JPH01206642A - Pattern and method for capacity measuring in semiconductor device - Google Patents

Pattern and method for capacity measuring in semiconductor device

Info

Publication number
JPH01206642A
JPH01206642A JP63030812A JP3081288A JPH01206642A JP H01206642 A JPH01206642 A JP H01206642A JP 63030812 A JP63030812 A JP 63030812A JP 3081288 A JP3081288 A JP 3081288A JP H01206642 A JPH01206642 A JP H01206642A
Authority
JP
Japan
Prior art keywords
gate
source
capacitance
pinch
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63030812A
Other languages
Japanese (ja)
Inventor
Masafumi Shigaki
雅文 志垣
Tamio Saito
斎藤 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63030812A priority Critical patent/JPH01206642A/en
Publication of JPH01206642A publication Critical patent/JPH01206642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To find an accurate gate-source capacity and an accurate gate-drain capacity and to obtain the accurate characteristics of an equivalent circuit by a method wherein measurement of the capacities is conducted using two patterns of a first FET pattern, which is a FET pattern whose gate, source and drain are respectively isolated from one another, and a second FET pattern, which is a diode pattern whose source and drain are short-circuited between each other. CONSTITUTION:A capacity characteristic I obtainable by a first FET 12 before a pinch-off is both of a gate-source capacity Cgs and a gate-drain capacity Cgd and the characteristic I obtainable after the pinch-off is the Cgs only. A capacity characteristic II obtainable by a second FET 11 on one side before the pinch-off is the same as the characteristic I and the characteristic II obtainable after the pinch-off becomes of a value obtainable by adding the capacity Cgs to the characteristic I. A capacity Cgdf of a difference between the characteristics I and II after the pinch-off is the gate-drain capacity to hold an almost constant value regardless of the magnitude of a gate-source voltage Vgs and if the Cgdf is subtracted from the characteristic I or II before the pinch-off, the accurate capacity Cgs before the pinch-off is found.

Description

【発明の詳細な説明】 〔概要] FETのダイナミックな等価回路を求める時に用いる容
量測定パターン及び容量測定方法に関し、ゲート・ソー
ス間容量又はグー1−・ドレイン間容量の正確な値を求
めることを目的とし、グー1〜端子、ソース端子、ドレ
イン端子を夫々分離して設りられたFETど、このFE
Tと同じ大きさで、ソース端子、トレイン端子が短絡さ
れた[:E Tとを隣接して同一・ウェハ上に形成し1
〔構成とし、この構成になる容量測定パターンを用い、
上記各FEI−におけるピンチオフ前及びピンチオフ後
のゲート・ソース間電圧(V  )対ゲートS ・ソース間容渚特性を夫々求め、ピンチオフ後におる2
つのゲート・ソース間容W特性の差の容量を求め、ピン
チオフ前にa5けるゲート・ソース間容量特性から眼差
の容量を引くことにより、ピンチオフ前におけるグー1
゛・・ソース間容量を求める。
[Detailed Description of the Invention] [Summary] Regarding the capacitance measurement pattern and capacitance measurement method used to find the dynamic equivalent circuit of an FET, this paper aims to find an accurate value of the gate-source capacitance or the drain-to-drain capacitance. This FE, such as an FET whose purpose is to separate the goo 1 terminal, source terminal, and drain terminal, respectively.
The source terminal and the train terminal are short-circuited [:ET and T are formed adjacently on the same wafer.
[configuration, and using a capacitance measurement pattern that results in this configuration,
The gate-to-source voltage (V) vs. gate S and source-to-source voltage characteristics before and after pinch-off in each FEI- above were calculated, and
By finding the capacitance of the difference between the two gate-source capacitance W characteristics, and subtracting the capacitance of the eye difference from the gate-source capacitance characteristic of a5 before pinch-off,
゛... Find the capacitance between sources.

〔産業上の利用分野] 本発明は、F’ETのダイナミックな等価回路を求める
時に用いる容量測定パターン及び容量測定方法に関する
[Industrial Field of Application] The present invention relates to a capacitance measurement pattern and a capacitance measurement method used when determining a dynamic equivalent circuit of an F'ET.

