JPH01202823A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01202823A
JPH01202823A JP63027932A JP2793288A JPH01202823A JP H01202823 A JPH01202823 A JP H01202823A JP 63027932 A JP63027932 A JP 63027932A JP 2793288 A JP2793288 A JP 2793288A JP H01202823 A JPH01202823 A JP H01202823A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
transparent conductive
conductive film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63027932A
Other languages
Japanese (ja)
Other versions
JP2646614B2 (en
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2793288A priority Critical patent/JP2646614B2/en
Publication of JPH01202823A publication Critical patent/JPH01202823A/en
Application granted granted Critical
Publication of JP2646614B2 publication Critical patent/JP2646614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the number of steps by exposing a substrate with gas containing hydrogen, such as hydrogen gas or methanol of a plasma state in the case of patterning a transparent conductive film, or a gas atmosphere containing halogen element, such as chlorine gas or carbon tetrachloride. CONSTITUTION:When a transparent conductive film 107 is formed on an interlayer insulating film 106, it is exposed in an atmosphere of gas containing hydrogen gas or methanol of plasma state or halogen element, such as chlorine gas or carbon tetrachloride, etc. For example, when the substrate is exposed in hydrogen gas of plasma state, the film (ITO) 107 of a part not covered with a resist 108 is reduced, and hydrogen is exposed into a polycrystal or amorphous silicon formed of source, drain electrodes 102 and a gate insulating film 104. The ITO 107 is removed with the mixture solution of chloric acid and nitric acid, the resist 108 is removed, thereby forming a thin film transistor with the hydrogen added into the polycrystal or amorphous silicon. Thus, the number of manufacturing steps is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多結晶シリ゛コンもしくは非晶質シリコンより
成る薄膜トランジスタ(以下T?Tと示す)及び透明導
電膜(例えば工TO)による配線パターンを同一基板上
に有する半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a thin film transistor (hereinafter referred to as T?T) made of polycrystalline silicon or amorphous silicon and a wiring pattern made of a transparent conductive film (for example, TO). The present invention relates to a method of manufacturing a semiconductor device having on the same substrate.

〔従来の技術〕[Conventional technology]

従来の、多結晶もしくは非晶質シリコン’I’lFTを
用いた半導体装置は、配線に透明導電膜を有する場合、
水素ガスもしくは水素を含有するガスもしくはハロゲン
元素を含有するガスのプラズマ雰囲気中に基板を浸す工
程を行う場合は、透明導電膜の形成以前に該工程を行っ
ていた。なぜなら、透明導電膜形成以降に該工程を行え
ば、透明導電膜(例えば′xTO)が還元されたり、エ
ツチングされたりする為である。
When a conventional semiconductor device using polycrystalline or amorphous silicon 'I'lFT has a transparent conductive film in the wiring,
When performing a step of immersing the substrate in a plasma atmosphere of hydrogen gas, a gas containing hydrogen, or a gas containing a halogen element, this step is performed before forming the transparent conductive film. This is because if this step is performed after the transparent conductive film is formed, the transparent conductive film (for example, 'xTO) will be reduced or etched.

前記プラズマ状態のガス雰囲気中に基板を浸す理由は、
多結晶もしくは非晶質シリコン中の未結合手に水素もし
くはハロゲン元素を結合させる為であり、この様にすれ
Id T ? Tの特性が向上(オン電流増大、オフ電
流減少)する事は周知の事実である。
The reason for immersing the substrate in the gas atmosphere in the plasma state is as follows.
This is to bond hydrogen or halogen elements to dangling bonds in polycrystalline or amorphous silicon, and in this way Id T ? It is a well-known fact that the characteristics of T improve (increase on-state current, decrease in off-state current).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来例においては、プラズマ状態のガス雰囲気中に
基板を浸す工程と、透明導電膜をパターニングする工程
は別々であった。透明導電膜が工TOの場合、バターニ
ングにはウェットエツチング(塩酸と硝酸の混合液等を
用いる)とドライエツチング(アルコールガス、もしく
は四塩化炭素等を用いる)の方法があるが、前述のガス
プラズマ工程と合わせて考えれば2度手間であった。
In the conventional example described above, the step of immersing the substrate in a gas atmosphere in a plasma state and the step of patterning the transparent conductive film were separate. When the transparent conductive film is processed TO, there are two methods of buttering: wet etching (using a mixture of hydrochloric acid and nitric acid, etc.) and dry etching (using alcohol gas or carbon tetrachloride, etc.). Considering this together with the plasma process, it was twice as much work.

