JPH01209765A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH01209765A
JPH01209765A JP3457688A JP3457688A JPH01209765A JP H01209765 A JPH01209765 A JP H01209765A JP 3457688 A JP3457688 A JP 3457688A JP 3457688 A JP3457688 A JP 3457688A JP H01209765 A JPH01209765 A JP H01209765A
Authority
JP
Japan
Prior art keywords
substrate
contact layer
stepped portion
electrode
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3457688A
Other languages
Japanese (ja)
Inventor
Minoru Kanbara
実 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP3457688A priority Critical patent/JPH01209765A/en
Publication of JPH01209765A publication Critical patent/JPH01209765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To remarkably improve high frequency characteristics by providing a step on an insulation substrate, forming a semiconductor film along the side of the step, and further respectively disposing a source electrode and a drain electrode on the lower and upper step faces of the substrate. CONSTITUTION:A step 13 made of an upper step face, a lower step face and a side for connecting them is formed on an insulation substrate 21 made of a glass substrate or the like, a source electrode 22 is formed on the lower step of the substrate 21, and a drain electrode 23 is formed on the upper step. First and second contact layers 24, 25 formed of phosphorus (P)-doped N<+> type amorphous silicon are formed, and a semiconductor film 26 made of an intrinsic amorphous silicon is so formed on the layer 24 along the side face of the step 13 of the substrate 21 and the side face of the laminated layer of the drain electrode 23 and the layer 25 as to electrically connect the layers 24, 25.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は薄膜l・ランジスクに係り、特にチャネル領域
が基板に対して重置方向に形成される縦型薄膜トランジ
スタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thin film transistor, and more particularly to a vertical thin film transistor in which a channel region is formed in a superimposed direction with respect to a substrate.

〔従来技術及びその問題点〕[Prior art and its problems]

液晶テレビ等に使用される液晶表示装置としては、高コ
ントラスト及び高時分割駆動が要求されるために、アク
ティブマトリクス方式を用いることが提案されている。
Since liquid crystal display devices used in liquid crystal televisions and the like require high contrast and high time-division driving, it has been proposed to use an active matrix method.

このアクティブマトリクス方式の液晶表示装置は、画素
となる透明電極及びこの透明電極に接続されたスイッチ
ング素子をマトリクス状に複数配列した基板と、この基
板に配列された複数の透明電極に対向する他方の透明電
極を設けた基板と、及びこれらの基板間に封入された液
晶とを備えている。そして、前記スイッチング素子とし
て、薄膜トランジスタを用いることが提案されている。
This active matrix type liquid crystal display device includes a substrate on which a plurality of transparent electrodes serving as pixels and switching elements connected to the transparent electrodes are arranged in a matrix, and another substrate that faces the plurality of transparent electrodes arranged on this substrate. It includes a substrate provided with a transparent electrode, and a liquid crystal sealed between these substrates. It has been proposed to use a thin film transistor as the switching element.

ところで上述した様に、液晶表示装置のスイッチング素
子として用いられる薄膜トランジスタ(以下TPTとい
う)としては、小さい素子面積で、かつ大きな電流を流
すことが望ましい。
By the way, as described above, it is desirable for a thin film transistor (hereinafter referred to as TPT) used as a switching element of a liquid crystal display device to have a small element area and to allow a large current to flow.

然して、TPTが動作する時にソース、ドレイン間に流
れる電流、つまりオン電流の大きさは半導体膜のチャン
ネル長に依存し、このチャンネル長が短い程オン電流は
大き(なる、ところがvt型TPTは、その製造工程中
に用いられるフォトリソグラフィ工程中上のバクーニン
グ精度に限界があるのでチャンネル長を短くすることが
できず、ソース、ドレイン電極を大き(することができ
ない、また、その素子面積はチャンネル長により決定さ
れ1、このチャンネル長の短縮には工程上のエツチング
精度に限界があるので素子面積を小さくすることがてき
なかった。この問題を解決するために縦型TPTが考え
られた。
However, when a TPT operates, the magnitude of the current flowing between the source and drain, that is, the magnitude of the on-current, depends on the channel length of the semiconductor film, and the shorter the channel length, the greater the on-current (but in the case of a VT-type TPT, Because there is a limit to the accuracy of vacuuming during the photolithography process used during the manufacturing process, the channel length cannot be shortened, the source and drain electrodes cannot be made large, and the device area is limited by the channel length. 1, and it has not been possible to reduce the device area because there is a limit to the etching accuracy in the process to shorten the channel length.To solve this problem, vertical TPT was devised.

