JPS6341040A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS6341040A
JPS6341040A JP61185550A JP18555086A JPS6341040A JP S6341040 A JPS6341040 A JP S6341040A JP 61185550 A JP61185550 A JP 61185550A JP 18555086 A JP18555086 A JP 18555086A JP S6341040 A JPS6341040 A JP S6341040A
Authority
JP
Japan
Prior art keywords
state
turned
transistors
contacts
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61185550A
Other languages
Japanese (ja)
Inventor
Akira Tamakoshi
晃 玉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61185550A priority Critical patent/JPS6341040A/en
Publication of JPS6341040A publication Critical patent/JPS6341040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To scale down a capacitance measuring device while obtaining the precise value of trench capacitance by mounting first-third transistors turned ON under a first state and turned OFF under a second state and fourth and fifth transistors turned OFF under the first state and turned ON under the second state. CONSTITUTION:Transistors Q1-Q3 are turned ON under a first state, a contact 1 is pre-charged at Vcc, and contacts 2, 3 are discharged. When the states are shifted to a second state from the first state, the transistors Q1-Q3 are turned OFF, transistors Q4, Q5 are turned ON, and charges are also stored in a capacitor Cs2 and the contacts 2, 3. The contacts 1-3 are brought to the same potential Vss at that time, and the quantity of charges at all the contacts is kept at Q. Contact capacitance C1.C2.C3 can be calculated from the depletion layer width of a diffusion layer and a dielectric constant and an area on a pattern and gate capacitance, and potential Vss at the contacts 1, 2, 3 can be acquired from the relationship of the input Vss and output VR of an inverter 4 by measuring the output potential VR of the inverter 4 at a time when the contact 3 is used as an input signal.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は半導体集積回路装置に関し、特にメモリー装置
等で、そのメモリセル内の容量として溝型容量を有し、
その容量値の測定を便ならしめた半導体集積回路装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor integrated circuit device, and in particular to a memory device, etc., which has a groove-type capacitor as a capacitor in its memory cell,
The present invention relates to a semiconductor integrated circuit device that facilitates the measurement of its capacitance value.

〔従来の技術〕[Conventional technology]

従来の半導体集積回路装置は、溝容量の測定のために、
第4図に示すように、測定すべき複数の溝容量43〜4
6を外部と並列に接続するためのパッド42を用意して
おき、外部に容量測定装置41を用意しておき、前記バ
ッド42と電気的に接続を行い、容量を測定して、溝容
量の個数から1個あたシの容量値を求めていた。
Conventional semiconductor integrated circuit devices, for measuring trench capacitance,
As shown in FIG. 4, there are a plurality of groove capacities 43 to 4 to be measured.
A pad 42 for connecting 6 to the outside in parallel is prepared, and a capacitance measuring device 41 is prepared externally, electrically connected to the pad 42, the capacitance is measured, and the groove capacitance is determined. The capacity value for each piece was calculated from the number of pieces.

容量測定装置41はキャパシタンスブリッヂで構成され
ておfD、周波数ωの交流信号に対するインピーダンス
Zを測定する。溝容量の容量値および個数をCsおよび
Nとすると、Z=1/(N・ωCs)  の関係よ1)
Csが求められる。
The capacitance measuring device 41 is composed of a capacitance bridge and measures the impedance Z with respect to an alternating current signal of fD and frequency ω. If the capacitance value and number of groove capacitors are Cs and N, then the relationship Z=1/(N・ωCs)1)
Cs is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体集積回路装置は、容量測定のだめ
の装置が大規模なものとなシ、また、パッドから容量測
定装置入力までの寄生容量が無視できない程に大きなも
のとなり、そのための誤差を考慮に入れなければならな
いという欠点がちシ、更に、インピーダンス測定のだめ
の周波数の依存性が現れ、測定の正確性に欠けるという
欠点がある。
In the conventional semiconductor integrated circuit device described above, the capacitance measurement device is large-scale, and the parasitic capacitance from the pad to the input of the capacitance measurement device is so large that it cannot be ignored. In addition, there is a disadvantage that the impedance measurement has to be carried out in a frequency dependent manner, resulting in a lack of measurement accuracy.