本発明は以上の問題点を解決するもので、その目的とす
るところは、高性能なTIFTを用いた半導体装置の、
工程数を軽減することにある。
The present invention is intended to solve the above problems, and its purpose is to provide a semiconductor device using high performance TIFT.
The goal is to reduce the number of steps.

〔課題を解決するための手段〕[Means to solve the problem]

以上の問題点を解決するため、本発明はd間溝電膜のバ
ターニングの際、プラズマ状態の水素ガスもしくはメタ
ノールの如き水素を含有するガス、もしくは塩素ガスも
しくは四塩化炭素の如き/)ロゲン元素を含むガス雰囲
気中に基板を浸す工程を有することを特徴とする。
In order to solve the above problems, the present invention uses hydrogen gas in a plasma state, a hydrogen-containing gas such as methanol, or a chlorine gas such as chlorine gas or carbon tetrachloride, when buttering a d-groove electrical film. The method is characterized by a step of immersing the substrate in a gas atmosphere containing elements.

〔実施例〕〔Example〕

第1図に本発明の製造方法を用いた半導体装置の断面図
を示す。同図(α)は眉間絶縁膜形成時、同図(b)は
透明導電膜上のレジスト形成時、同図(C)は透明導電
膜のバターニング終了時の半導体装置の断面図である。
FIG. 1 shows a cross-sectional view of a semiconductor device using the manufacturing method of the present invention. FIG. 5(α) is a cross-sectional view of the semiconductor device when the glabella insulating film is formed, FIG. 2(b) is when the resist is formed on the transparent conductive film, and FIG.

同図(α)において、101は絶縁基板、102はTP
Tのソース・ドレイン電極部、103はTPTのチャネ
ル部℃あり、1d2及び103は多結晶もしくは非晶質
シリコンで形成される。104は酸化シリコン等による
ゲート絶縁膜、105は多結晶シリコン等により形成さ
れるゲート電極、106は酸化シリコン等による層間絶
縁膜である。ここまでの製造方法の一例を示すと、絶縁
基板101上に多結晶(非晶質)シリコン薄膜を形成し
、バターニングし、熱酸化法でゲート絶縁@104を形
成する。
In the same figure (α), 101 is an insulating substrate, 102 is a TP
A source/drain electrode portion 103 of the TPT is a channel portion of the TPT, and 1d2 and 103 are formed of polycrystalline or amorphous silicon. 104 is a gate insulating film made of silicon oxide or the like, 105 is a gate electrode made of polycrystalline silicon or the like, and 106 is an interlayer insulating film made of silicon oxide or the like. To show an example of the manufacturing method up to this point, a polycrystalline (amorphous) silicon thin film is formed on an insulating substrate 101, buttered, and a gate insulator @104 is formed by a thermal oxidation method.

そしてゲート電極105を形成した後、イオン打込法で
ソース・ドレイン*極102を形成し、CVD法で眉間
絶縁膜106を形成する。第1図(b)において107
は透明導電膜(例えば工TO)、108はレジストであ
る。層間絶縁@106上にスパッタ法等で透明溝を膜1
07を形成し、パターニング用にレジスト108を形成
する。そして、本発明に於いては、ここでプラズマ状態
の水素ガスもしくはメタノール等の水素を含有するガス
、もしくは塩素ガスもしくは四塩化炭素等のハロゲン元
素を含有するガスの雰囲気中に第1図(b)の状態の半
導体装置を浸す。例えばプラズマ状態の水素ガス中に基
板を浸した場合は、レジスト108に覆われていない部
分の透明導電膜S工To)107は還元され、黒変する
。これと同時に水素は102及び104で構成される多
結晶もしくは非晶質シリコン内部に浸透する。そして黒
変した工TO107を、塩酸と硝酸の混合液で取シ除き
、レジスト108を剥離すれば第1図(C)の如き構造
が形成され、多結晶もしく昏ま非晶質シリコン中に充分
水素が添加されtこTIFTが実現される。水素プラズ
マ状態の条件によって&家しジスト108が損傷し、透
明導電膜107が残らない状態となるが、レジスト10
8の代わりに金属(例えばクロムの如きもの)を用いれ
ば、完全に第1図(C)の如き構造が形成される。プラ
ズマ状態のガスにメタノールを用いた場合は工T。
After forming the gate electrode 105, the source/drain electrode 102 is formed by ion implantation, and the glabellar insulating film 106 is formed by CVD. 107 in Figure 1(b)
108 is a transparent conductive film (eg, TO), and 108 is a resist. Transparent grooves are formed on the interlayer insulation @106 by sputtering method etc. Film 1
07 is formed, and a resist 108 for patterning is formed. In the present invention, in an atmosphere of hydrogen gas in a plasma state, a hydrogen-containing gas such as methanol, or a gas containing a halogen element such as chlorine gas or carbon tetrachloride, as shown in FIG. ) immerse the semiconductor device in the condition. For example, when the substrate is immersed in hydrogen gas in a plasma state, the portion of the transparent conductive film 107 not covered with the resist 108 is reduced and turns black. At the same time, hydrogen penetrates into the polycrystalline or amorphous silicon formed by 102 and 104. Then, the blackened TO 107 is removed with a mixture of hydrochloric acid and nitric acid, and the resist 108 is peeled off to form a structure as shown in Figure 1 (C). Sufficient hydrogen is added to realize TIFT. Depending on the conditions of the hydrogen plasma state, the resist 108 is damaged and no transparent conductive film 107 remains.
If a metal (for example, chromium) is used in place of 8, the structure as shown in FIG. 1(C) is completely formed. If methanol is used as the gas in the plasma state, it is T.