縦型’r F Tは、そのチャンネルが堆積された半導
体膜の膜厚方向、即ち基板に対して垂直方向に形成され
るため、踏板に対して平行にチャンネルが形成される横
型TPTよりもチャネル長を短かくすることができ大き
なオン電流を得ることができる。また、基板上の素子面
積はチャンネル長を考慮する必要がないので微細化が用
窓である。このように縦型TPTは、そのチャネル瓜を
極めて短か(できるので横型TPTに比べて、チャネル
幅を極めて短くでき、大きなソース、ドレイン電極を得
ることができ、かつ基板上の面積も非常に小さ(できる
、したがって縦型TPTを前述の如(アクティブマトリ
クス方式の液晶表示装置のスイッチング素子に用いた場
合、横型TPTをスイッチング素子に用いた場合に比べ
画素となる透明電極の開口率を大きくすることができ、
画像品質が向上する。
In vertical TPT, the channel is formed in the thickness direction of the deposited semiconductor film, that is, in the direction perpendicular to the substrate. The length can be shortened and a large on-current can be obtained. Furthermore, since there is no need to consider the channel length when determining the element area on the substrate, miniaturization is the key. In this way, vertical TPTs can have extremely short channel widths (as compared to horizontal TPTs, the channel width can be made extremely short, large source and drain electrodes can be obtained, and the area on the substrate can also be made very small). Therefore, when a vertical TPT is used as a switching element in an active matrix liquid crystal display device, the aperture ratio of the transparent electrode that becomes a pixel is increased compared to when a horizontal TPT is used as a switching element. It is possible,
Image quality is improved.

第2図は従来の縦型TPTの断面図である。FIG. 2 is a sectional view of a conventional vertical TPT.

同図に示すように、絶縁性基板1上の片側端にクロム(
Cr)等から成るソース電極2が形成され、そのソース
電極2上の片側端にリン(P)等のドーピングされたn
)アモルファスシリコンから成る第1のコンタクト層3
が形成されている。
As shown in the figure, chrome (
A source electrode 2 made of Cr) or the like is formed, and one end of the source electrode 2 is doped with phosphorus (P) or the like.
) first contact layer 3 made of amorphous silicon;
is formed.