本発明の目的は、上記の事情に鑑みて、容量測定装置の
小規模化ができると共に、溝容量の正確な値を求めるこ
とができる半導体集積回路装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a semiconductor integrated circuit device that can reduce the size of a capacitance measuring device and can determine an accurate value of trench capacitance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路装置は、容量値未知の溝容量で
ちる第一の容量と、容量値が前記第一の容量の容量値に
等しいかあるいは既知である第二の容量と、第一の状態
においてオンし第二の状態においてオフする第一〜第三
のトランジスタと、前記第一の状態においてオフし前記
第二の状態においてオンする第四・第五のトランジスタ
と、インバータとを備え、前記第一・第二の容量のそれ
ぞれの一方の電極を電源端子または接地端子のいずれか
一方に共通に、他方の電極全第一・第二の接点にそれぞ
れ接続し、前記第一・第二のトランジスタを前記第一・
第二の接点と前記電源端子・前記接地端子あるいは前記
接地端子・前記電源端子のいずれか一方との間にそれぞ
れ接続し、前記第三のトランジスタを第三の接点と前記
接地端子との間に接続し、前記第四のトランジスタを前
記第一・第二の接点間に接続し、前記第五のトランジス
タを前記第一・第二の接点のいずれか一方と前記第三の
接点との間に接続し、前記第三の接点を前記インバータ
の入力端に接続して構成される。
The semiconductor integrated circuit device of the present invention includes a first capacitor consisting of a trench capacitor whose capacitance value is unknown, a second capacitor whose capacitance value is equal to or known as the capacitance value of the first capacitor, and a first capacitor whose capacitance value is equal to or known to the first capacitor. comprising first to third transistors that are turned on in the first state and turned off in the second state, fourth and fifth transistors that are turned off in the first state and turned on in the second state, and an inverter; One electrode of each of the first and second capacitors is commonly connected to either a power supply terminal or a ground terminal, and the other electrode is connected to all first and second contacts, respectively, and the first and second capacitors are connected to each other. The first transistor
A second contact is connected between the power supply terminal, the ground terminal, or one of the ground terminal and the power supply terminal, and the third transistor is connected between the third contact and the ground terminal. the fourth transistor is connected between the first and second contacts, and the fifth transistor is connected between either one of the first and second contacts and the third contact. and the third contact is connected to the input end of the inverter.

〔作用〕[Effect]

第一の状態において、第一・第二の容量のいずれか一方
およびこの容量が接続された接点は電源電圧でプリチャ
ージされ、他方の容量、この容量が接続された接点およ
び第三の接点は放電される。
In the first state, one of the first and second capacitors and the contact to which this capacitor is connected are precharged with the power supply voltage, and the other capacitor, the contact to which this capacitor is connected, and the third contact are precharged with the power supply voltage. Discharged.

第二の状態において、第一〜第三の接点は同儀位にな)
、シかも電源電極および接地電極から直流的に切離され
る。その結果、第一の状態でプリチャージされた電荷は
保存てれて第一・第二の容量ならびに第一〜第三の接点
容量に分配される。
In the second state, the first to third points of contact are in the same position)
, it is also galvanically disconnected from the power supply electrode and the ground electrode. As a result, the charge precharged in the first state is stored and distributed to the first and second capacitors and the first to third contact capacitors.