がエツチングされる為、その後レジスト108を剥離す
るだけでTIFTに十分水素が添加された、第1図(C
)の如き構造が実現される。プラズマ状態のガスにハロ
ゲン元素を含む物質を用いた場合も同様で、多結晶もし
くは非晶質シリコンに充分ハロゲン元素が添加されたT
PTをもつ、第1図CC)の構造が実現される。
As shown in Figure 1 (C
) is realized. The same is true when a substance containing a halogen element is used as the gas in the plasma state.
The structure of FIG. 1 CC) with PT is realized.

第1図の構造から光電変換素子を形成した、固体撮像装
置の断面図を第2図に示す。同図において、第1図と同
一の記号は第1図と同一のものを表わす。201は非晶
質シリコン等の光電変換材料、202はアルミニウム等
の配線材料である。
FIG. 2 shows a cross-sectional view of a solid-state imaging device in which a photoelectric conversion element is formed from the structure shown in FIG. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1. 201 is a photoelectric conversion material such as amorphous silicon, and 202 is a wiring material such as aluminum.

第1m<c>の構造から非晶質シリコンを堆積及びパタ
ーニングし、眉間絶縁膜106にスルーホールを開け、
アルミニウムを蒸着及びパターニングすれば、第2図の
如き構造の、絶縁基板側から光を入射する型の固体撮像
装置が実現される。
Depositing and patterning amorphous silicon from the structure of the first m<c>, opening a through hole in the glabella insulating film 106,
By vapor-depositing and patterning aluminum, a solid-state imaging device of the type shown in FIG. 2, in which light enters from the insulating substrate side, can be realized.

第3図に、本発明の製造方法を用いた液晶表示装置用基
板の断面図を示す。同図において第1図と同一の記号は
第1図と同一のものを表わす。まずTNTを形成し、眉
間絶縁膜106にスルーホールを形成した後、透明導電
膜を形成する。そして第1図における実施例と同様に、
パターニング時のレジスト形成後、プラズマガス雰囲気
中に浸し、レジスト剥離すれば第3図の如き構造が形成
出来る。
FIG. 3 shows a cross-sectional view of a substrate for a liquid crystal display device using the manufacturing method of the present invention. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1. First, TNT is formed, a through hole is formed in the glabella insulating film 106, and then a transparent conductive film is formed. And similar to the embodiment in FIG.
After forming a resist during patterning, the structure as shown in FIG. 3 can be formed by immersing it in a plasma gas atmosphere and peeling off the resist.

また本発明は、第1〜5図における絶縁基板101を、
絶縁体薄膜を介して素子のある半導体装置に置き換える
ことにより、3次元ICにも適用出来る。
Further, the present invention provides that the insulating substrate 101 in FIGS. 1 to 5 is
It can also be applied to a three-dimensional IC by replacing it with a semiconductor device with elements through an insulating thin film.