さらにこのソース電極2と第1のコンタクト層3の積層
部分の片側端と絶縁性基板l上の前記ソース電極2が形
成されていない部分に窒化シリコン(SiN)等から成
る第1の絶縁11!2! 4が形成されている。そして
、この第1の絶縁膜4上にはリン(1’)等のドーピン
グされたn+アモルファスシリコンから成る第2のコン
タクト層5とクロム(Cr)等から成るドレイン電Ff
A6が順次積層形成されており、前記第1のコンタクト
N3上の前記第1の絶縁膜4が形成されていない部分、
及び前記第1の絶縁膜4と前記第2のコンタクトWI5
と前記ドレイン電極6との積層部分を被覆して真性アモ
ルファスシリコンから成る半導体膜7が形成され°ζい
る。さらにこの半導体膜7の表面と、ソース電極2及び
ドレイン電極6の一部とを被覆し°ζ窒化シリコン(S
 i N)等から成る第2の絶縁膜(ゲート絶縁膜)8
が形成されている。また、半導体膜7の上方の第2の絶
縁膜8上にはアルミニウム(A7り等から成るゲート電
極9が形成され°ζいる。この様に、従来の縦型TPT
は、上記の如く各々の電極や層がオーバーラツプしてい
るためゲート電i9と第1のコンタクト層3との間、ゲ
ート電極9とソース電極2との間、ゲート電極9と第2
のコンタク1115との間、ゲー!・電極9とドレイン
電極6との間、第1のコンタクI−rrJ3と第2のコ
ンタクト層5との間のそれぞれに正なり面積が大きいた
めに、大きな寄生容量が生じる。
Furthermore, a first insulator 11 made of silicon nitride (SiN) or the like is formed on one end of the laminated portion of the source electrode 2 and the first contact layer 3 and on a portion of the insulating substrate l where the source electrode 2 is not formed. 2! 4 is formed. On this first insulating film 4, a second contact layer 5 made of n+ amorphous silicon doped with phosphorus (1') or the like and a drain electrode Ff made of chromium (Cr) or the like are formed.
A6 is sequentially laminated and a portion where the first insulating film 4 on the first contact N3 is not formed;
and the first insulating film 4 and the second contact WI5
A semiconductor film 7 made of intrinsic amorphous silicon is formed to cover the laminated portion of the drain electrode 6 and the drain electrode 6. Furthermore, the surface of this semiconductor film 7 and part of the source electrode 2 and drain electrode 6 are covered with silicon nitride (S).
A second insulating film (gate insulating film) 8 made of
is formed. Further, on the second insulating film 8 above the semiconductor film 7, a gate electrode 9 made of aluminum (A7 or the like) is formed.
Since the respective electrodes and layers overlap as described above, there are gaps between the gate electrode i9 and the first contact layer 3, between the gate electrode 9 and the source electrode 2, and between the gate electrode 9 and the second contact layer 3.
Between contact number 1115, game! - A large parasitic capacitance is generated between the electrode 9 and the drain electrode 6 and between the first contact I-rrJ3 and the second contact layer 5 because the area is large.

このため高周波動作を行うことはできなかった。For this reason, high frequency operation was not possible.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の問題点に鑑み、高周波動作が可能な
薄膜トランジスタを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above conventional problems, an object of the present invention is to provide a thin film transistor capable of high frequency operation.

〔発明の要点〕[Key points of the invention]

本発明は上記目的を達成するために、段差部をaする絶
縁性基板と該絶縁性基板の前記段差部側面に沿って前記
絶縁性基板の下段部上面に順次、MIHされた第1の電
極と第1のコンタクI−Nと半導体膜と、該半導体の側
面に沿って前記絶縁性基板の上段部上面に順次、積層さ
れた第2の電極及び第2のコンタク1−Piと、前記第
1のコンタクト層と前記第2のコンタクl−層及び前記
半導体膜を被覆する段差部を有したゲート絶縁膜と、該
ゲート絶!l膜の段差部の側面に沿って配設されたゲー
ト電極を有することを特徴とする。
In order to achieve the above object, the present invention includes an insulating substrate having a stepped portion a, and a first electrode that is MIHed on the upper surface of the lower step of the insulating substrate along the side surface of the stepped portion of the insulating substrate. , a first contact I-N, a semiconductor film, a second electrode and a second contact 1-Pi which are laminated in sequence on the upper surface of the upper stage of the insulating substrate along the side surface of the semiconductor, a gate insulating film having a stepped portion covering the first contact layer, the second contact layer and the semiconductor film; It is characterized by having a gate electrode disposed along the side surface of the stepped portion of the L film.