第二の状態における落−〜第三の接点の電位をインバー
タの出力電位から求め、既知の電源電圧ならびに第一〜
第三の接点の接点容量から同容量値の第一・第二の容量
の容量値を算出することができ、また第二の容量の容量
値が既知であれば第一の容量値を算出することができる
The potential of the drop to third contact in the second state is determined from the output potential of the inverter, and the known power supply voltage and the first to
The capacitance value of the first and second capacitors having the same capacitance value can be calculated from the contact capacitance of the third contact point, and if the capacitance value of the second capacitor is known, the first capacitance value can be calculated. be able to.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の半導体集積回路装置の一実施例を示す
回路図である。第1図に示す実施例は、N−チャンネル
のトランジスタQ ” ”’rQ ’とインバータ4と
容量C,ss a Csz  とを備えて構成されてい
る。C81及びCszは同等の溝容量であシ、容量値C
sを持つものとする。φp及びφBは入力信号であり、
第一の状態では、φpがVcc+VT以上のHi gh
レベルに変化する。ここで、VCCは電源電圧、7丁は
トランジスタQ1〜QsO1,,きい値電圧である。
FIG. 1 is a circuit diagram showing an embodiment of a semiconductor integrated circuit device of the present invention. The embodiment shown in FIG. 1 includes an N-channel transistor Q""'rQ', an inverter 4, and a capacitor C, ss a Csz. C81 and Csz have the same groove capacity, and the capacitance value C
Let us have s. φp and φB are input signals,
In the first state, φp is High above Vcc+VT.
Change in level. Here, VCC is a power supply voltage, and 7 transistors are transistors Q1 to QsO1, and threshold voltages.

上記のような構成において、第一の状態ではトランジス
タQl〜Q3がオンになり、接点1はVccにプリチャ
ージされ、接点2・3は放電される。
In the above configuration, in the first state, transistors Ql to Q3 are turned on, contact 1 is precharged to Vcc, and contacts 2 and 3 are discharged.

このときの蓄積電荷量Qは次式となる。The amount of accumulated charge Q at this time is expressed by the following equation.

Q=Vcc −(Cs +CI )  ・−・・−(1
)C1:接点1の接点容量 第1の状態から第二の状態に移ることによシ、トランジ
スタQ1〜Q3がオ歩スランジスタQ4・Qsがオンに
なり、容′1jlC82および接点2・3にも電荷が蓄
積される。このとき、接点1〜3は同電位Vssとなシ
、全接点の電荷量はQに保存されるから、次式が成シ立
つ。
Q=Vcc −(Cs +CI) ・−・・−(1
)C1: Contact capacitance of contact 1 By shifting from the first state to the second state, transistors Q1 to Q3 turn on, transistors Q4 and Qs turn on, and capacitance '1jlC82 and contacts 2 and 3 also turn on. Charge is accumulated. At this time, since the contacts 1 to 3 are at the same potential Vss and the amount of charge of all the contacts is stored in Q, the following equation holds true.

Q=Vss−(2Cs+Cx+C2+Cx)  −−(
2)C2・C3:接点2及び3の接点容量 (1)・(2)式よりCsは次式で求められる。
Q=Vss-(2Cs+Cx+C2+Cx) --(
2) C2/C3: From the contact capacitances (1) and (2) of contacts 2 and 3, Cs can be calculated using the following equation.

と比誘を率、パターン上の面積及びゲート容量から算出
できる。
The specific permittivity can be calculated from the coefficient, area on the pattern, and gate capacitance.

接点1・2・3の電位Vssは、接点3を入力信号とし
たときのインバータ4の出力電位VRを測定することに
よシ、インバータ4の入力Vssと出力VRとの関係を
示した第2図のグラフよシ求めることができる。第一の
状態から第二の状態になってからの時間tとVRとの関
係は第3図のようになり、tが十分大きく、VRが千丁
到状態となってからのVRを出力電位とする。
The potential Vss of the contacts 1, 2, and 3 can be determined by measuring the output potential VR of the inverter 4 when the contact 3 is used as an input signal. You can find it by looking at the graph in the figure. The relationship between the time t after changing from the first state to the second state and VR is as shown in Figure 3. When t is large enough and VR reaches the 1,000-stop state, VR is the output potential. do.