FETの等価回路を求める場合、例えば第4図に示す回
路図においてキャパシタンス(即ち、ゲh Gどソース
Sとの間の容量Cg3、ゲートGとドレインDとの間の
容fflcgd)を求める必要があり、この場合、等価
回路ではゲート・ソース間容量Cどグー1−・ドレイン
間容量Cgdとを分離すS る必要がある。
To find the equivalent circuit of a FET, for example, in the circuit diagram shown in Fig. 4, it is necessary to find the capacitance (i.e., the capacitance Cg3 between the gate G and the source S, and the capacitance fflcgd between the gate G and the drain D). In this case, it is necessary to separate the gate-source capacitance C and the drain capacitance Cgd in the equivalent circuit.

(従来の技術〕 従来は第5図に示すようないわゆるFETパターンと貯
ばれる測定パターンを用い、夫々の容hiを測定してい
た。第5図中、1はFET本体、2はグー1〜パツド、
3はソースパッド、4はトレインパッドである。この場
合、例えばゲート・ソース間容量Cg8を測定づるには
ゲート・パッド2とソースパッド3とに針を当てて各パ
ッド間の容量を測定する。第1図(B)に示す如く、ゲ
ート・ソース間電圧vg、を変化させてゲート・ソース
間容量Cg、を測定し、実線■で示す特性を得る。ここ
に、vthは、ドレイン・ソースに流れる電流が零にな
るグー1へ・ソース間電圧である。
(Prior art) Conventionally, the so-called FET pattern and the stored measurement patterns as shown in Fig. 5 have been used to measure the respective capacitances hi. Padded,
3 is a source pad, and 4 is a train pad. In this case, for example, to measure the gate-source capacitance Cg8, a needle is applied to the gate pad 2 and the source pad 3 to measure the capacitance between each pad. As shown in FIG. 1(B), the gate-source capacitance Cg is measured by varying the gate-source voltage Vg, and the characteristics shown by the solid line 2 are obtained. Here, vth is the voltage between the drain and the source at which the current flowing between the drain and the source becomes zero.

第2図く△)に示す如く、FEI−がピンチオフする前
(ゲート・ソース間電圧V が浅く、v1h9$ 以上の期間)は動作層が(斜線)がソース・ドレイン間
で接続されているため、ソースS及びグーL−Gに針(
矢印)を当ててゲート・ソース間容量を測定しているつ
もりでも実際にはゲート・ソース開音ic、、及びゲー
ト・ドレイン開音1cadを加算した値(C(lsDI
十〇(IS+)2+C(Idp1+Codp2+Cgs
d )を測定していることになる。一方、第2図(B)
に示す如く、FETがピンチオフした後(ゲート・ソー
ス間電圧V が深く、vth以下のS 期間)は動作層(斜線)がソース・ドレイン間で切離さ
れているため、グー1へ・ソース開音fB:cgs(0
g8,1→−cgsp2>を測定しでいることになる。
As shown in Figure 2 (△), before FEI- is pinched off (during the period when the gate-source voltage V is shallow and exceeds v1h9$), the active layer (hatched) is connected between the source and drain. , Needle to source S and goo L-G (
Even though you think you are measuring the gate-source capacitance by applying the gate-source open sound IC and the gate-drain open sound 1 cad (C(lsDI
10 (IS+)2+C(Idp1+Codp2+Cgs
d) is being measured. On the other hand, Fig. 2 (B)
As shown in Figure 2, after the FET is pinched off (S period in which the gate-source voltage V is deep and is below vth), the active layer (hatched) is separated between the source and drain, so the source is open to goo 1. Sound fB:cgs(0
g8,1→-cgsp2> has been measured.