〔実  施  例〕〔Example〕

以下図面を参照しながら本発明の実施例について説明す
る。第1図(h)は本発明の一実施例の縦型TPTの断
面図である。同図(h)に示すようにガラス基板等から
成る絶縁性基板21は上段面、下段面及びこれらの面を
つなぐ側面からなるrIt差部13を形成しており、そ
の絶縁性!Fi21の下段面にソース電極22が、また
上段面にドレイン電極23が形成されている。ソースf
f電極22、ドレイン電極23は、例えばクロム(Cr
)、モリブデン(Mo)、チタン(Ti)、タングステ
ン(W)等から成る。また、ソース電極22上の段差部
13側及びドレイン電極23上の段差部13側には、そ
れぞれリン(P)等のドーピングされたnトアモルファ
スシリコンから成る第1のコンタク1−u24及び第2
のコンタクt・m25が形成されζおり、これら第11
第2のコンタクl−1424,25を電気的に接続する
にうに真性アモルファスシリコンから成る半導体膜26
が、前記絶縁性J!i坂21の段差部13の側面及びド
レイン電極23と第2のコンタクト層25の積層部側面
に沿って第1のコンタクI−Ji24上に形成されてい
る。前記第1のコンタクト層24、前記半導体膜26及
び前記第2のコンタク)m25を被覆して窒化シリコン
(SiN)等から成るゲート絶縁膜27が形成され、そ
のゲート絶縁膜27の段差部の側面に沿ってアルミニウ
ム(Ajり等から成るゲート電極28が形成されている
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1(h) is a sectional view of a vertical TPT according to an embodiment of the present invention. As shown in FIG. 6(h), the insulating substrate 21 made of a glass substrate or the like forms an rIt difference part 13 consisting of an upper surface, a lower surface, and a side surface connecting these surfaces. A source electrode 22 is formed on the lower surface of the Fi 21, and a drain electrode 23 is formed on the upper surface. source f
The f electrode 22 and the drain electrode 23 are made of, for example, chromium (Cr
), molybdenum (Mo), titanium (Ti), tungsten (W), etc. Furthermore, on the side of the stepped portion 13 on the source electrode 22 and on the side of the stepped portion 13 on the drain electrode 23, there are provided a first contact 1-u24 and a second contact made of n-to amorphous silicon doped with phosphorus (P) or the like, respectively.
contacts t·m25 are formed, and these 11th
A semiconductor film 26 made of intrinsic amorphous silicon that electrically connects the second contactors 1-1424 and 25.
However, the insulation J! It is formed on the first contact I-Ji 24 along the side surface of the stepped portion 13 of the i slope 21 and the side surface of the laminated portion of the drain electrode 23 and the second contact layer 25 . A gate insulating film 27 made of silicon nitride (SiN) or the like is formed to cover the first contact layer 24, the semiconductor film 26, and the second contact layer m25, and the side surface of the stepped portion of the gate insulating film 27 is formed. A gate electrode 28 made of aluminum (Aj, etc.) is formed along the line.

このように本実施例の縦型TPTは、各々の電極や層の
オーバーランプを最小限にしたため、従来の縦型TPT
で生じていた第1のコンタクト層24と第2のコンタク
ト7!25との間の寄生容量が無い、さらに、ゲート電
極28とドレイン電極23との間の寄生容量も無いので
寄生容量の値は従来の縦型TPTよりも著しく減少する
。したがって、伝達特性が向上し高周波動作が可能にな
る。
In this way, the vertical TPT of this example minimizes the overlamp of each electrode and layer, so it is different from the conventional vertical TPT.
There is no parasitic capacitance between the first contact layer 24 and the second contact 7!25 that occurred in This is significantly reduced compared to conventional vertical TPT. Therefore, the transfer characteristics are improved and high frequency operation becomes possible.

次に以上のように構成された本実施例の製造方法を第1
v!J(+3)〜(h)を参照しながら説明する。
Next, the manufacturing method of this embodiment configured as described above will be explained as follows.
v! This will be explained with reference to J(+3) to (h).

まず、第1図(n)に示すように、ホトリソグラフィ工
程によりガラス基板等から成る絶縁性基板21上にホト
レジスト・パターン12を形成した後、CF4ガス等を
用いた反応性イオンエツチング(1?eactive 
Ion Etching)法によりホトレジスト・パタ
ーン12の形成されていない絶縁性基板21の表面を数
μmエツチングする0反応性イオンエツチング法による
エツチングはサイドエツチングの少ない垂直方向への方
向性が強い異方性エンチングであるため、絶縁性基板2
1の段差部13の側面はほぼ垂直に加工される。
First, as shown in FIG. 1(n), a photoresist pattern 12 is formed on an insulating substrate 21 made of a glass substrate or the like by a photolithography process, and then reactive ion etching (1?) using CF4 gas or the like is performed. active
The surface of the insulating substrate 21 on which the photoresist pattern 12 is not formed is etched several micrometers by the ion etching method. Etching by the zero-reactive ion etching method is anisotropic etching with strong directionality in the vertical direction with little side etching. Therefore, the insulating substrate 2
The side surface of step portion 13 of No. 1 is machined almost vertically.

