The exhaust gas outlet paths 15 </ b> A and 15 </ b> B are combined into a gas exhaust path 30 including an exhaust control valve 29.

前記パージガス入口経路17A,17Bは、パージガス導入弁31を有するパージガス導入経路32を介してパージガス供給源33に接続されている。パージガス供給源33は、前記混合ガス中の高付加価値ガス及び除去対象となっている微量不純物成分を除くガスを供給するものであって、供給するガスとしては、通常は、混合ガス中に比較的大量に存在するガス、すなわち、混合ガスの主成分に相当するガスが選択される。   The purge gas inlet passages 17A and 17B are connected to a purge gas supply source 33 via a purge gas introduction passage 32 having a purge gas introduction valve 31. The purge gas supply source 33 supplies a gas excluding the high value-added gas in the mixed gas and a trace impurity component to be removed. The supplied gas is usually compared with the mixed gas. A gas which is present in a large amount, that is, a gas corresponding to the main component of the mixed gas is selected.

具体的には、混合ガスが高付加価値ガスとアルゴンとの混合ガスで、その中に微量乃至少量の水素やヘリウム、その他の微量不純物成分を含むガスの場合は、前記パージガスとしてアルゴンを選定することが最適であり、混合ガスが高付加価値ガスと窒素と微量不純物成分との混合ガスの場合は、前記パージガスとして窒素を選定することが最適である。但し、このパージガスは、前記回収ガス貯留槽28に回収した高付加価値ガス濃縮ガスの後処理や、使用目的、使用先の条件等に応じて適宜なガスをパージガスとして用いることが可能である。   Specifically, when the mixed gas is a mixed gas of high value-added gas and argon and contains a trace amount to a small amount of hydrogen or helium, and other trace impurity components, argon is selected as the purge gas. When the mixed gas is a mixed gas of a high value-added gas, nitrogen, and a trace impurity component, it is optimal to select nitrogen as the purge gas. However, as the purge gas, an appropriate gas can be used as the purge gas according to the post-treatment of the high value-added gas concentrated gas recovered in the recovered gas storage tank 28, the purpose of use, the conditions of the usage destination, and the like.

特に、回収ガス貯留槽28に回収した高付加価値ガス濃縮ガスの後処理を、高付加価値ガスを難吸着成分とし、その他のガス成分を易吸着成分とする吸着剤を使用した圧力変動吸着分離法により行い、高付加価値ガスを高純度に精製する場合には、この圧力変動吸着分離法で高付加価値ガスから分離可能なガスを前記パージガスとして用いる必要がある。   In particular, post-treatment of the high value-added gas concentrated gas recovered in the recovery gas storage tank 28 is performed by pressure fluctuation adsorption separation using an adsorbent having the high value-added gas as a hardly adsorbed component and the other gas components as easily adsorbed components. When the high value-added gas is purified to a high purity by the method, it is necessary to use a gas that can be separated from the high value-added gas by the pressure fluctuation adsorption separation method as the purge gas.

次に、本形態例示すガス分離装置を使用し、半導体製造装置の一つである窒化膜形成装置から排出される排ガスを対象として処理する例を説明する。窒化膜形成装置からの排ガスは、高付加価値ガスであるキセノンと、チャンバ内の通気や真空排気システム等に用いられた窒素とを主要成分とし、微量不純物として水素を含有する混合ガスとなっている。   Next, an example in which an exhaust gas discharged from a nitride film forming apparatus, which is one of semiconductor manufacturing apparatuses, is processed using the gas separation apparatus according to this embodiment will be described. The exhaust gas from the nitride film forming apparatus is a mixed gas containing xenon, which is a high value-added gas, and nitrogen used for ventilation in a chamber, a vacuum exhaust system, etc. as main components, and hydrogen as a trace impurity. Yes.

まず、吸着筒11A,11Bに充填する吸着剤には、平衡分離型吸着剤である活性炭を使用することが好ましい。この活性炭は、平衡吸着量としてキセノンの吸着量が多く(易吸着性)、窒素の吸着量が少なく(難吸着性)、水素をほとんど吸着しないという特性を有しており、前記排ガス中の窒素及び水素を排出してキセノンを濃縮するのに最適である。また、パージガス供給源33には高純度窒素を使用している。   First, it is preferable to use activated carbon which is an equilibrium separation type adsorbent as the adsorbent filled in the adsorption cylinders 11A and 11B. This activated carbon has the characteristics that the adsorption amount of xenon is large as an equilibrium adsorption amount (easy adsorption property), the adsorption amount of nitrogen is small (difficult adsorption property), and hardly adsorbs hydrogen. And is ideal for exhausting hydrogen and concentrating xenon. The purge gas supply source 33 uses high-purity nitrogen.

半導体製造装置から排出された排ガスは、排ガス流入経路23を通って混合ガス貯留槽20に流入し、この混合ガス貯留槽20で循環経路25から循環流入する再生排ガスと混合するとともに、半導体製造装置の運転状況の変化に伴う排ガス組成の変動が緩和される。混合ガス貯留槽20内の混合ガスは、圧縮機21で所定圧力に圧縮された後、入口弁12A、混合ガス入口経路13Aを通って吸着工程を行っている吸着筒11Aに導入される。   The exhaust gas discharged from the semiconductor manufacturing apparatus flows into the mixed gas storage tank 20 through the exhaust gas inflow path 23, and is mixed with the regenerated exhaust gas circulating and flowing in from the circulation path 25 in the mixed gas storage tank 20. The fluctuation of the exhaust gas composition due to the change in the operating condition of the is reduced. The mixed gas in the mixed gas storage tank 20 is compressed to a predetermined pressure by the compressor 21, and then introduced into the adsorption cylinder 11A performing the adsorption process through the inlet valve 12A and the mixed gas inlet path 13A.

吸着筒11Aに流入した圧力が高い混合ガス中のキセノンは、筒内に充填された活性炭に吸着して筒内に保持され、活性炭に吸着しなかった窒素及び水素が吸着筒11Aを通過して排ガス出口経路15Aに流出し、出口弁14A、排気調節弁29を通ってガス排気経路30から系外に排出される。この吸着筒11Aの吸着工程は、キセノンが排ガス出口経路15Aに流出する前に打ち切られる。   Xenon in the mixed gas having a high pressure flowing into the adsorption cylinder 11A is adsorbed by the activated carbon filled in the cylinder and held in the cylinder, and nitrogen and hydrogen that have not been adsorbed on the activated carbon pass through the adsorption cylinder 11A. The gas flows out to the exhaust gas outlet path 15A and is discharged out of the system through the outlet valve 14A and the exhaust control valve 29 from the gas exhaust path 30. The adsorption step of the adsorption cylinder 11A is terminated before xenon flows out to the exhaust gas outlet passage 15A.

吸着筒11Aが吸着工程を行っている間、他方の吸着筒11Bは再生工程を行っている。この再生工程は、吸着筒11Bの入口側に設けられている再生ガス出口弁18Bを開くとともに、吸着筒11Bの出口側に設けられているパージ弁16Bを開くことによって行われる。さらに、再生工程の前半では、図1に示すように、循環弁24を開くことにより、吸着筒11Bの入口側から流出した筒内のガス、すなわち、再生排ガスを循環経路25を通して混合ガス貯留槽20に循環させるようにしている。   While the adsorption cylinder 11A is performing the adsorption process, the other adsorption cylinder 11B is performing the regeneration process. This regeneration step is performed by opening the regeneration gas outlet valve 18B provided on the inlet side of the adsorption cylinder 11B and opening the purge valve 16B provided on the outlet side of the adsorption cylinder 11B. Further, in the first half of the regeneration process, as shown in FIG. 1, by opening the circulation valve 24, the in-cylinder gas flowing out from the inlet side of the adsorption cylinder 11B, that is, the regenerated exhaust gas is mixed gas storage tank through the circulation path 25. 20 to circulate.

この再生工程の前半では、再生ガス出口弁18B及び循環弁24が開くことにより、圧力の高い吸着筒11Bが圧力の低い混合ガス貯留槽20に連通し、吸着筒11B内のガスが再生ガス出口径路19Bから循環経路25を通って混合ガス貯留槽20に流出する。これにより、吸着筒11B内が減圧され、吸着工程で活性炭に吸着したキセノン及び窒素の一部が活性炭から脱着する。再生工程の前半で再生ガス出口径路19Bに流出する再生排ガスは、吸着工程の最終段階で吸着筒11Bに導入された混合ガス、すなわち、キセノン、窒素及び水素を含む混合ガスと、活性炭から脱着したキセノン及び窒素の一部と、パージ窒素の一部とが混合した状態となっており、キセノンはある程度濃縮されているが、微量不純物である水素が残留している状態のガスとなっている。   In the first half of this regeneration step, the regeneration gas outlet valve 18B and the circulation valve 24 are opened, whereby the high pressure adsorption cylinder 11B communicates with the low pressure mixed gas storage tank 20, and the gas in the adsorption cylinder 11B is regenerated gas outlet. The gas flows out from the path 19 </ b> B through the circulation path 25 to the mixed gas storage tank 20. Thereby, the inside of the adsorption cylinder 11B is depressurized, and part of the xenon and nitrogen adsorbed on the activated carbon in the adsorption process is desorbed from the activated carbon. The regeneration exhaust gas flowing out to the regeneration gas outlet path 19B in the first half of the regeneration process is desorbed from the mixed gas introduced into the adsorption cylinder 11B in the final stage of the adsorption process, that is, the mixed gas containing xenon, nitrogen and hydrogen, and activated carbon. A part of xenon and nitrogen and a part of purge nitrogen are mixed, and xenon is concentrated to some extent, but a gas in which hydrogen as a trace impurity remains.