−   へ   − 一  4  − それでvthを境に急激に容量が変化する現象が碗われ
る。
- To - 1 4 - Therefore, a phenomenon in which the capacitance changes rapidly after vth is observed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の従来例は、ピンチオフ前はゲート・ソース間容量
Cとグー1−・ドレイン開音icgdどのS 両方を測定してa3す、ピンチオフ後はグー1〜・ソー
ス間容量l Cのみを測定している、というようS にグー1〜・ソース間容量Cを正確に測定できなS い問題点があった。
In the conventional example described above, before pinch-off, both the gate-source capacitance C and the goo1-drain open sound S are measured, but after the pinch-off, only the goo-source capacitance lC is measured. There was a problem with S that made it impossible to accurately measure the capacitance C between source and source.

本発明は、グー1〜・ソース間容量又はゲート・ドレイ
ン間容量の正確な値を求め得る測定パターン及び測定方
法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measurement pattern and a measurement method capable of determining an accurate value of source capacitance or gate-drain capacitance.

〔課題を解決するための手段] 上記問題点は、ゲート端子、ソース端子、ドレイン端子
を夫々分離して設(プられた第1のFETど、このFF
Tと同じ大きさで、ソース端子、トレイン端子が短絡さ
れた第2のFE[とを隣接してJr″i1−ウ]ニハ上
に形成してなる容量測定パターンを用い、上記各FET
におけるピンチオフ前及びピンチオフ後のゲート・ソー
ス間電圧(V 、、)対ゲート・ソース間容嬉特性を夫
々求め、ピンチオフ後における2つのゲート・ソース間
容量特性の差の容量を求め、ビンチオノ前におけるゲー
ト・ソース間容量特性から眼差の容量を引くことにより
、ピンチオフ前におけるゲート・ソース間容量を求める
ことを特徴とする半導体装置にお【プる容量測定方法に
よって解決される。
[Means for solving the problem] The above problem is solved by the first FET, which has its gate terminal, source terminal, and drain terminal separated from each other.
Using a capacitance measurement pattern formed on a second FE with the same size as T and whose source terminal and train terminal are short-circuited, each of the above-mentioned FETs is
The gate-source voltage (V, ,) vs. gate-source capacitance characteristics before and after pinch-off are determined, the difference in the two gate-source capacitance characteristics after pinch-off is determined, and the capacitance before pinch-off is determined. This problem is solved by a capacitance measurement method applied to a semiconductor device, which is characterized in that the gate-source capacitance before pinch-off is determined by subtracting the eye difference capacitance from the gate-source capacitance characteristic.

〔作用〕[Effect]

第1のFETによって得られた容認特性Iは、ピンチオ
フ前はゲート・ソース問答IC,,及びゲート・ドレイ
ン間容tC,dの両方であり、ピンチオフ後はゲート・
ソース問答icg8のみである。
The acceptable characteristic I obtained by the first FET is both the gate-source capacitance IC and the gate-drain capacitance tC, d before pinch-off, and the gate-source capacitance tC, d after pinch-off.
Source question and answer icg8 only.

一方の第2のFEI−によって得られた容量特性■は、
ピンチオフ前は特性■と同じであり、ピンチオフ後は特
性工にゲート・トレイン間容量Cgdを加えた値となる
(第2のFETはソース端子とドレイン端子とが短絡さ
れているので、ピンチオフ後はCgdも測定することに
なる)。ピンチオフ後の特性■ど■との差の容量Cgd
fはゲート・ソース間電圧Vg、の大小に拘らず略一定
値を保つゲート・ドレイン間容量で1.ピンチオフ前の
特性■又は■からCを引くとビンチオノ前の正確なゲ(
ldf −ト・ソース問答icg8が求められる。
The capacitance characteristic ■ obtained by one of the second FEI- is
Before pinch-off, the characteristic is the same as ■, and after pinch-off, the value is the characteristic plus the gate-to-train capacitance Cgd (the source and drain terminals of the second FET are short-circuited, so after pinch-off Cgd will also be measured). Capacitance Cgd of difference between characteristics after pinch-off
f is the gate-drain capacitance that maintains a substantially constant value regardless of the magnitude of the gate-source voltage Vg, which is 1. If you subtract C from the characteristic ■ or ■ before pinch-off, you will get the exact game before pinch-off (
ldf-source question and answer icg8 is obtained.