次に、電子ビーム蒸着法等の垂直方向への方向性が強い
g膜形成法により、絶縁性基板21の表面にクロム(C
r)、モリブデン(Mo)、チタン(Ti)、タングス
テン(W)等の金属膜を例えば約2000人の厚さに付
着させる。!!直方向への方向性が強い″4膜形成法を
用いることにより、絶縁性基板21の段差部13の側面
にはほとんど金属膜は付着されない、この後絶縁性基F
i21仝体を前記金属膜のエツチング溶液に短時間浸し
、絶縁性基板21の段差部13の側面に付着された金属
膜を完全に除去する。このことにより、第1図(b)に
示す様にI21縁性基Fi21の下段面にソース電極2
2が上段面にドレイン電極23が形成される。
Next, the surface of the insulating substrate 21 is coated with chromium (C
r), a metal film of molybdenum (Mo), titanium (Ti), tungsten (W), etc. is deposited to a thickness of, for example, about 2000 mm. ! ! By using the "4 film formation method with strong directivity in the vertical direction, almost no metal film is attached to the side surface of the stepped portion 13 of the insulating substrate 21. After that, the insulating group F
The i21 body is immersed in the metal film etching solution for a short time to completely remove the metal film attached to the side surface of the stepped portion 13 of the insulating substrate 21. As a result, as shown in FIG. 1(b), the source electrode 2 is placed on the lower surface of the I21 edge group Fi21.
2, a drain electrode 23 is formed on the upper surface.

次に、第1図(0)に示すようにECRプラズマCVD
法(i!吊子サイクロトロン共鳴プラズマCVD法によ
りリン(P)等のドーピングされたn÷アモルファスシ
リコン14を例えば500人の厚さに堆積させる。EC
RプラズマCVD法は垂直方向への方向性が強いので絶
縁性基板21の段差部13の側面に付着するn(アモル
ファスシリコン14の厚さは絶縁性基板21の平坦部(
上段面と下段面)に付着するn+アモルファスシリコン
14に比べて極めて薄(、例えばIIFと11 N O
3の混合液を用いて絶縁性基板21の全面を所定時間エ
ツチングすることにより、段差部13の側面に付着した
n4アモルファスシリコン14のみを除去することがで
きる。さらにホストレジストパターン15を絶縁性基板
21の段差部13の側面を含んでドレイン電F123と
n+アモルファスシリコン14とが成る積層された部分
の前記段差部13の側面側とソースTA極22とn+ア
モルファスシリコン14とがm層された部分の前記段差
部13の側面側の一部を覆って形成した後、エッチング
を行い、第1図(d)に示すように第1のコンタクト層
24、第2のコンタクト層25を形成する。
Next, as shown in FIG. 1 (0), ECR plasma CVD
Deposit n÷14 amorphous silicon doped with phosphorus (P) or the like to a thickness of, for example, 500 μm using the cyclotron resonance plasma CVD method.EC
Since the R plasma CVD method has strong directionality in the vertical direction, the thickness of the amorphous silicon 14 that adheres to the side surface of the stepped portion 13 of the insulating substrate 21 is the same as that of the flat portion of the insulating substrate 21 (
It is extremely thin compared to the n+ amorphous silicon 14 attached to the upper and lower surfaces (for example, IIF and 11N O
By etching the entire surface of the insulating substrate 21 for a predetermined period of time using the mixed solution of No. 3, only the n4 amorphous silicon 14 attached to the side surface of the stepped portion 13 can be removed. Furthermore, the host resist pattern 15 is applied to the side surface of the stepped portion 13 of the laminated portion including the drain electrode F123 and the n+ amorphous silicon 14, including the side surface of the stepped portion 13 of the insulating substrate 21, the source TA electrode 22, and the n+ amorphous silicon 14. After m layers of silicon 14 are formed to cover part of the side surface side of the stepped portion 13, etching is performed to form the first contact layer 24 and the second contact layer 24, as shown in FIG. 1(d). A contact layer 25 is formed.