そして、パージガス供給源33からパージガス導入経路32、パージガス入口経路17Bを通して吸着筒11Bに導入される高純度窒素(以下、パージ窒素という)により、前記水素を含む混合ガスが吸着筒11B内から押し出されて十分にパージされた後、図2に示すように、循環弁24を閉じて回収弁26を開き、吸着筒11Bから再生ガス出口径路19Bに流出した再生排ガスを回収経路27を通して回収ガス貯留槽28に回収する。   The mixed gas containing hydrogen is pushed out of the adsorption cylinder 11B by high purity nitrogen (hereinafter referred to as purge nitrogen) introduced into the adsorption cylinder 11B from the purge gas supply source 33 through the purge gas introduction path 32 and the purge gas inlet path 17B. 2, the circulation valve 24 is closed and the recovery valve 26 is opened, and the regenerated exhaust gas flowing out from the adsorption cylinder 11B to the regenerative gas outlet path 19B passes through the recovery path 27 as shown in FIG. Recover to 28.

この再生工程の後半で再生ガス出口径路19Bに流出する筒内のガスは、活性炭から脱着したキセノン及び窒素の一部にパージ窒素が混合した状態となっており、水素をほとんど含まない状態となっている。また、パージ窒素の導入により、活性炭に吸着したキセノンの脱着が促進され、回収ガス貯留槽28に回収される再生排ガスは、キセノンが濃縮された状態となっている。なお、パージ窒素は、高圧ボンベから供給するようにしてもよく、ガス分離装置の設置場所近傍に高純度窒素の発生源や使用設備がある場合は、これらから分岐した高純度窒素を供給することもできる。   The in-cylinder gas flowing out into the regeneration gas outlet path 19B in the latter half of the regeneration process is in a state in which purge nitrogen is mixed with xenon desorbed from the activated carbon and a part of nitrogen, and hardly contains hydrogen. ing. Further, by introducing purge nitrogen, the desorption of xenon adsorbed on the activated carbon is promoted, and the regenerated exhaust gas recovered in the recovery gas storage tank 28 is in a state where xenon is concentrated. Purge nitrogen may be supplied from a high-pressure cylinder. If there is a high-purity nitrogen source or equipment used near the installation location of the gas separator, supply high-purity nitrogen branched from these. You can also.

再生工程の前半、後半の弁の開閉切り替えは、あらかじめ設定された時間で行われ、切り替え後の吸着筒11Bから回収ガス貯留槽28への再生排ガスの回収は、再生工程が終了して吸着工程に切り替えられるまで継続される。   The opening and closing of the first half and second half of the regeneration process is performed in a preset time, and the recovery of the regenerated exhaust gas from the adsorption cylinder 11B to the recovered gas storage tank 28 after the switching is completed after the regeneration process is completed. It continues until it is switched to.

所定の工程切替時間が経過すると、各弁の開閉操作によって吸着筒11Aが再生工程に切り替わり、吸着筒11Bが吸着工程に切り替わる。この吸着工程と再生工程との切り替えを両吸着筒11A,11Bで交互に行うことにより、水素の分離排出とキセノンの濃縮とを連続して行うことができる。   When a predetermined process switching time elapses, the adsorption cylinder 11A is switched to the regeneration process and the adsorption cylinder 11B is switched to the adsorption process by opening / closing the valves. By alternately switching between the adsorption process and the regeneration process in both adsorption cylinders 11A and 11B, the separation and discharge of hydrogen and the concentration of xenon can be performed continuously.

このように、窒素に比べてキセノンを吸着し易く、水素をほとんど吸着しない活性炭を使用して吸着工程を行うことにより、キセノンの全量を吸着させながら、混合ガス中の微量不純物である水素を排出除去するとともに、窒素の大部分も排出することができる。   In this way, the adsorption process is performed using activated carbon, which is easier to adsorb xenon than nitrogen and hardly adsorbs hydrogen, thereby discharging hydrogen, which is a trace impurity in the mixed gas, while adsorbing the entire amount of xenon. As it is removed, most of the nitrogen can also be discharged.

一方、再生工程の前半では、水素が残留している再生排ガスを混合ガス入口経路13A,13B側に設けた混合ガス貯留槽20に循環させることにより、キセノンを系外に排出することなく再び吸着処理することができるので、キセノンの回収率を向上させることができる。そして、再生工程の後半で、水素をほとんど含まない状態になった再生排ガスを回収ガス貯留槽28に回収することにより、微量不純物である水素が除去されてキセノンが濃縮されたガスを得ることができる。  On the other hand, in the first half of the regeneration process, xenon is adsorbed again without being discharged out of the system by circulating the regenerated exhaust gas in which hydrogen remains in the mixed gas storage tank 20 provided on the mixed gas inlet path 13A, 13B side. Since it can be processed, the xenon recovery rate can be improved. Then, in the latter half of the regeneration process, the recovered exhaust gas that is almost free of hydrogen is recovered in the recovery gas storage tank 28, thereby obtaining a gas in which xenon is concentrated by removing hydrogen as a trace impurity. it can.

なお、本形態例においても、2筒式PSAで一般的に行われている均圧工程を採用することによって圧縮機21の運転コストを低減することができる。   In this embodiment as well, the operating cost of the compressor 21 can be reduced by adopting a pressure equalization process generally performed in the two-cylinder PSA.

図3及び図4は本発明の第2形態例を示すものであって、図3は、第1分離部10及び第2分離部50の二組の圧力変動吸着装置を使用することにより、高付加価値ガスを含む混合ガスから微量不純物を除去するとともに、高付加価値ガス以外のガス成分を分離して高付加価値ガスを高純度に精製するガス分離装置の一例を示す系統図である。   FIGS. 3 and 4 show a second embodiment of the present invention. FIG. 3 shows that a high pressure can be obtained by using two sets of pressure fluctuation adsorption devices of the first separator 10 and the second separator 50. It is a systematic diagram showing an example of a gas separation device that removes trace impurities from a mixed gas containing a value-added gas and separates gas components other than the value-added gas to purify the value-added gas with high purity.

なお、前段の第1分離プロセスを行う第1分離部10は、前記第1形態例に示したガス分離装置と同じ構成のものを使用し、同じプロセスで運転することができるので、この第1分離部10における各構成要素には、前記第1形態例で示したガス分離装置の構成要素と同一符号を付して詳細な説明は省略する。さらに、第1分離部10と第2分離部50とで同じ名称の構成要素については、第1分離部10に含まれる構成要素には「第1」を、第2分離部50に含まれる構成要素には「第2」をそれぞれ付すことにする。  The first separation unit 10 that performs the first separation process in the previous stage uses the same configuration as the gas separation device shown in the first embodiment and can be operated in the same process. Each component in the separation unit 10 is assigned the same reference numeral as that of the gas separation device shown in the first embodiment, and detailed description thereof is omitted. Further, regarding the components having the same names in the first separation unit 10 and the second separation unit 50, “first” is included in the components included in the first separation unit 10, and the configuration included in the second separation unit 50. Each element is given a “second”.

また、図4は、第2分離部50における一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程を行っているときのガスの流れを太線で示す系統図である。  FIG. 4 is a system diagram showing a gas flow with a thick line when one adsorption cylinder in the second separation unit 50 performs an adsorption process and the other adsorption cylinder performs a regeneration process.

第2分離部50は、第1分離部10の回収経路27から回収ガス貯留槽28に回収したガス(回収ガス)中の前記高付加価値ガスを難吸着成分とし、高付加価値ガスを除くその他のガスを易吸着成分とする第2吸着剤を充填した複数の第2吸着筒51A,51Bを、吸着工程と再生工程とにそれぞれ交互に切り替えて運転することにより高付加価値ガスを分離精製するようにしている。   The second separation unit 50 uses the high added value gas in the gas (recovered gas) collected from the collection path 27 of the first separation unit 10 in the collected gas storage tank 28 as a hardly adsorbed component and removes the high added value gas. The high-value-added gas is separated and purified by operating the plurality of second adsorption cylinders 51A and 51B filled with the second adsorbent containing the above gas as an easily adsorbing component alternately between the adsorption process and the regeneration process. I am doing so.

前記第2吸着筒51A,51Bには、第2吸着筒51A,51Bの入口側に第2入口弁52A,52Bを介して前記回収ガスを導入する回収ガス入口経路53A,53Bと、第2吸着筒51A,51Bの出口側から流出する高付加価値ガスを第2出口弁54A,54Bを介して採取する製品出口経路55A,55Bと、第2吸着筒51A,51Bの出口側に第2パージ弁56A,56Bを介して第2パージガスを導入する第2パージガス入口経路57A,57Bと、第2吸着筒51A,51Bの入口側から流出する再生排ガスを第2再生ガス出口弁58A,58Bを介して取り出す第2再生ガス出口径路59A,59Bとが設けられている。   The second adsorption cylinders 51A and 51B include recovery gas inlet paths 53A and 53B for introducing the recovery gas to the inlet sides of the second adsorption cylinders 51A and 51B via the second inlet valves 52A and 52B, and a second adsorption. Product outlet paths 55A and 55B for collecting high value added gas flowing out from the outlet sides of the cylinders 51A and 51B through the second outlet valves 54A and 54B, and a second purge valve on the outlet side of the second adsorption cylinders 51A and 51B The second purge gas inlet passages 57A and 57B for introducing the second purge gas through 56A and 56B and the regeneration exhaust gas flowing out from the inlet side of the second adsorption cylinders 51A and 51B are routed through the second regeneration gas outlet valves 58A and 58B. Second regeneration gas outlet paths 59A and 59B to be taken out are provided.