〔実施例〕〔Example〕

第1図(A)は本発明のパターン平面図を示す。 FIG. 1(A) shows a plan view of a pattern of the present invention.

同図中、10はウェハで、このウェハ10上で隣接しj
こFET11及び12に夫々異なるキャパシタンス測定
パターンを設ける。即ち、FET11は実質的には第5
図に示す従来例と同じいわゆる[:ETパターンで、ソ
ースパッド13及びドレインパッド14に夫々腕部パタ
ーン13a、14aが設けられているも、両パッドは接
続されることなく、互いに切離されている。18はゲー
トバットである。一方のhETはいわゆるダイオードパ
ターンで、ソースパット15及びドレインパッド16に
短絡パターン17が設けられており、両パラドは互いに
接続されている。19はゲートパッドである。
In the figure, 10 is a wafer, and adjacent j on this wafer 10
Different capacitance measurement patterns are provided for the FETs 11 and 12, respectively. That is, FET 11 is substantially the fifth
Although the so-called [:ET pattern is the same as the conventional example shown in the figure, arm patterns 13a and 14a are provided on the source pad 13 and the drain pad 14, respectively, both pads are not connected and are separated from each other. There is. 18 is a gate bat. One hET is a so-called diode pattern, and a short circuit pattern 17 is provided on a source pad 15 and a drain pad 16, and both pads are connected to each other. 19 is a gate pad.

本発明はこの2つの測定パターンを用いてゲート・ソー
ス問答aCg8、ゲート・ドレイン間容量Cgdの正確
な値を求めるもので、両測定パターンを極力同じ条件に
するために、特にFETI 1の測定パターンにはt=
 E T 12の短絡パターン17のような形状の腕部
パターン13a、14aを設ける一方、両測定パターン
を同一ウェハ10上の離れた位置に設けるとウェハの特
性ばらつきの影響が出るので、これを避けるために両測
定パターンを隣接して設ける。
The present invention uses these two measurement patterns to obtain accurate values of gate-source capacitance aCg8 and gate-drain capacitance Cgd. t=
While arm patterns 13a and 14a shaped like the short circuit pattern 17 of E T 12 are provided, if both measurement patterns are provided at separate positions on the same wafer 10, the influence of wafer characteristic variations will occur, so this should be avoided. Therefore, both measurement patterns are provided adjacently.

なお、測定パターンを1つだけ設け、ワイA7でドレイ
ン・ソース間を接続することも考えられるが、この方法
ではワイヤとFETとの間の容量が影響してデータの信
頼性が失なわれる。この容量は以外に大ぎく、又、ワイ
ヤの接続のやり方によって容量が変化してしまい、好ま
しくない。
It is also possible to provide only one measurement pattern and connect the drain and source using the wire A7, but in this method, the reliability of the data is lost due to the influence of the capacitance between the wire and the FET. This capacitance is undesirably large, and the capacitance changes depending on how the wires are connected.

本発明では、先ず、FET11の測定パターン(実質上
、従来例と同じFETパターン)を用いてゲート・ソー
ス問答fficg、を求める。これは、第2図(A)、
(B)において説明したのと全く同じであるのでその説
明を省略する。この測定によって第1図(B)の実線■
の特性を得る。
In the present invention, first, the gate-source question and answer fficg are determined using the measurement pattern of the FET 11 (substantially the same FET pattern as in the conventional example). This is shown in Figure 2 (A),
Since this is exactly the same as explained in (B), the explanation thereof will be omitted. As a result of this measurement, the solid line ■ in Figure 1 (B)
obtain the characteristics of

次に、FET12の測定パターン(ダイオードパターン
)を用いてゲート・ソース間容量C03を求める。第3
図(A>に示す如く、ビンチオノ前では動作層がソース
・トレイン間で接続されているので、短絡パターン17
が設りられていても実質的には第2図(A)に示すのと
同じ容量つまり、ゲート・ソース間容量Cg、及びグー
1〜・ドレイン間容ICgdの両方の容量を測定してい
ることになる。
Next, the gate-source capacitance C03 is determined using the measurement pattern (diode pattern) of the FET 12. Third
As shown in the figure (A>), the active layer is connected between the source and train before Vinciono, so the short circuit pattern 17
Even if a capacitor is provided, it is actually measuring the same capacitance as shown in Figure 2 (A), that is, both the gate-source capacitance Cg and the drain capacitance ICgd. It turns out.