続けて、第1図(d)に示すようにプラズマCVD法等
により絶縁性基板21上に形成されたソース電極22、
ドレイン電極23、第1のコンタクトrf24、第2の
コンタクト層25を覆って直性アモルファスシリコン1
6を例えば約1000人の厚さに堆積させる。プラズマ
CVD法は段差被覆性が良いのでΩ性アモルファスシリ
コン16は段差部13の側面でも充分な厚さに形成され
る。そして、第1図(L)に示すように反応性イオンエ
ツチング法により例えばCF4ガスを用いて真性アモル
ファスシリコン16の全面をエツチングして半導体膜2
6を形成する0反応性イオンエラグ・フグ法は前述した
ように垂直方向への方向性が強(、強い異方性があるの
で、段差部13の側面に形成された半導体膜2Gのみを
残して、(ムの真性アモルファスシリコン16を全てエ
ツチングできる。
Subsequently, as shown in FIG. 1(d), a source electrode 22 is formed on the insulating substrate 21 by a plasma CVD method or the like.
Direct amorphous silicon 1 is formed covering the drain electrode 23, the first contact rf 24, and the second contact layer 25.
6 is deposited, for example, to a thickness of about 1000. Since the plasma CVD method has good step coverage, the Ω-type amorphous silicon 16 is formed to a sufficient thickness even on the side surfaces of the step portion 13. Then, as shown in FIG. 1(L), the entire surface of the intrinsic amorphous silicon 16 is etched using, for example, CF4 gas by a reactive ion etching method to form the semiconductor film 2.
As mentioned above, the 0-reactive ion error/fugu method for forming 6 has a strong vertical directionality (and strong anisotropy), leaving only the semiconductor film 2G formed on the side surface of the stepped portion 13. , (all the intrinsic amorphous silicon 16 of the film can be etched).

さらに第1図(f)に示すようにプラズマCVD法等に
より窒化シリコン(SiN)等の絶縁膜27をソース電
極22、ドレイン電極23、第1のコンタクト層24、
第2のコンタクl−[25及び半導体膜26の形成され
た絶縁性基板21の全面に例えば約3000人の厚さに
堆積させ、さらにその絶縁膜27上にスパッタ法等によ
りアルミニウム(A1)等の金g膜1日を堆積させる。
Furthermore, as shown in FIG. 1(f), an insulating film 27 made of silicon nitride (SiN) or the like is formed by a plasma CVD method or the like on the source electrode 22, drain electrode 23, first contact layer 24, etc.
The second contact layer 25 and the semiconductor film 26 are deposited on the entire surface of the insulating substrate 21 to a thickness of about 3,000 layers, and then aluminum (A1) is deposited on the insulating film 27 by sputtering or the like. Deposit a gold film for one day.

プラズマCVD法により形成した絶縁膜27、スパッタ
法により形成した金fs膜18は共に段差被覆性が良い
ので、段差側面にも十分な厚さの絶縁膜27、金属膜1
8を形成できる。
Both the insulating film 27 formed by the plasma CVD method and the gold fs film 18 formed by the sputtering method have good step coverage.
8 can be formed.

続けて、第1図(aに示すように異方性の強い反応性イ
オンエツチング法によりCCj14ガス等を用いて金属
膜18の全面をエツチングすることにより絶縁膜27の
段差側面に沿ってゲート電極28を形成する。そしてr
itf&にホトリソグラフィ工程により第1のコンタク
ト層24、第2のコンタクト層25及び半導体膜26の
上方に位置する絶縁II!2127を残して、他の絶縁
膜27をエツチングし、第1図(h)に示す様な縦型T
 F ’rが得られる。
Subsequently, as shown in FIG. 1(a), the entire surface of the metal film 18 is etched using CCj14 gas or the like using a highly anisotropic reactive ion etching method, thereby forming a gate electrode along the stepped side surface of the insulating film 27. 28 and r
The insulating layer II is formed above the first contact layer 24, the second contact layer 25, and the semiconductor film 26 by a photolithography process. 2127, the other insulating film 27 is etched to form a vertical T as shown in FIG. 1(h).
F'r is obtained.