回収ガス入口経路53A,53Bには、前記回収ガス貯留槽28内の回収ガスを抜き出して所定圧力に圧縮する第2圧縮機60を有する回収ガス導入経路61が設けられており、製品出口経路55A,55Bは、製品採取経路62を介して製品貯留槽63に接続されている。製品貯留槽63には、製品供給弁64を有する製品供給経路65が設けられるとともに、製品貯留槽63内の高付加価値ガスの一部を第2パージガスとして前記第2パージガス入口経路57A,57Bに供給するため、第2パージガス導入弁66を有する第2パージガス導入経路67が設けられている。   The recovery gas inlet passages 53A and 53B are provided with a recovery gas introduction passage 61 having a second compressor 60 for extracting the recovery gas in the recovery gas storage tank 28 and compressing the recovery gas to a predetermined pressure. , 55B are connected to a product storage tank 63 via a product collection path 62. A product supply path 65 having a product supply valve 64 is provided in the product storage tank 63, and a part of the high added value gas in the product storage tank 63 is used as the second purge gas in the second purge gas inlet paths 57A and 57B. In order to supply, a second purge gas introduction path 67 having a second purge gas introduction valve 66 is provided.

前記第2再生ガス出口径路59A,59Bは、第2循環弁68を備えた第2循環経路69に合流して前記混合ガス貯留槽20に接続している。この第2循環経路69は、図3に破線で示すように、第2回収弁70を介して回収ガス貯留槽28に接続させてもよく、混合ガス貯留槽20及び回収ガス貯留槽28のいずれかに選択して循環させるように形成することもできる。   The second regeneration gas outlet paths 59 </ b> A and 59 </ b> B join a second circulation path 69 provided with a second circulation valve 68 and are connected to the mixed gas storage tank 20. This second circulation path 69 may be connected to the recovered gas storage tank 28 via the second recovery valve 70 as shown by a broken line in FIG. 3. Either of the mixed gas storage tank 20 and the recovered gas storage tank 28 may be connected. It is also possible to select and circulate.

次に、本形態例に示すガス分離装置を使用し、半導体製造装置から排出される排ガスの組成が、第1形態例と同様に、高付加価値ガスであるキセノンと、チャンバ内の通気や真空排気システム等に用いられた窒素とを主要成分とし、微量不純物として水素を含有する混合ガスを、第1分離部10での第1分離プロセスと、第2分離部50での第2分離プロセスとの組み合わせで処理してキセノンを分離精製する例を挙げて説明する。   Next, using the gas separation apparatus shown in the present embodiment, the composition of the exhaust gas discharged from the semiconductor manufacturing apparatus is the same as in the first embodiment, and xenon, which is a high value-added gas, and ventilation or vacuum in the chamber. The first separation process in the first separation unit 10 and the second separation process in the second separation unit 50 are mixed gas containing, as a main component, nitrogen used in the exhaust system or the like and hydrogen as a trace impurity. An example in which xenon is separated and purified by treatment with a combination of these will be described.

第2吸着筒51A,51Bに充填する第2吸着剤には、速度分離型吸着剤であるゼオライト4A(Na−A型ゼオライト)を使用することが好ましい。このゼオライト4Aは、比較的分子径の大きいキセノンを吸着しにくく(難吸着性)、キセノンより分子径の小さい窒素を吸着しやすい(易吸着性)という特性を有している。この特性は、一般に速度分離型と呼ばれる分離特性であり、適当な吸着時間を選定すれば、窒素を選択的に吸着させながら、キセノンを吸着させない状態にすることが可能である。   As the second adsorbent filled in the second adsorption cylinders 51A and 51B, it is preferable to use zeolite 4A (Na-A type zeolite) which is a speed separation type adsorbent. This zeolite 4A has the characteristics that it is difficult to adsorb xenon having a relatively large molecular diameter (hard adsorption) and that nitrogen having a molecular diameter smaller than that of xenon is easily adsorbed (easy adsorption). This characteristic is a separation characteristic generally referred to as a speed separation type. If an appropriate adsorption time is selected, it is possible to selectively adsorb nitrogen and not adsorb xenon.

図4に示すように、第1分離部10における第1分離プロセスで回収ガス貯留槽28に回収された回収ガスは、第2圧縮機60で所定圧力に圧縮された後、第2入口弁52A及び回収ガス入口経路53Aを通って吸着工程を行っている第2吸着筒51Aに導入される。第2吸着筒51Aに流入した圧力が高い回収ガス中の窒素は、筒内に充填されたゼオライト4Aに吸着して筒内に保持され、ゼオライト4Aに吸着しなかったキセノンが第2吸着筒51Aを通過して製品出口経路55Aに流出し、第2出口弁54A、製品採取経路62を通して製品貯留槽63に採取される。   As shown in FIG. 4, the recovered gas recovered in the recovered gas storage tank 28 in the first separation process in the first separation unit 10 is compressed to a predetermined pressure by the second compressor 60, and then the second inlet valve 52A. And the second adsorption cylinder 51A performing the adsorption process through the recovered gas inlet path 53A. The nitrogen in the recovered gas having a high pressure flowing into the second adsorption cylinder 51A is adsorbed by the zeolite 4A filled in the cylinder and held in the cylinder, and the xenon not adsorbed on the zeolite 4A is absorbed in the second adsorption cylinder 51A. And flows out into the product outlet path 55A and is collected in the product storage tank 63 through the second outlet valve 54A and the product collection path 62.

製品貯留槽63に採取された高純度キセノンは、製品供給弁64、製品供給経路65を通って半導体製造装置等の使用先に供給される。この第2吸着筒51Aの吸着工程は、窒素が製品出口経路55Aに流出する前に打ち切られる。  The high-purity xenon collected in the product storage tank 63 is supplied to a use destination such as a semiconductor manufacturing apparatus through a product supply valve 64 and a product supply path 65. The adsorption process of the second adsorption cylinder 51A is terminated before nitrogen flows out to the product outlet path 55A.

第2吸着筒51Aが吸着工程を行っている間、他方の第2吸着筒51Bは再生工程を行っている。この再生工程は、第2吸着筒51Bの入口側に設けられている第2再生ガス出口弁58Bを開くとともに、第2吸着筒51Bの出口側に設けられている第2パージ弁56Bを開くことによって行われる。   While the second adsorption cylinder 51A is performing the adsorption process, the other second adsorption cylinder 51B is performing the regeneration process. In this regeneration step, the second regeneration gas outlet valve 58B provided on the inlet side of the second adsorption cylinder 51B is opened and the second purge valve 56B provided on the outlet side of the second adsorption cylinder 51B is opened. Is done by.

この再生工程では、第2再生ガス出口弁58B及び第2循環弁68が開くことにより、圧力の高い第2吸着筒51Bが圧力の低い混合ガス貯留槽20に連通した状態になるので、第2吸着筒51B内のガスが第2再生ガス出口径路59Bから第2循環経路69を通って混合ガス貯留槽20に流出する。これにより、第2吸着筒51B内が減圧され、吸着工程でゼオライト4Aに吸着した窒素及びキセノンの一部がゼオライト4Aから脱着する。   In this regeneration step, since the second regeneration gas outlet valve 58B and the second circulation valve 68 are opened, the second adsorption cylinder 51B having a high pressure is in communication with the mixed gas storage tank 20 having a low pressure. The gas in the adsorption cylinder 51B flows out from the second regeneration gas outlet path 59B to the mixed gas storage tank 20 through the second circulation path 69. Thereby, the inside of the second adsorption cylinder 51B is depressurized, and part of nitrogen and xenon adsorbed on the zeolite 4A in the adsorption process is desorbed from the zeolite 4A.

また、製品貯留槽63から第2パージガス導入弁66、パージガス導入経路67、第2パージ弁56B、第2パージガス入口経路57Bを通して第2吸着筒51Bの出口側から導入される高付加価値ガスにより、ゼオライト4Aからの窒素の脱着が促進されるとともに、脱着した窒素を第2吸着筒51Bの入口側から第2再生ガス出口径路59Bに向けて押し出して筒内をパージする。   Further, the high added value gas introduced from the outlet side of the second adsorption cylinder 51B through the second purge gas introduction valve 66, the purge gas introduction path 67, the second purge valve 56B, and the second purge gas inlet path 57B from the product storage tank 63, The desorption of nitrogen from the zeolite 4A is promoted, and the desorbed nitrogen is pushed out from the inlet side of the second adsorption cylinder 51B toward the second regeneration gas outlet path 59B to purge the inside of the cylinder.

この第2分離部50の再生工程においても、再生工程前半に第2再生ガス出口径路59Bに流出する比較的窒素濃度が高い再生排ガスを混合ガス貯留槽20に循環させ、再生工程前半に第2再生ガス出口径路59Bに流出するキセノン濃度が高い再生排ガスを回収ガス貯留槽28に循環させるようなプロセスとしてもよい。また、第2分離部50でも、2筒式PSAで行われている均圧工程を採用することができる。   Also in the regeneration process of the second separation unit 50, the regeneration exhaust gas having a relatively high nitrogen concentration flowing out to the second regeneration gas outlet path 59B is circulated in the mixed gas storage tank 20 in the first half of the regeneration process, and the second in the first half of the regeneration process. A process may be used in which the regeneration exhaust gas having a high xenon concentration flowing out to the regeneration gas outlet path 59B is circulated to the recovered gas storage tank 28. Moreover, the pressure equalization process currently performed with 2 cylinder type PSA is employable also in the 2nd separation part 50.

このように、第1分離部10の第1吸着筒11A,11Bに高付加価値ガス(キセノン)を易吸着成分とする第1吸着剤(活性炭)を充填し、該第1分離部10での第1分離プロセスにおける吸着工程で微量不純物(水素)を分離除去して排出するとともに、再生工程では、装置系外から第1パージガス(パージ窒素)を導入することにより、微量不純物を含まずに高付加価値ガス(キセノン)を濃縮したガスを回収し、次いで、第2分離部50の第2吸着筒51A,51Bに高付加価値ガス(キセノン)を難吸着成分とする第2吸着剤(ゼオライト4A)を充填し、該第2分離部50での第2分離プロセスにおける吸着工程で高付加価値ガス(キセノン)を高純度に分離精製して採取するとともに、再生工程で第2吸着筒から流出する再生排ガスを混合ガス又は回収ガスに循環させることにより、高付加価値ガス(キセノン)を損なうことなく、高収率かつ高純度で回収して再利用することができる。   In this way, the first adsorption cylinders 11A and 11B of the first separation unit 10 are filled with the first adsorbent (activated carbon) having the high added value gas (xenon) as an easily adsorbed component, and the first separation unit 10 In the adsorption process in the first separation process, trace impurities (hydrogen) are separated and removed, and in the regeneration process, the first purge gas (purge nitrogen) is introduced from outside the system so A gas enriched in the added value gas (xenon) is recovered, and then the second adsorbent (zeolite 4A) containing the high added value gas (xenon) as a hardly adsorbed component in the second adsorption cylinders 51A and 51B of the second separation unit 50. ), And the high-added-value gas (xenon) is separated and purified with high purity in the adsorption step in the second separation process in the second separation unit 50, and flows out from the second adsorption cylinder in the regeneration step. Regeneration By circulating the gas mixture or recovering the gases, without compromising the high value gas (xenon), it may be recovered and reused in a high yield and high purity.