第3図(B)に示す如く、ピンチオフ後では動作層がソ
ース・ドレイン間で切離される。この場合、知略パター
ン17が設けられているので、グー1〜パツド19とソ
ースパッド15とに針を当てるとゲート・ソース間容量
Cg、及びゲート・ドレイン間容icgdを測定してい
ることになり、=   1 n   − Cgspl +Cgsp2 +Cgdpl 十〇 gd
p2を測定していることになる。これは、第2図(B)
と比較してみるに、Cgdpi+C(]dp2が新たに
加えられたことになる。従って、FET12の測定パタ
ーンを用いた測定容量は第1図(B)の破線■に示す如
く、ピンチオフ前では実線Iと同じ値、ピンチオフ後で
は実線■の値にゲート・ドレイン間容ICgdを加えた
値になる。
As shown in FIG. 3(B), after the pinch-off, the active layer is separated between the source and drain. In this case, since the pattern 17 is provided, when the needle is applied to the pads 1 to 19 and the source pad 15, the gate-source capacitance Cg and the gate-drain capacitance icgd are measured. , = 1 n − Cgspl + Cgsp2 + Cgdpl 10 gd
This means that p2 is being measured. This is shown in Figure 2 (B)
When compared with , Cgdpi+C(]dp2 has been newly added. Therefore, the measured capacitance using the measurement pattern of FET12 is as shown by the broken line ■ in Figure 1 (B), and before the pinch-off, it is a solid line. The same value as I, after pinch-off, becomes the value of the solid line ■ plus the gate-drain capacitance ICgd.

ここで、CQS−Cgspl + C(]SD2” q
cl= C(ldl)1+Cgdp2であり、これらは
主としてパターンそのもので決定される値であり、ゲー
ト・ソース間電圧Vosの大小に拘らず殆ど変化しない
。一方、ゲートの下の空乏層にお【ノる容flc、3.
はゲート・ソース間電圧Vg、の大小によって大きく変
化し、Vthでは零となる。即ち、対向電極の夫々の面
積を81対向電極の距離をtどすると、一般に容量C−
ε(S/l)であるので、ゲートの下の空乏層における
容量 c gsdはゲート・ソース間電圧V0.を例え
ば小に変化(これによって空乏層は大)さけることによ
って小に変化する。
Here, CQS-Cgspl + C(]SD2” q
cl=C(ldl)1+Cgdp2, and these values are mainly determined by the pattern itself, and hardly change regardless of the magnitude of the gate-source voltage Vos. On the other hand, in the depletion layer under the gate, 3.
varies greatly depending on the magnitude of the gate-source voltage Vg, and becomes zero at Vth. That is, if the area of each of the opposing electrodes is 81 and the distance between the opposing electrodes is t, then the capacitance C-
Since ε(S/l), the capacitance c gsd in the depletion layer under the gate is equal to the gate-source voltage V0. For example, the depletion layer can be changed to a small value by avoiding the change to a small value (thereby increasing the depletion layer).