第1図に示す実施例において、容1−Cs1・Csz全
接地端子でなく電源端子に接続してもより、トランジス
タQlを接地端子に接続しトランジスタQ2を電源端子
に接続してもよく、また、トランジスタQs i接点2
でなく接点1に接続してもよい。
In the embodiment shown in FIG. 1, the capacitors 1-Cs1 and Csz may all be connected to the power supply terminal instead of the ground terminal, or the transistor Ql may be connected to the ground terminal and the transistor Q2 may be connected to the power supply terminal. , transistor Qs i contact 2
It may be connected to contact 1 instead.

他の実施例として、容xcslまたはCszのどちらか
一方を容量値が既知の平面容量などにして、他方の溝容
量の容量値を測定するように構成することもできる。
As another example, it is also possible to configure one of the capacitances xcsl and Csz to be a planar capacitance with a known capacitance value, and to measure the capacitance value of the other groove capacitance.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明を半導体集積回路装置に用い
れば、インバータからの出力電位を測定するだけでよく
、従来使用されていた容量測定のための大規模な装置が
必要なくなるという効果があり、また、溝容量と外部装
置とを直接接続することなく、インバータ回路を介して
、その出力電位を測定するので、外部との接続による負
荷容量を考慮する必要がなく、更に、従来は交流信号を
使用することKよるインピーダンスの測定から容量値を
求めていたため周波数依存性が問題であったが、その問
題もなくなるので、正確な容量値が求められるという効
果がある。
As explained above, if the present invention is applied to a semiconductor integrated circuit device, it is sufficient to simply measure the output potential from the inverter, and there is an effect that a large-scale device for measuring capacitance, which has been conventionally used, is not required. In addition, since the output potential is measured via an inverter circuit without directly connecting the groove capacitor to an external device, there is no need to consider the load capacitance due to external connections. Frequency dependence was a problem because the capacitance value was obtained from the measurement of the impedance using K, but since this problem is eliminated, there is an effect that an accurate capacitance value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は第1
図におけるインバータの入力電位Vssと出力電位VR
との関係を示すグラフ、第3図は同じくインバータの入
力電位Vssの立ち上がシからの時間tと出力電位VB
との関係を示すグラフ、第4図は従来の半導体集積回路
装置における容量測定法の一例を示す説明図である。 1〜3・・・・・・接点、4−・・・・・インバータ、
C81・C5z−・・・・・溝容1、Ql〜Qs−・・
・・・トランジスタ。 Vss:’〜些:イイl二   ≦tシ>  525a
   入ノ′1イ;う;1〒シ手1TS2J
Fig. 1 is a circuit diagram showing one embodiment of the present invention, and Fig. 2 is a circuit diagram showing an embodiment of the present invention.
Input potential Vss and output potential VR of the inverter in the figure
FIG. 3 is a graph showing the relationship between the time t from the rise of the input potential Vss of the inverter and the output potential VB.
FIG. 4 is an explanatory diagram showing an example of a capacitance measuring method in a conventional semiconductor integrated circuit device. 1-3...Contact, 4-...Inverter,
C81・C5z-...Groove volume 1, Ql~Qs-...
...transistor. Vss:'~Minor: Good l2 ≦tshi>525a
入ノ'1I;U;1〒し手1TS2J

Claims (1)