すなわち、キセノン、窒素、水素の混合ガスからキセノンを高回収率で回収し、かつ、窒素、水素を含まない高純度キセノンを採取する場合、水素は、窒素、キセノン等のガス成分と比較して吸着剤にほとんど吸着されない性質を有している。このため、第1吸着筒11A,11Bに前記混合ガスを導入した場合、水素は吸着剤に吸着されることなく、吸着剤充填層を通過して第1吸着筒の出口側から排出される。   That is, when xenon is recovered from a mixed gas of xenon, nitrogen, and hydrogen at a high recovery rate, and high-purity xenon that does not contain nitrogen and hydrogen is collected, hydrogen is compared with gas components such as nitrogen and xenon. It has the property of being hardly adsorbed by the adsorbent. For this reason, when the mixed gas is introduced into the first adsorption cylinders 11A and 11B, hydrogen is not adsorbed by the adsorbent but passes through the adsorbent packed bed and is discharged from the outlet side of the first adsorption cylinder.

したがって、吸着工程において、第1吸着筒の出口側から一定量のガスを流出させた場合、流出ガス中に水素が多く含まれることになる。また、活性炭は、窒素に対して難吸着性であり、キセノンに対して易吸着性という特性を有している。このため、キセノンが活性炭に吸着保持されることから、第1吸着筒から流出するガスの主成分は窒素となる。これにより、前記第1分離部10の第1分離プロセスでは、キセノンを損失することなく、窒素と水素とを選択的に装置系外へ排出することが可能となる。   Therefore, in the adsorption step, when a certain amount of gas is flowed out from the outlet side of the first adsorption cylinder, a large amount of hydrogen is contained in the outflow gas. Activated carbon has a property of being hardly adsorbed to nitrogen and easily adsorbed to xenon. For this reason, since xenon is adsorbed and held by the activated carbon, the main component of the gas flowing out from the first adsorption cylinder is nitrogen. Thereby, in the first separation process of the first separation unit 10, nitrogen and hydrogen can be selectively discharged out of the apparatus system without losing xenon.

一般的な圧力変動吸着分離法では、再生工程において、吸着剤の再生を促進するために、製品ガスの一部をパージガスとして吸着筒出口側から導入する。本形態例では、第1吸着筒から流出した窒素を主成分とするガスの一部をパージガスとして用いることになり、再生工程にある第1吸着筒に窒素を主成分とするガスを流入させることでキセノンの脱着を促進することができる。   In a general pressure fluctuation adsorption separation method, in the regeneration step, a part of product gas is introduced as a purge gas from the adsorption cylinder outlet side in order to promote regeneration of the adsorbent. In this embodiment, a part of the gas mainly containing nitrogen flowing out from the first adsorption cylinder is used as the purge gas, and the gas mainly containing nitrogen is caused to flow into the first adsorption cylinder in the regeneration process. Can promote the desorption of xenon.

しかしながら、本形態例において、吸着工程にある第1吸着筒の出口側から流出するガスには、窒素のみならず水素も多く含まれることとなる。水素を含む窒素をパージガスとして用いることは、第1吸着剤の再生を促進する目的に対して特に支障を来たすものではないが、再生工程にある第1吸着筒の入口側から流出するガス中に必ず水素が混在することになる。   However, in this embodiment, the gas flowing out from the outlet side of the first adsorption cylinder in the adsorption process contains not only nitrogen but also a lot of hydrogen. The use of nitrogen containing hydrogen as the purge gas does not particularly hinder the purpose of promoting the regeneration of the first adsorbent, but in the gas flowing out from the inlet side of the first adsorption cylinder in the regeneration process. There will always be a mixture of hydrogen.

図5は、再生工程にある第1吸着筒の入口側から流出する再生排ガス中に含まれる水素濃度を連続的に測定した結果を示したものであり、Case1は、吸着工程にある第1吸着筒から流出したガスをパージガスに使用した場合の測定結果であり、Case2は、前述のように高純度窒素をパージガスとして使用した場合の測定結果である。   FIG. 5 shows the result of continuously measuring the hydrogen concentration contained in the regenerated exhaust gas flowing out from the inlet side of the first adsorption cylinder in the regeneration process. Case 1 is the first adsorption in the adsorption process. This is a measurement result when the gas flowing out from the cylinder is used as the purge gas, and Case 2 is a measurement result when high-purity nitrogen is used as the purge gas as described above.

この図5から明らかなように、Case1では、再生工程にある第1吸着筒の入口側から流出する再生排ガス中に常に水素が検出されている。一方、Case2では、系外から十分に高純度の窒素をパージガスとして導入しており、パージガス中に水素が含まれないため、再生工程にある第1吸着筒の入口側から流出する再生排ガスには、吸着剤の空隙部分に残存した水素のみが含まれることになる。   As is apparent from FIG. 5, in Case 1, hydrogen is always detected in the regeneration exhaust gas flowing out from the inlet side of the first adsorption cylinder in the regeneration process. On the other hand, in Case 2, sufficiently high-purity nitrogen is introduced as a purge gas from outside the system, and hydrogen is not contained in the purge gas. Therefore, the regeneration exhaust gas flowing out from the inlet side of the first adsorption cylinder in the regeneration process Only the hydrogen remaining in the voids of the adsorbent is contained.

第1吸着剤に多く吸着されている窒素、キセノンに対して、吸着剤の空隙部分に残存している水素は微量であることから、水素は、再生工程開始後の100秒までに集中して流出し、それ以降の再生排ガス中には含まれていない。すなわち、再生工程で第1吸着筒の入口側から流出する再生排ガスを、前半と後半とで導出先を分けることのみで、水素を含有せずにキセノンを濃縮した混合ガスを回収することができる。   Compared to nitrogen and xenon that are adsorbed to a large amount by the first adsorbent, the amount of hydrogen remaining in the adsorbent voids is very small, so the hydrogen is concentrated by 100 seconds after the start of the regeneration process. It flows out and is not included in the regenerated exhaust gas after that. That is, the regenerated exhaust gas that flows out from the inlet side of the first adsorption cylinder in the regeneration process can be recovered by dividing the lead-out destination into the first half and the second half, and recovering the mixed gas enriched with xenon without containing hydrogen. .

本形態例では、水素が含まれる初期のガスを第1吸着筒の上流にある混合ガス貯留槽20に循環させ、水素が含まれない後半のガスを第1吸着筒の下流にある回収ガス貯留槽28に導出することで、水素が含まれない混合ガスを回収ガス貯留槽28に回収して貯留することができる。   In this embodiment, the initial gas containing hydrogen is circulated to the mixed gas storage tank 20 upstream of the first adsorption cylinder, and the recovered gas storage downstream of the first adsorption cylinder is stored in the latter half of the gas not containing hydrogen. By leading to the tank 28, the mixed gas not containing hydrogen can be recovered and stored in the recovered gas storage tank 28.

系外から導入するパージガスの流量には最適範囲が存在する。すなわち、パージガスの流量が少なければ水素除去が不十分になり、パージガスの流量が多ければ排ガス流量を増加させることになり、キセノンの損失が大きくなる。好ましいパージガスの流量は、空間速度0.2〜2min−1であり、さらに好ましくは0.5〜1.2min−1の範囲である。 There is an optimum range for the flow rate of the purge gas introduced from outside the system. That is, if the purge gas flow rate is small, hydrogen removal is insufficient, and if the purge gas flow rate is high, the exhaust gas flow rate is increased, resulting in a large loss of xenon. The flow rate of the purge gas is preferably a space velocity of 0.2 to 2 min −1 , more preferably 0.5 to 1.2 min −1 .

回収ガス貯留槽28に貯留したキセノンと窒素との混合ガスからなる回収ガスは、窒素に対して易吸着性であり、キセノンに対して難吸着性である第2吸着剤が充填された第2吸着筒51A,51Bに導入される。第2吸着筒の吸着工程で、混合ガス中の窒素が第2吸着剤に吸着保持されるため、製品貯留槽63には高純度のキセノンを採取することができる。製品貯留槽63に貯留されたキセノンは、製品として半導体製造装置等に供給される。   The recovered gas composed of a mixed gas of xenon and nitrogen stored in the recovered gas storage tank 28 is easily adsorbed with respect to nitrogen and filled with a second adsorbent that is hardly adsorbed with respect to xenon. It is introduced into the suction cylinders 51A and 51B. In the adsorption step of the second adsorption cylinder, nitrogen in the mixed gas is adsorbed and held by the second adsorbent, so that high purity xenon can be collected in the product storage tank 63. The xenon stored in the product storage tank 63 is supplied as a product to a semiconductor manufacturing apparatus or the like.

なお、半導体製造上の理由により、キセノンの不純物濃度をさらに減少させる必要がある場合には、本発明のガス分離装置の後段に精製装置を設けることもできる。この精製装置としては、チタン、バナジウム、ジルコニウム、鉄、ニッケル等の金属あるいは合金を用いたゲッター式精製器が好適である。   If it is necessary to further reduce the xenon impurity concentration for semiconductor manufacturing reasons, a purifier can be provided at the subsequent stage of the gas separation apparatus of the present invention. As this refining device, a getter type purifier using a metal or alloy such as titanium, vanadium, zirconium, iron, nickel or the like is suitable.