従って、第1図(−A)に示す如く、領域AはC’l;
1dpl+C(]dp2”’ cgdr  (つまり、
ゲート・ソース間電圧Vg9に拘らず、Cgdが一定)
、領域Bはゲート・ソース間電圧Vg、によって変化す
るCg、d、領域CはCgsp1+COsC05p2=
C(ゲート・ソース間電圧V に拘らずC0,が一定)
となS る。通常、マイクロ波を扱う回路の等価回路ぐは、ゲー
ト・ソース間客足Cg、はCgspl −1−Cgsp
2十CつまりCgsf−←Cgsdの値を(第1図(B
)gsd 中、−点鎖線■)を用いるのが望ましく、一方のゲート
・ドレイン間容置C0dはCgdp1+C(]dp2つ
まりCgsf値(第1図(8)中、破線■と■とで包囲
された領域)である。
Therefore, as shown in FIG. 1 (-A), area A is C'l;
1dpl+C(]dp2”' cgdr (that is,
Cgd is constant regardless of gate-source voltage Vg9)
, region B has Cg, d, which changes depending on the gate-source voltage Vg, and region C has Cgsp1+COsC05p2=
C (C0 is constant regardless of the gate-source voltage V)
Tona S Ru. Normally, the equivalent circuit of a circuit that handles microwaves is Cg between the gate and source, and Cgspl -1-Cgsp
20C, that is, the value of Cgsf-←Cgsd (Figure 1 (B
) gsd, − dotted chain line ■) is preferable, and one gate-drain space C0d is Cgdp1+C(]dp2, that is, the Cgsf value (surrounded by dashed lines ■ and ■ in Fig. 1 (8)). area).

そこで、本発明では、特性1.Iを用い、ピンチオフ後
における特性1.IIの差の容t C、dfを求め、ピ
ンチオフ前の特性■(又はII)から容量Cgdfを引
くことにより、ピンチオフ前の正確なゲート・ソース間
各間C(JS=CQSf +Cgsd  (第1図(B
)中、−点鎖線■)を求める。なお、グ一ト・ドレイン
間容量はCgdfである。
Therefore, in the present invention, characteristic 1. Characteristics 1 after pinch-off using I. By finding the capacitance tC, df of the difference between II and subtracting the capacitance Cgdf from the characteristic before pinch-off (or II), we can find the exact gate-source distance C before pinch-off (JS=CQSf +Cgsd (Fig. 1) (B
) inside, − dot-dashed line ■). Note that the gate-drain capacitance is Cgdf.

なお、同じウェハで特性にばらつぎが少ない場合は第1
図(A)に示すようにFETパターン及びダイオードパ
ターンの一対を同一ウェハで1個設ければよいが、ばら
つきが多い場合はこの一対を同一ウェハで複数個設ける
In addition, if there is little variation in the characteristics of the same wafer, the first
As shown in Figure (A), one pair of FET pattern and one diode pattern may be provided on the same wafer, but if there are many variations, a plurality of such pairs may be provided on the same wafer.