【特許請求の範囲】[Claims]  容量値未知の溝容量である第一の容量と、容量値が前
記第一の容量の容量値に等しいかあるいは既知である第
二の容量と、第一の状態においてオンし第二の状態にお
いてオフする第一〜第三のトランジスタと、前記第一の
状態においてオフし前記第二の状態においてオンする第
四・第五のトランジスタと、インバータとを備え、前記
第一・第二の容量のそれぞれの一方の電極を電源端子ま
たは接地端子のいずれか一方に共通に、他方の電極を第
一・第二の接点にそれぞれ接続し、前記第一・第二のト
ランジスタを前記第一・第二の接点と前記電源端子・前
記接地端子あるいは前記接地端子・前記電源端子のいず
れか一方との間にそれぞれ接続し、前記第三のトランジ
スタを第三の接点と前記接地端子との間に接続し、前記
第四のトランジスタを前記第一・第二の接点間に接続し
、前記第五のトランジスタを前記第一・第二の接点のい
ずれか一方と前記第三の接点との間に接続し、前記第三
の接点を前記インバータの入力端に接続したことを特徴
とする半導体集積回路装置。
a first capacitor which is a groove capacitor with an unknown capacitance value, a second capacitor whose capacitance value is equal to or known to the capacitance value of said first capacitor, and which is turned on in a first state and in a second state; comprising first to third transistors that are turned off, fourth and fifth transistors that are turned off in the first state and turned on in the second state, and an inverter; One electrode of each is commonly connected to either the power supply terminal or the ground terminal, and the other electrode is connected to the first and second contacts, respectively, and the first and second transistors are connected to the first and second transistors. and the power supply terminal, the ground terminal, or either the ground terminal or the power supply terminal, and the third transistor is connected between the third contact and the ground terminal. , the fourth transistor is connected between the first and second contacts, and the fifth transistor is connected between either one of the first and second contacts and the third contact. . A semiconductor integrated circuit device, wherein the third contact is connected to an input end of the inverter.
JP61185550A 1986-08-06 1986-08-06 Semiconductor integrated circuit device Pending JPS6341040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185550A JPS6341040A (en) 1986-08-06 1986-08-06 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185550A JPS6341040A (en) 1986-08-06 1986-08-06 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6341040A true JPS6341040A (en) 1988-02-22

Family

ID=16172768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185550A Pending JPS6341040A (en) 1986-08-06 1986-08-06 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6341040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966359A (en) * 1988-08-31 1990-10-30 Mita Industrial Co., Ltd. Paper feed unit for image forming apparatuses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966359A (en) * 1988-08-31 1990-10-30 Mita Industrial Co., Ltd. Paper feed unit for image forming apparatuses

Similar Documents

Publication Publication Date Title
US4806846A (en) High accuracy direct reading capacitance-to-voltage converter
EP0285070B1 (en) Capacitance measuring circuit
US6404222B1 (en) Chip capacitance measurement circuit
CN107543958B (en) Device for current measurement or calibration and associated method
US6501283B2 (en) Circuit configuration for measuring the capacitance of structures in an integrated circuit
CN111307314B (en) Circuit and method for detecting temperature of semiconductor chip
US6870373B2 (en) Circuit configuration and method for assessing capacitances in matrices
US8432174B2 (en) Interrogation circuit for a nanowire sensor array and a method for interrogating a nanowire sensor array
US6549029B1 (en) Circuit and method for measuring capacitance
CN105652099A (en) Micro capacitance difference detection method based on switching circuit
US5602487A (en) Capacitance measuring device
US20030001185A1 (en) Circuit configuration and method for determining a time constant of a storage capacitor of a memory cell in a semiconductor memory
US6756792B2 (en) Apparatus for measuring parasitic capacitances on an integrated circuit
US6731129B1 (en) Apparatus for measuring capacitance of a semiconductor device
JPS6341040A (en) Semiconductor integrated circuit device
JP2001512836A (en) Method for determining very small capacitances and sensors envisaged thereby
US11726052B2 (en) Capacitive sensor
JPS6232372A (en) Capacity measuring method
US20220317164A1 (en) Measuring voltage level of a voltage node utilizing a measurement integrated circuit
US20230288467A1 (en) Electrostatic charge sensor with high impedance contact pads
JP3311309B2 (en) Evaluation method of semiconductor device
JP3096189B2 (en) Wiring capacitance measurement method
JPH06118152A (en) Integrated magnetic detector for self-compensating offset voltage
JP3126846B2 (en) Method for measuring gate capacitance and measurement circuit used for the method
JPH0465988B2 (en)