第2吸着剤の再生は、製品貯留槽63に貯留された製品ガス(キセノン)の一部を用いて行う。パージガスとして製品貯留槽63のキセノンを導入することにより、第2吸着剤に吸着された窒素の脱着を促進することができる。再生工程で第2吸着筒の入口側から流出したガスは、再び混合ガス貯留槽20又は回収ガス貯留槽28に戻される。流出ガスの適量を混合ガス貯留槽20に戻すことにより、回収ガス貯留槽28に貯留された回収ガスの過剰な窒素濃度の上昇を防ぐことができる。   The regeneration of the second adsorbent is performed using part of the product gas (xenon) stored in the product storage tank 63. By introducing xenon in the product storage tank 63 as a purge gas, desorption of nitrogen adsorbed on the second adsorbent can be promoted. The gas flowing out from the inlet side of the second adsorption cylinder in the regeneration process is returned to the mixed gas storage tank 20 or the recovered gas storage tank 28 again. By returning an appropriate amount of the outflow gas to the mixed gas storage tank 20, it is possible to prevent an excessive increase in the nitrogen concentration of the recovered gas stored in the recovered gas storage tank 28.

このように、本形態例では、キセノンを含まない窒素に同伴させて水素を排気することができるため、キセノンの損失を最小限に抑えることができる。また、外部からパージ窒素を導入することによって水素が混入しないキセノンを製造することができる。   As described above, in this embodiment, since hydrogen can be exhausted with nitrogen not containing xenon, loss of xenon can be minimized. Moreover, xenon in which hydrogen is not mixed can be produced by introducing purge nitrogen from the outside.

なお、本形態例では、ガス分離装置を窒化膜形成装置に適用したとして、キセノン、窒素、水素の混合ガスを回収する条件を例示したが、ここで説明した以外にも広く適用することができる。例えば、酸窒化膜形成装置の場合には、キセノン、窒素、水素に加え、酸素も混入することになる。この場合、第1吸着筒に流入した酸素は窒素と共に排出され、回収ガス中の酸素は第2吸着筒で窒素と同様に吸着除去することができる。   In this embodiment, the gas separation apparatus is applied to the nitride film forming apparatus, and the conditions for recovering the mixed gas of xenon, nitrogen, and hydrogen are exemplified. However, the present invention can be widely applied in addition to those described here. . For example, in the case of an oxynitride film forming apparatus, oxygen is also mixed in addition to xenon, nitrogen, and hydrogen. In this case, oxygen flowing into the first adsorption cylinder is discharged together with nitrogen, and oxygen in the recovered gas can be adsorbed and removed by the second adsorption cylinder in the same manner as nitrogen.

また、窒化膜、酸窒化膜形成装置にアンモニア、酸化窒素化合物が添加された場合には、ガス分離装置の前段に、TSA法等を利用した前処理装置を設置することで対応できる。酸化膜のエッチング装置に対しては、ガス分離装置の前段に、PFC、SIF等を除去する反応吸着装置を前処理装置として設置することで対応できる。さらに、高付加価値ガスとして、キセノン以外のクリプトンやネオンを含む場合でも同様にして不純物成分の分離や高付加価値ガスの分離精製を行うことができる。 Further, when ammonia or a nitric oxide compound is added to the nitride film or oxynitride film forming apparatus, it can be dealt with by installing a pretreatment apparatus using the TSA method or the like in the previous stage of the gas separation apparatus. The oxide film etching apparatus can be dealt with by installing a reaction adsorption apparatus for removing PFC, SIF 4 and the like as a pretreatment apparatus in the preceding stage of the gas separation apparatus. Further, even when krypton or neon other than xenon is included as the high value-added gas, separation of impurity components and separation / purification of the high value-added gas can be performed in the same manner.

前記形態例では、装置外部から導入する第1分離部10の第1パージガスに窒素を用いた例を示したが、特に窒素に限定されるものではなく、水素、ヘリウム等の除去したい不純物成分が含まれないガスであれば、前記同様の効果が期待できる。   In the above-described embodiment, an example in which nitrogen is used as the first purge gas of the first separation unit 10 introduced from the outside of the apparatus is not particularly limited to nitrogen. Impurity components to be removed such as hydrogen and helium are not limited to nitrogen. If the gas is not included, the same effect as described above can be expected.

例えば、前記形態例の第1パージガスに酸素を用いた場合においても、水素を除去したガスを回収ガス貯留槽28に回収することができる。この場合、回収ガス貯留槽28に酸素が混入することになるが、酸素は窒素と同様に第2分離部50で除去することができるため、キセノンの分離精製に支障を来たさない。   For example, even when oxygen is used as the first purge gas in the embodiment, the gas from which hydrogen has been removed can be recovered in the recovery gas storage tank 28. In this case, oxygen is mixed into the recovered gas storage tank 28. However, since oxygen can be removed by the second separation unit 50 in the same manner as nitrogen, it does not hinder the separation and purification of xenon.

したがって、好ましくは、半導体製造装置等の真空排気手段に用いられるパージガスと同一ガス成分を選択することであるが、第1分離部10の第1パージガスとして選択するガスは、後段の第2分離部50で容易に除去可能なガスであれば、何れのガスを選択してもよい。   Therefore, it is preferable to select the same gas component as the purge gas used in the vacuum exhaust means of the semiconductor manufacturing apparatus or the like, but the gas selected as the first purge gas of the first separation unit 10 is the second separation unit in the subsequent stage. Any gas can be selected as long as it can be easily removed at 50.

図3に示すキセノン循環供給装置を製作し、キセノンを含む混合ガスからキセノンを分離精製する実験を行った。混合ガスの流量は、2.5L/min(流量[L/min]は0℃、1気圧の換算値、以下同じ)であり、ガス組成は、キセノン34容量%、窒素64容量%、水素2容量%である。混合ガス貯留槽20の容積は100Lとし、第1吸着筒11A,11Bには、内径110.1mm、充填高さ600mmの円筒状の容器に活性炭2.5kg充填したものを使用した。   The xenon circulation supply apparatus shown in FIG. 3 was manufactured, and an experiment for separating and purifying xenon from a mixed gas containing xenon was conducted. The flow rate of the mixed gas is 2.5 L / min (the flow rate [L / min] is 0 ° C., converted value of 1 atm, the same applies hereinafter), and the gas composition is 34% by volume of xenon, 64% by volume of nitrogen, 2 hydrogen. It is volume%. The volume of the mixed gas storage tank 20 was 100 L, and the first adsorption cylinders 11A and 11B were used in which 2.5 kg of activated carbon was packed in a cylindrical container having an inner diameter of 110.1 mm and a filling height of 600 mm.

また、回収ガス貯留槽28の容積は50Lとし、第2吸着筒51A,51Bには、内径134.2mm、充填高さ600mmの円筒状の容器にゼオライト4Aを7.4kg充填したものを使用した。製品貯留槽63の容積は20Lとした。また、第1圧縮機21は約40L/min、第2圧縮機60は約20L/minの容量のものを使用した。   The volume of the recovered gas storage tank 28 was 50 L, and the second adsorption cylinders 51A and 51B were prepared by filling 7.4 kg of zeolite 4A in a cylindrical container having an inner diameter of 134.2 mm and a filling height of 600 mm. . The volume of the product storage tank 63 was 20L. The first compressor 21 has a capacity of about 40 L / min, and the second compressor 60 has a capacity of about 20 L / min.

あらかじめ、窒素及びキセノンを封入することで、分離装置系内のガス濃度、圧力を安定化させた後、排ガス流入経路23から前記混合ガスを混合ガス貯留槽20に導入した。第1分離部10及び第2分離部50は、1サイクルの運転時間を500秒(吸着工程、再生工程共に250秒)とし、再生工程の前半、後半の切り替えは、再生工程開始から125秒後とした。   Nitrogen and xenon were sealed in advance to stabilize the gas concentration and pressure in the separation system, and the mixed gas was introduced into the mixed gas storage tank 20 from the exhaust gas inflow path 23. The first separation unit 10 and the second separation unit 50 have an operation time of one cycle of 500 seconds (250 seconds for both the adsorption process and the regeneration process), and switching between the first half and the second half of the regeneration process is 125 seconds after the start of the regeneration process. It was.

第1分離部10における吸着工程では、混合ガス貯留槽20の混合ガスを、第1圧縮機21により加圧して第1吸着筒11Aに導入した。第1吸着筒11Aに導入された混合ガスは、第1吸着剤(活性炭)にキセノンが吸着保持され、窒素及び水素が吸着筒出口側から排ガス出口経路15Aに流出した。排ガス出口経路15Aに流出するガスの流量は、流量調整機能を有する排気調節弁29で6.45L/minに制御した。なお、第1吸着筒の圧力は、大気圧〜500kPa(ゲージ圧)で操作した。   In the adsorption step in the first separation unit 10, the mixed gas in the mixed gas storage tank 20 is pressurized by the first compressor 21 and introduced into the first adsorption cylinder 11 </ b> A. In the mixed gas introduced into the first adsorption cylinder 11A, xenon was adsorbed and held by the first adsorbent (activated carbon), and nitrogen and hydrogen flowed out from the adsorption cylinder outlet side to the exhaust gas outlet path 15A. The flow rate of the gas flowing out to the exhaust gas outlet path 15A was controlled to 6.45 L / min by the exhaust control valve 29 having a flow rate adjusting function. The pressure in the first adsorption cylinder was operated at atmospheric pressure to 500 kPa (gauge pressure).