〔発明の効果〕〔Effect of the invention〕

以上説明し如く、本発明によれば、ゲート、ソース、ド
レインが夫々分離したFETパターンの第1のFETと
、ソース、トレインが短絡されたダイオードパターンの
第2のFETとの2つのパターンを用いて容量測定を行
なっているので、従来例に比して正確なゲート・ソース
間容量グー1〜・ドレイン間容量を求め得、正確な等価
回路特性を得ることができる。
As explained above, according to the present invention, two patterns are used: the first FET has a FET pattern in which the gate, source, and drain are separated, and the second FET has a diode pattern in which the source and train are short-circuited. Since the capacitance is measured using the conventional method, it is possible to obtain more accurate gate-source capacitance and drain capacitance than in the conventional example, and to obtain accurate equivalent circuit characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のパターン平面図、及び容量測定方法を
説明する図、 第2図は従来及び本発明のFETパターンにお(Jる測
定容量模式図、 第3図は本発明のダイオードパターンにおける測定容量
模式図、 第4図はFETの等価回路図、 第5図は従来の容量測定パターンである。 図において、 10はウェハ、 11はダイオードパターンのF’E T 。 12はF E TパターンのFE、T。 13.15はソースパッド(ソース端子)、13a、1
4aは腕部パターン、 14.16はドレインパッド(ドレイン端子)、17は
短絡パターン、 t、8.19はゲートパッド(・ゲート端子)、Sはソ
ース、 Dはドレイン、 Gはゲート、 C(JSDl、Cgsp2はゲート・ソース間容量、C
gc+pi、C1;1dp2はグー1〜・ドレイン間各
州、Co s 6はゲート下の空乏層の容量を示す。 特許出願人 富 士 通 株式会社 代  理  人  弁理士  伊  東  忠  彦F
ETの苓4曲回に各図 第4図 才(木の容量!1)こノぐターン 第5図
Fig. 1 is a pattern plan view of the present invention and a diagram explaining the capacitance measurement method; Fig. 2 is a schematic diagram of the measurement capacitance of conventional and inventive FET patterns; Fig. 3 is a diode pattern of the present invention. 4 is an equivalent circuit diagram of an FET, and FIG. 5 is a conventional capacitance measurement pattern. In the figure, 10 is a wafer, 11 is a diode pattern F'ET, and 12 is a FET. FE of the pattern, T. 13.15 is the source pad (source terminal), 13a, 1
4a is the arm pattern, 14.16 is the drain pad (drain terminal), 17 is the short circuit pattern, t, 8.19 is the gate pad (gate terminal), S is the source, D is the drain, G is the gate, C ( JSDl, Cgsp2 are gate-source capacitances, C
gc+pi, C1; 1dp2 indicates the capacitance between the gate 1 and the drain, and Cos 6 indicates the capacitance of the depletion layer under the gate. Patent applicant Fujitsu Co., Ltd. Agent Patent attorney Tadahiko Ito F.
In the 4th episode of Rei of ET, each figure is the 4th figure (wood capacity! 1) Konogu turn is the 5th figure

Claims (2)

【特許請求の範囲】[Claims] (1)ゲート端子(18)、ソース端子(13)、ドレ
イン端子(14)を夫々分離して設けられたFET(1
1)と、 該FET(11)と同じ大きさで、ソース端子(15)
、ドレイン端子(16)が短絡されたFET(12)と
を隣接して同一ウェハ(10)上に形成してなることを
特徴とする半導体装置における容量測定パターン。
(1) FET (1) with separate gate terminal (18), source terminal (13), and drain terminal (14), respectively.
1), the same size as the FET (11), and the source terminal (15)
A capacitance measurement pattern in a semiconductor device, characterized in that a FET (12) whose drain terminal (16) is short-circuited is formed adjacently on the same wafer (10).
(2)ゲート端子(18)、ソース端子(13)、ドレ
イン端子(14)を夫々分離して設けられたFET(1
1)と、 該FET(11)と同じ大きさで、ソース端子(15)
、ドレイン端子(16)が短絡されたFET(12)と
を隣接して同一ウェハ(10)上に形成してなる容量測
定パターンを用い、上記FET(11)におけるピンチ
オフ前及びピンチオフ後のゲート・ソース間電圧(V_
g_s)対ゲート・ソース間容量特性( I )、及び、
上記FET(12)にけるピンチオフ前及びピンチオフ
後のゲート・ソース間の電圧(V_g_s)対ゲート・
ソース間容量特性(II)を夫々求め、 ピンチオフ後におる上記2つのゲート・ソース間容量特
性( I )(II)の差の容量(C_g_d_f)を求め
、 ピンチオフ前におけるゲート・ソース間容量特性( I
又はII)から誤差の容量(C_g_s_f)を引くこと
により、ピンチオフ前におけるゲート・ソース間容量(
C_g_s)(III)を求めることを特徴とする半導体
装置における容量測定方法。
(2) FET (1) with separate gate terminal (18), source terminal (13), and drain terminal (14), respectively.
1), the same size as the FET (11), and the source terminal (15)
Using a capacitance measurement pattern formed by forming adjacent FETs (12) whose drain terminals (16) are short-circuited on the same wafer (10), the gate and gate terminals of the FETs (11) before and after pinch-off are measured. Source-to-source voltage (V_
g_s) vs. gate-source capacitance characteristics (I), and
The gate-source voltage (V_g_s) before and after pinch-off in the above FET (12) vs. gate-source voltage (V_g_s)
Find the source-to-source capacitance characteristics (II), find the capacitance (C_g_d_f) of the difference between the above two gate-source capacitance characteristics (I) (II) after pinch-off, and calculate the gate-source capacitance characteristics (I) before pinch-off.
By subtracting the error capacitance (C_g_s_f) from II), the gate-source capacitance before pinch-off (
A method for measuring capacitance in a semiconductor device, characterized by determining C_g_s)(III).
JP63030812A 1988-02-15 1988-02-15 Pattern and method for capacity measuring in semiconductor device Pending JPH01206642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030812A JPH01206642A (en) 1988-02-15 1988-02-15 Pattern and method for capacity measuring in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030812A JPH01206642A (en) 1988-02-15 1988-02-15 Pattern and method for capacity measuring in semiconductor device