このように本実施例では、各々の電極や層等のオーバー
ランプを最小限にしたため、各々の電極や層の間に生じ
る寄生容量が従来の縦型TPTに比べて著しく減少する
。尚、上記実施例で示したソース電極22、ドレイン電
PfA23、第1のコンタクト層24、第2のコンタク
ト層25、半導体膜26、ゲートff1lfi28の膜
厚の具体値は、はんの1例であり上記具体値に限定され
ることはない。
As described above, in this embodiment, since the overlamp of each electrode, layer, etc. is minimized, the parasitic capacitance generated between each electrode and layer is significantly reduced compared to the conventional vertical TPT. In addition, the specific values of the film thicknesses of the source electrode 22, drain electrode PfA 23, first contact layer 24, second contact layer 25, semiconductor film 26, and gate ff1lfi28 shown in the above example are as follows: Yes, but not limited to the above specific values.

また半導体膜26は真性アモルファスシリコン以外に多
結晶シリコン、Cd5aSTa等であっても良い。
Further, the semiconductor film 26 may be made of polycrystalline silicon, Cd5aSTa, etc. other than intrinsic amorphous silicon.

〔発明のりJ果〕[Invention glue J fruit]

以上説明したように本発明によれば、絶縁性基板に段差
部を設け、その段差部側面に沿って半導体膜を形成し、
さらに絶縁性基板の下段面と上段面にそれぞれソース電
極、ドレイン電極を配設するようにしたので寄生容量が
従来の縦型1’ F Tに比べ著しく減少した。このた
め高周波特性が従来よりも著しく向上した。また、本発
明は縦型構造であるためオン電流も大き(することがで
きることから論理素子に用いることも可能になる。した
がって、TPTによる論理ICの製造も可能になると共
に、キャリア移動度が小さいアモルファスシリコンを半
導体膜とするTPTを用いても、液晶表示°パネルの駆
動回路をアクティブマトリクス基板面に一体集積化する
ことが可能になる。またその結果、液晶表示パネルの生
産性の向上及び低コスト化が可能になる
As explained above, according to the present invention, a stepped portion is provided on an insulating substrate, a semiconductor film is formed along the side surface of the stepped portion,
Furthermore, since the source electrode and drain electrode are arranged on the lower and upper surfaces of the insulating substrate, respectively, the parasitic capacitance is significantly reduced compared to the conventional vertical 1'FT. As a result, the high frequency characteristics have been significantly improved compared to the conventional model. In addition, since the present invention has a vertical structure, the on-current can be large, so it can be used for logic elements. Therefore, it is possible to manufacture logic ICs using TPT, and the carrier mobility is small. Even by using TPT, which uses amorphous silicon as a semiconductor film, it becomes possible to integrate the driving circuit of the liquid crystal display panel on the surface of the active matrix substrate.As a result, the productivity of the liquid crystal display panel can be improved and the It becomes possible to reduce costs

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は本発明の一実施例の断面図及び
製造方法を示す図、 第2図は従来の縦型TPTの断面図である。 21・・・絶縁性基板、 22・・・ソース電極、 23・・・ドレイン電極、 24・・・第1のコンタクト層、 25・・・第2のコンタクト層、 26・・・半導体膜、 27・・・ゲート絶縁膜、 28・・・ゲート電極。 特許出願人   カシオ計算機株式会社(a) (b) (C) (d) (e) (f) 第1図
FIGS. 1(a) to (h) are cross-sectional views of an embodiment of the present invention and diagrams showing a manufacturing method, and FIG. 2 is a cross-sectional view of a conventional vertical TPT. 21... Insulating substrate, 22... Source electrode, 23... Drain electrode, 24... First contact layer, 25... Second contact layer, 26... Semiconductor film, 27 ...Gate insulating film, 28...Gate electrode. Patent applicant Casio Computer Co., Ltd. (a) (b) (C) (d) (e) (f) Figure 1

Claims (1)

