JPH01205445A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01205445A
JPH01205445A JP3024388A JP3024388A JPH01205445A JP H01205445 A JPH01205445 A JP H01205445A JP 3024388 A JP3024388 A JP 3024388A JP 3024388 A JP3024388 A JP 3024388A JP H01205445 A JPH01205445 A JP H01205445A
Authority
JP
Japan
Prior art keywords
wiring layer
metal
layer
wiring
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3024388A
Other languages
Japanese (ja)
Inventor
Shuji Kishi
岸 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3024388A priority Critical patent/JPH01205445A/en
Publication of JPH01205445A publication Critical patent/JPH01205445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent short-circuit and disconnection due to the oozing out and defect of internal wiring, by forming a metal wiring layer in a semiconductor device wherein a plurality of semiconductor elements are connected with the metal wiring layer, by using metal whose main element is aluminum, and coating its side wall with a metal film of large elastic limit. CONSTITUTION:By thermal oxidizing method, an oxide film is formed on a P-type silicon substrate 1. By metal deposition method Al is deposited on the whole surface. By using photolithography method and dry-etching method, the Al deposition layer is selectively eliminated, and a resist layer 5 and an Al wiring layer 3 are formed. By non-electrolytic plating method, a nickel film 6 is formed on the side surface of the Al wiring layer 3. The resist layer 5 is eliminated, and an oxide film for insulation between the wiring layers and protection of P-type silicon surface is grown to form an insulating film 4 by CVD method. If necessary, the adhesive property of the nickel film 6 and the Al wiring layer 3 is increased by heat treatment at 400-450 deg.C. By forming in this manner, the nickel film of large elastic limit on the side surface of Al wiring layer, the short-circuit and disconnection of wiring due to the oozing out and defect of Al wiring layer can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に半導体装置の金属配線
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to metal wiring of a semiconductor device.

〔従来の技術〕[Conventional technology]

従来、半導体装置の集積度か高まるにつれて、配線の間
隔及び幅か益々狭くなってきている。このように高密度
化された各半導体素子間の配線材料として安価で、加工
し易いアルミニウムもしくはアルミニウム合金か用いら
れている。
Conventionally, as the degree of integration of semiconductor devices increases, the spacing and width of interconnections have become narrower. Aluminum or aluminum alloy, which is inexpensive and easy to process, is used as a wiring material between each of the highly dense semiconductor elements.

第2図は従来の半導体装置の一例を示す半導体チップの
断面図である。これは半導体基板」−に金属配線層を設
けた例で、P型シリコン基板1」−に酸化M2か形成さ
れており、その」二に金属蒸着法にLり二つのアルミニ
ウム配線層3か平行に形成されている。また、アルミニ
ウム配線層3及び酸化膜4の上には、配線層間の絶縁及
びP型シリコン基板1の表面を保護するようにCVD法
により絶縁膜4か形成されている。この例の配線層3の
幅は2μm以下、配線層3の間隔は1μm以下という非
常に狭い設計仕様である。
FIG. 2 is a cross-sectional view of a semiconductor chip showing an example of a conventional semiconductor device. This is an example in which a metal wiring layer is provided on a semiconductor substrate, in which a P-type silicon substrate 1 is formed with oxidized M2, and two aluminum wiring layers 3 are formed in parallel using a metal vapor deposition method. is formed. Further, an insulating film 4 is formed on the aluminum wiring layer 3 and the oxide film 4 by the CVD method so as to insulate between the wiring layers and protect the surface of the P-type silicon substrate 1. In this example, the width of the wiring layer 3 is 2 μm or less, and the interval between the wiring layers 3 is 1 μm or less, which is a very narrow design specification.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した半導体装置では、数千時間の使用て内部の配線
か短絡もし7くは断線を起すという問題かある 第3図は半導体装置の内部の配線層の短絡及び断線に至
る状態を説明するだめの配線層の」−面図である。アル
ミニウム配線層3の1−7にある絶縁膜4は通常CV 
D法により酸化膜として形成されるので、この酸化膜の
改質はアルミニウム配線層3の上面は緻密に、側面は粗
に作られる。従って、アルミニウム配線層3の上面には
圧縮応力、側面には引張応力か作用したままとなる。こ
の状態が長時間続くと、圧縮応力のかかっている部分と
引張応力のかかっている部分との境界でクリープ現象を
引起し、この境界からしみ出し6及び欠落5か発生し、
]00’C以」二の周囲温度によりさらに加速され、し
み出し6か成長し、ついには隣接のアルミニウム配線層
3に接触したり、または欠落5が進行しアルミニウム配
線層3か断線するという問題か起きる。
In the above-mentioned semiconductor device, there is a problem that the internal wiring may short-circuit or break after several thousand hours of use. Figure 3 shows a situation that can lead to a short-circuit or break in the internal wiring layer of a semiconductor device. 2 is a plan view of the wiring layer of FIG. The insulating film 4 on 1-7 of the aluminum wiring layer 3 is usually CV
Since it is formed as an oxide film by the D method, the oxide film is modified so that the top surface of the aluminum wiring layer 3 is dense and the side surfaces are rough. Therefore, compressive stress remains on the top surface of the aluminum wiring layer 3, while tensile stress remains on the side surface. If this state continues for a long time, a creep phenomenon will occur at the boundary between the compressive stress area and the tensile stress area, and seepage 6 and chipping 5 will occur from this boundary.
] The problem is that the seepage 6 grows further due to the ambient temperature of 00'C or higher, and eventually comes into contact with the adjacent aluminum wiring layer 3, or the chipping 5 progresses and the aluminum wiring layer 3 is disconnected. Or wake up.