この様に、本発明は多結晶もしくは非晶質シリコンより
成るTNTと、透明導電膜による配線を康ね備えたあら
ゆる半導体装置に適用出来る。
In this way, the present invention can be applied to any semiconductor device equipped with TNT made of polycrystalline or amorphous silicon and wiring made of a transparent conductive film.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明を用いることにより、高性能なT
IFTを用いた半導体装置の製造工程数が軽減される。
As described above, by using the present invention, high-performance T
The number of manufacturing steps for a semiconductor device using IFT is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)〜CC)は本発明の製造方法を用いた半導
体装置の断面図。同図(α)(A)(C)はそれぞれ層
間絶縁膜形成時、透明導電膜上のレジスト形成時、透明
導電膜のパターニング終了時の断面図。 第2図は、第1図の構造から光電変換素子を形成した、
固体撮像装置の断面図。 第3図は本発明の製造方法を用いた液晶表示装置用基板
の断面図。 101・・・・・・絶縁基板 102・・・・・・TIFTのソース・ドレイン電極部
103・・・・・・TPTのチャネル部104・・・・
・・ゲート絶縁膜 105・・・・・・TIFTのゲート電極106・・・
・・・層間絶縁膜 107・・・・・・透明導電膜 108・・・・・・レジスト /## ・−・ レジ゛スト 第1図
FIGS. 1(α) to CC) are cross-sectional views of a semiconductor device using the manufacturing method of the present invention. (α), (A), and (C) are cross-sectional views at the time of forming an interlayer insulating film, the time of forming a resist on a transparent conductive film, and the end of patterning of a transparent conductive film, respectively. FIG. 2 shows a photoelectric conversion element formed from the structure shown in FIG.
A cross-sectional view of a solid-state imaging device. FIG. 3 is a sectional view of a substrate for a liquid crystal display device using the manufacturing method of the present invention. 101... Insulating substrate 102... TIFT source/drain electrode part 103... TPT channel part 104...
...Gate insulating film 105...Gate electrode 106 of TIFT...
...Interlayer insulating film 107...Transparent conductive film 108...Resist/## ---Resist Fig. 1

Claims (1)

【特許請求の範囲】[Claims]  同一基板上に少なくとも、多結晶シリコンもしくは非
晶質シリコンより成る薄膜トランジスタ及び透明、導電
膜による配線パターンを有する半導体装置の製造方法に
おいて、前記透明導電膜のパターニングの際プラズマ状
態の、水素ガスもしくはメタノールの如き水素を含有す
るガス、もしくは塩素ガスもしくは四塩化炭素の如きハ
ロゲン元素を含有するガス雰囲気中に基板を浸す工程を
有することを特徴とする、半導体装置の製造方法。
In a method for manufacturing a semiconductor device having at least a thin film transistor made of polycrystalline silicon or amorphous silicon and a wiring pattern made of a transparent conductive film on the same substrate, hydrogen gas or methanol in a plasma state is used during patterning of the transparent conductive film. 1. A method for manufacturing a semiconductor device, comprising the step of immersing a substrate in a gas atmosphere containing hydrogen, such as hydrogen, or a gas atmosphere containing a halogen element, such as chlorine gas or carbon tetrachloride.
JP2793288A 1988-02-09 1988-02-09 Method for manufacturing semiconductor device Expired - Lifetime JP2646614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2793288A JP2646614B2 (en) 1988-02-09 1988-02-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2793288A JP2646614B2 (en) 1988-02-09 1988-02-09 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1290897A Division JP2692678B2 (en) 1997-01-27 1997-01-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01202823A true JPH01202823A (en) 1989-08-15
JP2646614B2 JP2646614B2 (en) 1997-08-27

Family

ID=12234667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2793288A Expired - Lifetime JP2646614B2 (en) 1988-02-09 1988-02-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2646614B2 (en)

Also Published As

Publication number Publication date
JP2646614B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
JPS6010773A (en) Method of forming 1-element fet-memory capacitor circuit
KR960030351A (en) Semiconductor device manufacturing method
JPS60201666A (en) Semiconductor device
US3634204A (en) Technique for fabrication of semiconductor device
JPS5544713A (en) Semiconductor device
JPS6430272A (en) Thin film transistor
JPH01202823A (en) Manufacture of semiconductor device
US4216573A (en) Three mask process for making field effect transistors
JPS61263273A (en) Manufacture of thin film semiconductor device
JP2001102590A (en) Method for fabrication of semiconductor device
JP2864658B2 (en) Method for manufacturing thin film transistor
JP2692678B2 (en) Method for manufacturing semiconductor device
JPS5834943A (en) Semiconductor device and manufacture thereof
JPS62221159A (en) Formation of thin film transistor matrix
JPS61231767A (en) Manufacture of active matrix substrate
JPS61164267A (en) Manufacture of thin film transistor
JPS6441245A (en) Manufacture of semiconductor device
JPS59150478A (en) Thin film circuit device
JPH0918007A (en) Thin film transistor and manufacture thereof
JPS63114211A (en) Manufacture of semiconductor device
JPH01100971A (en) Manufacture of semiconductor device
JPS5814575A (en) Manufacture of thin film transistor
JPS62130559A (en) Manufacture of integrated circuit element
KR980006371A (en) Method for manufacturing capacitor of semiconductor device
JPS5637679A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11