第1分離部10における再生工程では、装置外部のパージガス供給源33から高純度窒素4.8L/minを第1パージガスとして導入し、第1パージガス入口経路17Bを通して第1吸着筒15Bに流通させた。第1吸着筒15Bから第1再生ガス出口径路19Bに流出するガスは、循環弁24と回収弁26とを所定時間で切替開閉することにより、混合ガス貯留槽20又は回収ガス貯留槽28に導出される。   In the regeneration step in the first separation unit 10, 4.8 L / min of high-purity nitrogen is introduced as the first purge gas from the purge gas supply source 33 outside the apparatus, and is circulated to the first adsorption cylinder 15B through the first purge gas inlet path 17B. . The gas flowing out from the first adsorption cylinder 15B to the first regeneration gas outlet path 19B is led to the mixed gas storage tank 20 or the recovery gas storage tank 28 by switching the switching valve 24 and the recovery valve 26 in a predetermined time. Is done.

ここでは、まず、循環弁24を開状態、回収弁26を閉状態とすることで、第1再生ガス出口径路19Bに流出したガスを混合ガス貯留槽20に循環返送した。125秒経過後、循環弁24を閉状態、回収弁26を開状態とすることで、流出ガスの導出先を混合ガス貯留槽20から回収ガス貯留槽28に切り替えた。この流出ガスの回収ガス貯留槽28への返送は、再生工程終了まで継続した。   Here, first, the gas that flowed out to the first regeneration gas outlet path 19B was circulated and returned to the mixed gas storage tank 20 by opening the circulation valve 24 and closing the recovery valve 26. After 125 seconds had elapsed, the circulation valve 24 was closed and the recovery valve 26 was opened, so that the outlet of the outflow gas was switched from the mixed gas storage tank 20 to the recovery gas storage tank 28. The return of the outflow gas to the recovered gas storage tank 28 was continued until the end of the regeneration process.

一方、第2分離部50における吸着工程では、回収ガス貯留槽28からの回収ガスを第2圧縮機5により加圧して第2吸着筒51Aに導入した。第2吸着筒51Aに導入された回収ガスは、第2吸着剤(ゼオライト4A)に窒素が吸着保持され、キセノンが製品出口経路55A、製品採取経路62を通して製品貯留槽63に採取される。   On the other hand, in the adsorption process in the second separation unit 50, the recovered gas from the recovered gas storage tank 28 is pressurized by the second compressor 5 and introduced into the second adsorption cylinder 51A. In the recovered gas introduced into the second adsorption cylinder 51A, nitrogen is adsorbed and held in the second adsorbent (zeolite 4A), and xenon is collected in the product storage tank 63 through the product outlet path 55A and the product collection path 62.

製品貯留槽63に貯留されたキセノンは、流量制御機能を有する製品供給弁64で0.85L/minに流量制御し、製品供給経路65を通して使用先に供給した。なお、第2吸着筒の圧力は大気圧〜400kPaで操作した。   The flow rate of xenon stored in the product storage tank 63 was controlled to 0.85 L / min with a product supply valve 64 having a flow rate control function, and supplied to the user through the product supply path 65. The pressure in the second adsorption cylinder was operated at atmospheric pressure to 400 kPa.

第2分離部50における再生工程では、製品貯留槽63に貯留されたキセノンを第2パージガスとしてパージガス導入経路67、第2パージガス入口経路57Bを通して第2吸着筒51Bに流通させた。第2吸着筒51Bから第2再生ガス出口径路59Bに流出したガスは、第2循環経路69を通して混合ガス貯留槽20及び回収ガス貯留槽28に分けて循環返送した。ここでは、再生工程開始後、最初に混合ガス貯留槽20に循環させ、10秒経過後に回収ガス貯留槽28に循環させるようにした。回収ガス貯留槽28への循環は再生工程まで継続した。   In the regeneration process in the second separation unit 50, the xenon stored in the product storage tank 63 was circulated to the second adsorption cylinder 51B as the second purge gas through the purge gas introduction path 67 and the second purge gas inlet path 57B. The gas flowing out from the second adsorption cylinder 51B to the second regeneration gas outlet path 59B was circulated and returned to the mixed gas storage tank 20 and the recovered gas storage tank 28 through the second circulation path 69. Here, after starting the regeneration process, the gas is first circulated in the mixed gas storage tank 20 and is circulated in the recovered gas storage tank 28 after 10 seconds. Circulation to the recovered gas storage tank 28 continued until the regeneration step.

第1吸着筒11A,11B及び第2吸着筒51A,51Bを吸着工程と再生工程とに交互に切り替えながらガス分離装置を上記プロセスで連続運転したところ、第1圧縮機21から吐出される混合ガスのキセノン濃度は58〜62容量%で循環定常状態に落ち着くことが確認された。このとき、ガス排気経路30から排出された窒素に含まれる不純物濃度は、キセノン濃度が約90ppm、水素濃度が約8000ppmであり、製品供給経路65から得られるキセノンに含まれる不純物濃度は、窒素濃度が約50ppm、水素濃度が4ppmであった。   When the gas separator is continuously operated in the above process while the first adsorption cylinders 11A, 11B and the second adsorption cylinders 51A, 51B are alternately switched between the adsorption process and the regeneration process, the mixed gas discharged from the first compressor 21 It was confirmed that the concentration of xenon was 58 to 62% by volume and settled to a steady state of circulation. At this time, the concentration of impurities contained in the nitrogen exhausted from the gas exhaust path 30 is about 90 ppm for xenon and about 8000 ppm for hydrogen, and the concentration of impurities contained in xenon obtained from the product supply path 65 is the concentration of nitrogen. Was about 50 ppm, and the hydrogen concentration was 4 ppm.

以上のように、微量の水素を含むキセノン、窒素の混合ガスから、高付加価値ガスであるキセノンを分離精製できることを確認した。半導体製造等に求められる不純物濃度が厳しい場合には、前記ガス分離装置の後段にゲッター精製装置を取り付けることで、上記不純物濃度を0.1ppm未満まで減少させることができる。また、本実施例におけるキセノンの実効損失量は、90ppm×6.45L/min=0.58cc/minであり、キセノン回収率は99.93%であった。   As described above, it was confirmed that xenon, which is a high value-added gas, can be separated and purified from a mixed gas of xenon and nitrogen containing a trace amount of hydrogen. When the impurity concentration required for semiconductor manufacturing or the like is severe, the impurity concentration can be reduced to less than 0.1 ppm by attaching a getter purifier after the gas separator. The effective loss amount of xenon in this example was 90 ppm × 6.45 L / min = 0.58 cc / min, and the xenon recovery rate was 99.93%.

本発明の第1形態例を示すもので、一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の前半を行っているときのガスの流れを太線で示す系統図である。The 1st example of this invention is shown and it is a systematic diagram which shows the flow of a gas when the one adsorption cylinder is performing the adsorption | suction process and the other adsorption cylinder is performing the first half of the reproduction | regeneration process with a thick line. . 同じく一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程の後半を行っているときのガスの流れを太線で示す系統図である。Similarly, it is a system diagram which shows a gas flow when one adsorption cylinder is performing the adsorption process and the other adsorption cylinder is performing the second half of the regeneration process with a bold line. 本発明の第2形態例を示すもので、第1分離部及び第2分離部の二組の圧力変動吸着装置を組み合わせたガス分離装置の一例を示す系統図である。The 2nd example of this invention is shown and it is a systematic diagram which shows an example of the gas separation apparatus which combined two sets of pressure fluctuation adsorption apparatuses of the 1st separation part and the 2nd separation part. 第2分離部における一方の吸着筒が吸着工程を行っており、他方の吸着筒が再生工程を行っているときのガスの流れを太線で示す系統図である。It is a systematic diagram which shows the flow of gas when the one adsorption cylinder in the 2nd separation part is performing the adsorption process, and the other adsorption cylinder is performing the regeneration process by a thick line. 再生工程にある第1吸着筒の入口側から流出するガス中に含まれる水素濃度を連続的に測定した結果を示す図である。It is a figure which shows the result of having continuously measured the hydrogen concentration contained in the gas which flows out from the inlet side of the 1st adsorption cylinder in a regeneration process.

符号の説明Explanation of symbols

10…第1分離部、11A,11B…(第1)吸着筒、12A,12B…(第1)入口弁、13A,13B…混合ガス入口経路、14A,14B…(第1)出口弁、15A,15B…排ガス出口経路、16A,16B…(第1)パージ弁、17A,17B…(第1)パージガス入口経路、18A,18B…(第1)再生ガス出口弁、19A,19B…(第1)再生ガス出口径路、20…混合ガス貯留槽、21…(第1)圧縮機、22…混合ガス導入経路、23…排ガス流入経路、24…循環弁、25…循環経路、26…回収弁、27…回収経路、28…回収ガス貯留槽、29…排気調節弁、30…ガス排気経路、31…(第1)パージガス導入弁、32…(第1)パージガス導入経路、33…パージガス供給源、50…第2分離部、51A,51B…第2吸着筒、52A,52B…第2入口弁、53A,53B…回収ガス入口経路、54A,54B…第2出口弁、55A,55B…製品出口経路、56A,56B…第2パージ弁、57A,57B…第2パージガス入口経路、58A,58B…第2再生ガス出口弁、59A,59B…第2再生ガス出口径路、60…第2圧縮機、61…回収ガス導入経路、62…製品採取経路、63…製品貯留槽、64…製品供給弁、65…製品供給経路、66…第2パージガス導入弁、67…第2パージガス導入経路、68…第2循環弁、69…第2循環経路、70…第2回収弁   DESCRIPTION OF SYMBOLS 10 ... 1st separation part, 11A, 11B ... (1st) Adsorption cylinder, 12A, 12B ... (1st) Inlet valve, 13A, 13B ... Mixed gas inlet path, 14A, 14B ... (1st) Outlet valve, 15A , 15B ... exhaust gas outlet passage, 16A, 16B ... (first) purge valve, 17A, 17B ... (first) purge gas inlet passage, 18A, 18B ... (first) regeneration gas outlet valve, 19A, 19B ... (first) ) Regeneration gas outlet path, 20 ... mixed gas storage tank, 21 ... (first) compressor, 22 ... mixed gas introduction path, 23 ... exhaust gas inflow path, 24 ... circulation valve, 25 ... circulation path, 26 ... recovery valve, 27 ... Recovery path, 28 ... Recovery gas storage tank, 29 ... Exhaust control valve, 30 ... Gas exhaust path, 31 ... (First) purge gas introduction valve, 32 ... (First) purge gas introduction path, 33 ... Purge gas supply source, 50 ... 2nd separation part, 51A, 1B ... second adsorption cylinder, 52A, 52B ... second inlet valve, 53A, 53B ... recovered gas inlet path, 54A, 54B ... second outlet valve, 55A, 55B ... product outlet path, 56A, 56B ... second purge valve 57A, 57B ... second purge gas inlet path, 58A, 58B ... second regeneration gas outlet valve, 59A, 59B ... second regeneration gas outlet path, 60 ... second compressor, 61 ... recovered gas introduction path, 62 ... product Sampling path, 63 ... Product storage tank, 64 ... Product supply valve, 65 ... Product supply path, 66 ... Second purge gas introduction valve, 67 ... Second purge gas introduction path, 68 ... Second circulation valve, 69 ... Second circulation path 70 ... second recovery valve