本発明の目的は、内部配線のしみ出し、欠落による短絡
及び断線か起きない半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device that does not cause short circuits or disconnections due to seepage or missing internal wiring.

〔課題を解決するだめの手段」 本発明の半導体装置は、−導電型半導体基板の一主面上
に複数グ)半導体素子を形成し、前記複数の半導体素子
を金属配線層で接続してなる半導体装置において、前記
金属配線層とし2てアルミニウムを主元素とする金属で
形成し、且つ少なくとも前記金属配線層の側壁かアルミ
ニウムより大きい弾性限度の金属膜て被覆されているこ
とを片んて暢成される。
[Means for Solving the Problems] The semiconductor device of the present invention comprises - forming a plurality of semiconductor elements on one principal surface of a conductive type semiconductor substrate, and connecting the plurality of semiconductor elements with a metal wiring layer. In the semiconductor device, it is clear that the metal wiring layer 2 is formed of a metal whose main element is aluminum, and that at least a side wall of the metal wiring layer is covered with a metal film having an elastic limit greater than that of aluminum. will be accomplished.

〔実施例」 次に、本発明について図面を参照して説明する。〔Example" Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(C)は本発明の一実施例を説明するだ
めの半導体チップの断面図である。まず、第1−図(a
)に示すように、P型シリコン基板1の上に熱酸化法に
より酸化膜2を形成する。
FIGS. 1A to 1C are cross-sectional views of a semiconductor chip for explaining an embodiment of the present invention. First, Figure 1 (a
), an oxide film 2 is formed on a P-type silicon substrate 1 by thermal oxidation.

次に、金属蒸着法により全面にアルミニウムを蒸着し、
ホI〜リソクラフィ法及び1〜ライエツチンク法を用い
て、アルミニウム蒸着層を選択的に取除き、レジスト層
5とアルミニウム配線層3を形成する。次に、第1図り
1))に示すように、無電界めっき法によりアルミニウ
ム配線層3の側面にニッケル膜6を形成する、このニッ
ケル膜6の厚さは、アルミニウム配線層3の厚さか1μ
m前後のとき、01〜02μmに形成すればよい。また
、アルミニウム配線層3の−Lにはレジスト層5かある
ため、めっきされることはないか、レシス1〜層5を除
去して、アルミニウム配線層3の上にもニッケルめっき
膜が形成されてもよい。次に、第1−図<c>に示ずよ
うに、レジス1へ層5を取除き、CV D法により配線
層間の絶縁及びP型シリコン表面保護のための酸化膜を
成長さぜ絶縁膜4を形成する。また、必要に応して、4
00〜450°C程度の温度で熱処理して、ニッケル膜
6とアルミニウム配線層3との密着性をより強化する。
Next, aluminum is deposited on the entire surface using a metal vapor deposition method,
The aluminum vapor deposited layer is selectively removed using the lithography method and the lithography method to form the resist layer 5 and the aluminum wiring layer 3. Next, as shown in the first diagram 1)), a nickel film 6 is formed on the side surface of the aluminum wiring layer 3 by electroless plating.
When the thickness is around m, it may be formed to have a thickness of 01 to 02 μm. Also, since there is a resist layer 5 on -L of the aluminum wiring layer 3, it may not be plated, or a nickel plating film may be formed on the aluminum wiring layer 3 by removing resists 1 to 5. You can. Next, as shown in Figure 1 <c>, layer 5 is removed from resist 1, and an oxide film is grown by CVD to insulate between wiring layers and protect the P-type silicon surface. form 4. In addition, if necessary, 4
The adhesion between the nickel film 6 and the aluminum wiring layer 3 is further strengthened by heat treatment at a temperature of about 00 to 450°C.