【特許請求の範囲】[Claims]  上段面、下段面、及びこれら面をつなぐ側面からなる
段差部を形成した絶縁性基板と、前記段差部の縁に沿っ
て前記段差部の一方の面に順次積層されたソース電極及
び第1のコンタクト層と、前記段差部の他方の面に前記
前記段差部の縁に沿って順次積層されたドレイン電極及
び第2のコンタクト層と、前記段差部の側面に沿って形
成され前記第1、第2のコンタクト層間を接続する半導
体膜と、前記第1のコンタクト層、前記半導体膜及び第
2のコンタクト層とを被膜する絶縁膜と、この絶縁膜上
に前記半導体膜に沿って形成されたゲート電極とを有す
る薄膜トランジスタ。
an insulating substrate having a stepped portion formed of an upper surface, a lower surface, and a side surface connecting these surfaces; a source electrode and a first layer sequentially stacked on one surface of the stepped portion along the edge of the stepped portion; a contact layer, a drain electrode and a second contact layer that are sequentially laminated on the other surface of the stepped portion along the edge of the stepped portion; and a drain electrode and a second contact layer that are formed along the side surface of the stepped portion; a semiconductor film connecting two contact layers; an insulating film covering the first contact layer, the semiconductor film, and the second contact layer; and a gate formed on the insulating film along the semiconductor film. A thin film transistor having an electrode.
JP3457688A 1988-02-17 1988-02-17 Thin film transistor Pending JPH01209765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3457688A JPH01209765A (en) 1988-02-17 1988-02-17 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3457688A JPH01209765A (en) 1988-02-17 1988-02-17 Thin film transistor

Publications (1)

Publication Number Publication Date
JPH01209765A true JPH01209765A (en) 1989-08-23

Family

ID=12418151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3457688A Pending JPH01209765A (en) 1988-02-17 1988-02-17 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH01209765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503192A (en) * 2006-08-31 2010-01-28 ケンブリッジ ディスプレイ テクノロジー リミテッド Organic electronic equipment
JP2012191023A (en) * 2011-03-11 2012-10-04 Fujitsu Ltd Field-effect transistor, and method of manufacturing the same
JP2013115111A (en) * 2011-11-25 2013-06-10 Hitachi Ltd Oxide semiconductor device and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503192A (en) * 2006-08-31 2010-01-28 ケンブリッジ ディスプレイ テクノロジー リミテッド Organic electronic equipment
US8481360B2 (en) 2006-08-31 2013-07-09 Cambridge Display Technology Limited Organic electronic device
JP2012191023A (en) * 2011-03-11 2012-10-04 Fujitsu Ltd Field-effect transistor, and method of manufacturing the same
JP2013115111A (en) * 2011-11-25 2013-06-10 Hitachi Ltd Oxide semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US6562645B2 (en) Method of fabricating fringe field switching mode liquid crystal display
JP3811663B2 (en) Manufacturing method and structure of in-plane switching liquid crystal display array
US5777702A (en) Liquid crystal display device and method of fabricating the same by patterning semiconductor, insulator, and gatelines with single mask
US6654074B1 (en) Array substrate for liquid crystal display device with shorting bars external to a data pad and method of manufacturing the same
US6309903B2 (en) Method for manufacturing fringe field switching mode liquid crystal display device
JPH1062818A (en) Production of liquid crystal display device
JP3084981B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0580650B2 (en)
JPH0542831B2 (en)
US10497724B2 (en) Manufacturing method of a thin film transistor and manufacturing method of an array substrate
JPH02206132A (en) Manufacture of thin-film transistor
JPH01209765A (en) Thin film transistor
KR100192507B1 (en) A structure and fabrication method of tft-lcd
US6713328B2 (en) Manufacturing method of thin film transistor panel
KR100663288B1 (en) Method for fabricating tft-lcd
JP2001133804A (en) Method of producing liquid crystal display device
KR100205867B1 (en) Active matrix substrate and its fabrication method
JPH08262491A (en) Liquid crystal display element and its production
JP2001188255A (en) Liquid crystal display element and manufacturing method therefor
JPH0323429A (en) Thin-film transistor
JPH01170048A (en) Thin film transistor and manufacture thereof
JPS62239579A (en) Manufacture of thin film transistor
JPH0685255A (en) Thin film transistor and manufacture thereof
JPS6380570A (en) Manufacture of thin film transistor
JPH0553139A (en) Thin-film transistor element array