Claims (5)

クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離方法であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒の入口側から前記混合ガスを相対的に高い圧力で導入して前記吸着剤に前記高付加価値ガスを吸着させるとともに吸着剤に吸着しなかったガスを吸着筒の出口側から排出する吸着工程と、該吸着工程を終了した吸着筒を相対的に低い圧力に減圧して前記吸着剤から高付加価値ガスを脱着させるとともに、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスを系外から吸着筒の出口側に導入して筒内ガスを吸着筒の入口側に押し出して流出させる再生工程とを交互に繰り返して行い、該再生工程の前半で吸着筒の入口側から流出する再生排ガスを前記混合ガスに循環混合させ、該再生工程の後半で吸着筒の入口側から流出する再生排ガスを回収ガスとして回収することを特徴とするガス分離方法。   A gas separation method for separating an impurity component in a mixed gas containing at least one kind of high value-added gas of krypton, xenon, and neon by a pressure fluctuation adsorption separation method, wherein the high value-added gas is used as an easily adsorbed component. The mixed gas is introduced at a relatively high pressure from the inlet side of the adsorption cylinder filled with the adsorbent to adsorb the high value-added gas to the adsorbent and the gas not adsorbed to the adsorbent to the outlet side of the adsorption cylinder The adsorption process for discharging the gas, and desorbing the high value-added gas from the adsorbent by depressurizing the adsorption cylinder having completed the adsorption process to a relatively low pressure, and the high value-added gas and impurity components in the mixed gas A regeneration process of introducing a purge gas composed of a gas excluding gas from the outside of the system to the outlet side of the adsorption cylinder and extruding the in-cylinder gas toward the inlet side of the adsorption cylinder is alternately repeated. The regeneration exhaust gas flowing out from the inlet side of the adsorption cylinder in the first half of the process is circulated and mixed with the mixed gas, and the regeneration exhaust gas flowing out from the inlet side of the adsorption cylinder in the second half of the regeneration process is recovered as a recovery gas. Gas separation method. 前記パージガスは、酸素、窒素及びアルゴンの少なくとも1種であることを特徴とする請求項1記載のガス分離方法。   The gas separation method according to claim 1, wherein the purge gas is at least one of oxygen, nitrogen, and argon. クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離方法であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒の入口側から相対的に高い圧力で前記混合ガスを導入して前記第1吸着剤に少なくとも高付加価値ガスを吸着させるとともに、該第1吸着剤に吸着せずに第1吸着筒の出口側から流出したガスを系外に排出する第1吸着工程と、該第1吸着工程を終了した第1吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第1吸着剤に吸着したガスを脱着させるとともに、第1吸着筒の出口側から第1パージガスを導入して筒内ガスを第1吸着筒の入口側に押し出して流出させる第1再生工程とを、前記第1吸着筒で交互に繰り返して行い、前記第1再生工程の前半に第1吸着筒の入口側から流出する第1再生排ガスを前記混合ガスに循環混合し、第1再生工程の後半に第1吸着筒の入口側から流出する第1再生排ガスを回収する第1分離プロセスと、この第1分離プロセスで回収した回収ガスを前記高付加価値ガスを難吸着成分とし、該回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒の入口側から相対的に高い圧力で導入し、前記第2吸着剤に前記高付加価値ガスを除くガスを吸着させるとともに、該第2吸着剤に吸着せずに第2吸着筒の出口側から流出した高付加価値ガスを主成分とするガスを採取する第2吸着工程と、該第2吸着工程を終了した第2吸着筒の筒内ガスを入口側から流出させ、筒内圧力を相対的に低い圧力に減圧して前記第2吸着剤に吸着したガスを脱着させるとともに、第2吸着筒の出口側から前記第2吸着工程で採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを導入して筒内ガスを第2吸着筒の入口側に押し出して流出させる第2再生工程とを、前記第2吸着筒で交互に繰り返して行い、前記第2再生工程で第2吸着筒の入口側から流出した第2再生排ガスを前記混合ガス又は前記回収ガスに循環混合する第2分離プロセスとを含み、前記第1パージガスは、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入することを特徴とするガス分離方法。   A gas separation method for purifying the high value-added gas by separating an impurity component in the gas mixture containing at least one kind of high value-added gas of krypton, xenon and neon by a pressure fluctuation adsorption separation method. The mixed gas is introduced at a relatively high pressure from the inlet side of the first adsorption cylinder filled with the first adsorbent containing the high added value gas as an easily adsorbing component, and at least the high added value is added to the first adsorbent. A first adsorption step for adsorbing a gas and discharging the gas flowing out from the outlet side of the first adsorption cylinder without being adsorbed to the first adsorbent; and the first adsorption after the completion of the first adsorption step In-cylinder gas of the cylinder is caused to flow out from the inlet side, the pressure in the cylinder is reduced to a relatively low pressure to desorb the gas adsorbed on the first adsorbent, and the first purge gas from the outlet side of the first adsorption cylinder In-cylinder gas is introduced The first regeneration step of pushing out and flowing out to the inlet side of the adsorption cylinder is alternately repeated in the first adsorption cylinder, and the first regeneration flowing out from the inlet side of the first adsorption cylinder in the first half of the first regeneration step A first separation process in which exhaust gas is circulated and mixed with the mixed gas, and the first regeneration exhaust gas flowing out from the inlet side of the first adsorption cylinder is collected in the latter half of the first regeneration step, and the recovered gas recovered in the first separation process Is a relatively high pressure from the inlet side of the second adsorption cylinder filled with the second adsorbent containing the high added value gas as a hardly adsorbed component and the gas excluding the high added value gas in the recovered gas as an easily adsorbed component. And the second adsorbent adsorbs the gas excluding the high added value gas, and the high added value gas that has flowed out from the outlet side of the second adsorption cylinder without being adsorbed by the second adsorbent is a main component. A second adsorption step for collecting the gas The in-cylinder gas of the second adsorption cylinder that has finished the adsorption step is caused to flow out from the inlet side, the pressure in the cylinder is reduced to a relatively low pressure to desorb the gas adsorbed on the second adsorbent, and the second adsorption A second purge gas comprising a part of a gas mainly composed of the high added value gas collected in the second adsorption step is introduced from the outlet side of the cylinder, and the in-cylinder gas is pushed out to the inlet side of the second adsorption cylinder and flows out. The second regeneration step is performed alternately and repeatedly in the second adsorption cylinder, and the second regeneration exhaust gas flowing out from the inlet side of the second adsorption cylinder in the second regeneration step is circulated to the mixed gas or the recovered gas. A second separation process for mixing, wherein the first purge gas is a gas excluding a high value-added gas and an impurity component in the mixed gas, and a gas that is an easily adsorbed component of the second adsorbent. Gus characterized by being introduced from outside the system Separation method. クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離するガス分離装置であって、前記高付加価値ガスを易吸着成分とする吸着剤を充填した吸着筒と、吸着筒の入口側に入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、吸着筒の出口側から流出するガスを出口弁を介して排出する排ガス出口経路と、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスからなるパージガスをパージ弁を介して吸着筒の出口側に導入するパージガス入口経路と、吸着筒の入口側から流出する再生排ガスを再生ガス出口弁を介して取り出す再生ガス出口径路と、該再生ガス出口径路に取り出した再生排ガスを前記混合ガス入口経路に循環弁を介して循環させる循環経路と、前記再生排ガスを回収弁を介して回収する回収経路とを備えていることを特徴とするガス分離装置。   A gas separation device for separating impurity components in a mixed gas containing at least one kind of high value-added gas of krypton, xenon and neon by a pressure fluctuation adsorption separation method, and using the high value-added gas as an easy-adsorption component An adsorbing cylinder filled with an agent, a mixed gas inlet path for introducing the mixed gas at a relatively high pressure to the inlet side of the adsorbing cylinder through an inlet valve, and an outlet valve for the gas flowing out from the outlet side of the adsorbing cylinder An exhaust gas outlet path for discharging the exhaust gas, a purge gas inlet path for introducing a purge gas made of a gas excluding the high added value gas and the impurity component in the mixed gas to the outlet side of the adsorption cylinder through the purge valve, and an inlet of the adsorption cylinder A regeneration gas outlet path for taking out the regeneration exhaust gas flowing out from the side through the regeneration gas outlet valve, and a circulation valve for the regeneration exhaust gas taken out to the regeneration gas outlet path in the mixed gas inlet path Gas separation apparatus for a circulation path for circulating and, characterized by comprising a recovery path for recovering the regeneration exhaust gas via a recovery valve. クリプトン、キセノン及びネオンの少なくとも1種の高付加価値ガスを含む混合ガス中の不純物成分を圧力変動吸着分離法により分離して前記高付加価値ガスを精製するガス分離装置であって、前記混合ガス中の高付加価値ガスを易吸着成分とする第1吸着剤を充填した第1吸着筒と、第1吸着筒の入口側に第1入口弁を介して前記混合ガスを相対的に高い圧力で導入する混合ガス入口経路と、第1吸着筒の出口側から流出するガスを第1出口弁を介して排出する排ガス出口経路と、第1吸着筒の出口側に第1パージ弁を介して第1パージガスを導入する第1パージガス入口経路と、第1吸着筒の入口側から流出する第1再生排ガスを第1再生ガス出口弁を介して取り出す第1再生ガス出口径路と、該第1再生ガス出口径路に取り出した第1再生排ガスを前記混合ガス供給手段に第1循環弁を介して循環させる第1循環経路と、該第1再生ガス出口径路に取り出した第1再生排ガスを回収弁を介して回収する回収経路とを備えた第1分離部と、前記高付加価値ガスを難吸着成分とし、前記第1分離部の回収経路に回収した回収ガス中の高付加価値ガスを除くガスを易吸着成分とする第2吸着剤を充填した第2吸着筒と、前記回収ガスを第2吸着筒の入口側に第2入口弁を介して相対的に高い圧力で導入する回収ガス入口経路と、第2吸着筒の出口側から流出する高付加価値ガスを主成分とするガスを第2出口弁を介して採取する製品出口経路と、該製品出口経路に採取した高付加価値ガスを主成分とするガスの一部からなる第2パージガスを第2パージ弁を介して第2吸着筒の出口側に導入する第2パージガス入口経路と、第2吸着筒の入口側から流出する第2再生排ガスを第2再生ガス出口弁を介して取り出す第2再生ガス出口径路と、該第2再生ガス出口径路に取り出した第2再生排ガスを第2循環弁を介して前記混合ガス供給手段又は前記回収経路に循環させる第2循環経路とを備えた第2分離部とを含み、第1パージガス入口経路は、前記混合ガス中の高付加価値ガス及び不純物成分を除くガスであって、かつ、前記第2吸着剤の易吸着成分であるガスを系外から導入する経路であることを特徴とするガス分離装置。   A gas separation device for purifying the high value-added gas by separating an impurity component in the gas mixture containing at least one kind of high value-added gas of krypton, xenon, and neon by a pressure fluctuation adsorption separation method. A first adsorbing cylinder filled with a first adsorbent containing a high value-added gas as an easily adsorbing component, and the mixed gas at a relatively high pressure via an inlet valve on the inlet side of the first adsorbing cylinder. The mixed gas inlet path to be introduced, the exhaust gas outlet path for discharging the gas flowing out from the outlet side of the first adsorption cylinder via the first outlet valve, and the first purge valve on the outlet side of the first adsorption cylinder via the first purge valve A first purge gas inlet path for introducing one purge gas, a first regeneration gas outlet path for taking out the first regeneration exhaust gas flowing out from the inlet side of the first adsorption cylinder via the first regeneration gas outlet valve, and the first regeneration gas First taken out to exit path A first circulation path for circulating the raw exhaust gas to the mixed gas supply means via the first circulation valve; and a recovery path for recovering the first regeneration exhaust gas taken out to the first regeneration gas outlet path via the recovery valve. The first separation unit provided, and the second adsorption having the high added value gas as a hardly adsorbed component and the gas excluding the high added value gas in the recovered gas collected in the recovery path of the first separator as an easily adsorbed component A second adsorption cylinder filled with an agent, a recovery gas inlet path for introducing the recovery gas to the inlet side of the second adsorption cylinder through a second inlet valve at a relatively high pressure, and an outlet side of the second adsorption cylinder A product outlet path for collecting a gas mainly composed of high value-added gas flowing out from the second outlet valve, and a part of the gas mainly composed of the high value added gas collected in the product outlet path. The second purge gas is discharged from the second adsorption cylinder through the second purge valve. A second purge gas inlet path to be introduced into the second adsorbing cylinder, a second regeneration gas outlet path for taking out the second regeneration exhaust gas flowing out from the inlet side of the second adsorption cylinder via the second regeneration gas outlet valve, and the second regeneration gas outlet path And a second separation section provided with a second circulation path for circulating the second regenerated exhaust gas taken out to the mixed gas supply means or the recovery path through a second circulation valve, and the first purge gas inlet path is A gas separation device characterized in that the gas is a gas from which high-value-added gas and impurity components in the mixed gas are removed, and is a path through which a gas that is an easily adsorbed component of the second adsorbent is introduced from outside the system. .
JP2004056500A 2004-03-01 2004-03-01 Gas separation method and apparatus Expired - Fee Related JP3869831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056500A JP3869831B2 (en) 2004-03-01 2004-03-01 Gas separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056500A JP3869831B2 (en) 2004-03-01 2004-03-01 Gas separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2005246137A true JP2005246137A (en) 2005-09-15
JP3869831B2 JP3869831B2 (en) 2007-01-17