〔発明の効果〕〔Effect of the invention〕

以」−説明したように本発明により、アルミニウム配線
層の側面に弾性限度のより大きいニッケル膜を形成する
ことによって前述のアルミニウム配線層のしみ出し及び
欠落による配線の短絡及び断線の起きない半導体装置か
得られるという効果かある。
- As explained above, the present invention provides a semiconductor device in which short-circuits and disconnections of wiring due to the above-mentioned seepage and chipping of the aluminum wiring layer do not occur by forming a nickel film with a higher elastic limit on the side surface of the aluminum wiring layer. There is an effect that you can get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明の一実施例を説明するだ
めの半導体チップの断面図、第2図は従来の半導体装置
の一例を示す半導体チップの断面図、第3図は半導体装
置の内部の配線層の短絡及び断線に至る状態を説明する
だめの配線層の上面図である。 1・・P型シリコン基板、2・酸化膜、3・・アルミニ
ウム配線層、4・・絶縁膜、5・・レシスI−層、6・
・ニッケル膜。
FIGS. 1(a) to (C) are cross-sectional views of a semiconductor chip for explaining an embodiment of the present invention, FIG. 2 is a cross-sectional view of a semiconductor chip showing an example of a conventional semiconductor device, and FIG. FIG. 2 is a top view of a useless wiring layer illustrating a state in which a wiring layer inside a semiconductor device is short-circuited and disconnected. 1. P-type silicon substrate, 2. Oxide film, 3. Aluminum wiring layer, 4. Insulating film, 5. Resis I-layer, 6.
・Nickel film.

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板の一主面上に複数の半導体素子を
形成し、前記複数の半導体素子を金属配線層で接続して
なる半導体装置において、前記金属配線層としてアルミ
ニウムを主元素とする金属で形成し、且つ少なくとも前
記金属配線層の側壁がアルミニウムより大きい弾性限度
の金属膜で被覆されていることを特徴とする半導体装置
In a semiconductor device in which a plurality of semiconductor elements are formed on one principal surface of a semiconductor substrate of one conductivity type, and the plurality of semiconductor elements are connected by a metal wiring layer, the metal wiring layer is made of a metal whose main element is aluminum. and at least a side wall of the metal wiring layer is coated with a metal film having an elastic limit greater than that of aluminum.
JP3024388A 1988-02-10 1988-02-10 Semiconductor device Pending JPH01205445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024388A JPH01205445A (en) 1988-02-10 1988-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024388A JPH01205445A (en) 1988-02-10 1988-02-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01205445A true JPH01205445A (en) 1989-08-17

Family

ID=12298266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024388A Pending JPH01205445A (en) 1988-02-10 1988-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01205445A (en)

Similar Documents

Publication Publication Date Title
JPH01205445A (en) Semiconductor device
JPH01108748A (en) Semiconductor device having multilayer interconnection structure
JPH11204530A (en) Semiconductor element and preventing method of crack generated in insulating layer of semiconductor element
JPS61289649A (en) Manufacture of semiconductor device
JPH03237745A (en) Semiconductor device
JP2605524B2 (en) Thin film multilayer circuit board
JPH041731Y2 (en)
JPS62137853A (en) Formation of multilayer interconnection
JPS61112349A (en) Semiconductor integrated circuit device
JP3039163B2 (en) Method for manufacturing semiconductor device
JPS57152144A (en) Semiconductor device
JPS6347952A (en) Semiconductor device
JPS61287151A (en) Semiconductor device
JPS61280636A (en) Manufacture of semiconductor device
JPH01115144A (en) Semiconductor device
JPS61114559A (en) Semiconductor device
JPH0437186A (en) Thin film circuit device
JPS60192348A (en) Method for forming multilayer wiring of semiconductor integrated circuit
JPH02196428A (en) Semiconductor device
JPS62137850A (en) Manufacture of semiconductor device
JPS63268295A (en) Multilayer interconnection substrate
JPS61116869A (en) Manufacture of image sensor
JPS6126245A (en) Manufacture of semiconductor device
JPS63257268A (en) Semiconductor integrated circuit
JPS62140432A (en) Manufacture of semiconductor device