Publications (1)

Publication Number Publication Date
JPH01206642A true JPH01206642A (en) 1989-08-18

Family

ID=12314103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030812A Pending JPH01206642A (en) 1988-02-15 1988-02-15 Pattern and method for capacity measuring in semiconductor device

Country Status (1)

Country Link
JP (1) JPH01206642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658804A (en) * 1995-02-10 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Method for measuring parasitic components of a field effect transistor and a semiconductor integrated circuit
US5892266A (en) * 1996-05-30 1999-04-06 Sumitomo Metal Industries, Ltd. Layout structure of capacitive element(s) and interconnections in a semiconductor
KR100732762B1 (en) * 2005-10-26 2007-06-27 주식회사 하이닉스반도체 Test pattern in semiconductor device having recess gate and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658804A (en) * 1995-02-10 1997-08-19 Honda Giken Kogyo Kabushiki Kaisha Method for measuring parasitic components of a field effect transistor and a semiconductor integrated circuit
US5892266A (en) * 1996-05-30 1999-04-06 Sumitomo Metal Industries, Ltd. Layout structure of capacitive element(s) and interconnections in a semiconductor
KR100732762B1 (en) * 2005-10-26 2007-06-27 주식회사 하이닉스반도체 Test pattern in semiconductor device having recess gate and method of fabricating the same

Similar Documents

Publication Publication Date Title
NO20021031L (en) Capacitive excitation
KR100671742B1 (en) Method for measuring effective channel length and overlap length in mosfet
JPH0434950A (en) Semiconductor integrated circuit device
JPH01206642A (en) Pattern and method for capacity measuring in semiconductor device
JP3296315B2 (en) Method and apparatus for measuring overlap length and overlap capacity of MOSFET and recording medium
JP4748552B2 (en) MISFET overlap length extraction method, extraction apparatus, and recording medium storing extraction program
US6876036B2 (en) Device for measuring parameters of an electronic device
CN112366145A (en) Test structure and test method for AC calibration
KR100729057B1 (en) Capacitance measurement method using floating gate of semiconductor device
JPS5619634A (en) Semiconductor device
JPS62229952A (en) Mis type semiconductor integrated circuit device
JPS57211745A (en) Semiconductor integrated circuit device
Lorival et al. A test chip for MOS transistor capacitance characterization
JPH02129943A (en) Manufacture of semiconductor device
JPH08222614A (en) Parasitic component measuring method for field-effect transistor and semiconductor integrated circuit
JPH03255968A (en) Circuit for evaluating and measuring characteristic of circuit element
JPS56132588A (en) Crystal oscillation type electronic watch
JPH0421103Y2 (en)
JPS60103600A (en) Semiconductor memory
JPS61276335A (en) Semiconductor integrated circuit device
JPS6341040A (en) Semiconductor integrated circuit device
JPS61120435A (en) Inspecting apparatus of semiconductor integrated circuit
JPS6259874A (en) Measuring method for static characteristics of field-effect transistor
JPS61187278A (en) Semiconductor device
Manku et al. A DC method for measuring all the gate capacitors in MOS devices with atto-farad resolution