Family

ID=35027140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056500A Expired - Fee Related JP3869831B2 (en) 2004-03-01 2004-03-01 Gas separation method and apparatus

Country Status (1)

Country Link
JP (1) JP3869831B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137847A (en) * 2006-12-01 2008-06-19 Air Liquide Japan Ltd Xenon retrieval system and retrieval device
US7824472B2 (en) 2005-11-14 2010-11-02 Taiyo Nippon Sanso Corporation Method and apparatus for pressure swing adsorption
JP2011251281A (en) * 2010-04-15 2011-12-15 Air Products & Chemicals Inc Recovery of nf3 from adsorption operation
JP2012124447A (en) * 2010-01-28 2012-06-28 Air Products & Chemicals Inc Method and apparatus for selectively collecting processing exhaust
EP2476646A1 (en) * 2009-09-09 2012-07-18 Panasonic Corporation Method for recovering xenon
EP2476645A1 (en) * 2009-09-09 2012-07-18 Panasonic Corporation Adsorbent material and xenon adsorption device using same
JP2019074486A (en) * 2017-10-19 2019-05-16 大陽日酸株式会社 Method and device for analyzing nitrogen gas in carbon dioxide gas
CN110433606A (en) * 2019-09-05 2019-11-12 珠海格力智能装备有限公司 Gas purification device and gas recovery system with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557157B (en) * 2021-02-28 2021-05-04 中国工程物理研究院核物理与化学研究所 Method for separating, purifying and collecting xenon in air sample based on specific device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824472B2 (en) 2005-11-14 2010-11-02 Taiyo Nippon Sanso Corporation Method and apparatus for pressure swing adsorption
US8153091B2 (en) 2006-12-01 2012-04-10 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Xenon retrieval system and retrieval device
JP2008137847A (en) * 2006-12-01 2008-06-19 Air Liquide Japan Ltd Xenon retrieval system and retrieval device
EP2476645A1 (en) * 2009-09-09 2012-07-18 Panasonic Corporation Adsorbent material and xenon adsorption device using same
EP2476646A1 (en) * 2009-09-09 2012-07-18 Panasonic Corporation Method for recovering xenon
EP2476646A4 (en) * 2009-09-09 2012-10-31 Panasonic Corp Method for recovering xenon
EP2476645A4 (en) * 2009-09-09 2012-10-31 Panasonic Corp Adsorbent material and xenon adsorption device using same
US8679239B2 (en) 2009-09-09 2014-03-25 Panasonic Corporation Adsorbent material and xenon adsorption device using same
US8679229B2 (en) 2009-09-09 2014-03-25 Panasonic Corporation Method for recovering xenon
JP2012124447A (en) * 2010-01-28 2012-06-28 Air Products & Chemicals Inc Method and apparatus for selectively collecting processing exhaust
US8591634B2 (en) 2010-01-28 2013-11-26 Air Products And Chemicals, Inc. Method and equipment for selectively collecting process effluent
JP2011251281A (en) * 2010-04-15 2011-12-15 Air Products & Chemicals Inc Recovery of nf3 from adsorption operation
JP2019074486A (en) * 2017-10-19 2019-05-16 大陽日酸株式会社 Method and device for analyzing nitrogen gas in carbon dioxide gas
CN110433606A (en) * 2019-09-05 2019-11-12 珠海格力智能装备有限公司 Gas purification device and gas recovery system with same
CN110433606B (en) * 2019-09-05 2024-04-02 珠海格力智能装备有限公司 Gas purification device and gas recovery system with same

Also Published As

Publication number Publication date
JP3869831B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
JP3891773B2 (en) Gas separation and purification method and apparatus therefor
JP4898194B2 (en) Pressure fluctuation adsorption gas separation method and separation apparatus
JP5202836B2 (en) Xenon recovery system and recovery device
JP3921203B2 (en) Gas separation method and apparatus
EP1175934A2 (en) Improved oxygen production
WO2010021127A1 (en) Xenon adsorbent, xenon enrichment method, xenon enrichment device, and air liquefaction and separation device
JP5222327B2 (en) Gas separation method and apparatus
JP5498661B2 (en) Blast furnace gas separation method
KR100974521B1 (en) Method and apparatus for gas purification
JP3869831B2 (en) Gas separation method and apparatus
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
JPH10273307A (en) Recovery of noble gas from chamber
TW200948458A (en) Method for separating blast furnace gas
JP5584887B2 (en) Ozone gas concentration method and apparatus
JP4430913B2 (en) Gas supply method and apparatus
JP4580694B2 (en) Gas separation method and apparatus
JP4322171B2 (en) Gas processing method and apparatus
JPH07267612A (en) Pressure swing adsorption type production of oxygen and apparatus therefor
JP2004161503A (en) Gas purification method
JP2004284834A (en) Method and device for refining sulfur hexafluoride
JPH0112529B2 (en)
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS6097021A (en) Purification of carbon monoxide from gaseous mixture containing carbon monoxide by using adsorbing method
JP2020193126A (en) Nitrogen manufacturing method and apparatus therefor
JPS6139087B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees