JPH01201321A - Matrix resin composition - Google Patents

Matrix resin composition

Info

Publication number
JPH01201321A
JPH01201321A JP63022850A JP2285088A JPH01201321A JP H01201321 A JPH01201321 A JP H01201321A JP 63022850 A JP63022850 A JP 63022850A JP 2285088 A JP2285088 A JP 2285088A JP H01201321 A JPH01201321 A JP H01201321A
Authority
JP
Japan
Prior art keywords
resin
weight
parts
component
matrix resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63022850A
Other languages
Japanese (ja)
Other versions
JP2604778B2 (en
Inventor
Taketoshi Kamase
鎌瀬 武寿
Mikio Shima
美樹男 島
Mikito Maki
牧 幹人
Sakanori Ito
栄記 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12094193&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01201321(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP63022850A priority Critical patent/JP2604778B2/en
Priority to CN89100628A priority patent/CN1031718C/en
Priority to KR1019890001277A priority patent/KR890013120A/en
Publication of JPH01201321A publication Critical patent/JPH01201321A/en
Application granted granted Critical
Publication of JP2604778B2 publication Critical patent/JP2604778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Abstract

PURPOSE:To obtain the title matrix resin composition well balanced between heat resistance and elongation and improved in resin flow-out resistance during molding by curing as a carbon fiber reinforced plastic, by constituting it from three specified types of epoxy resins and dicyandiamide. CONSTITUTION:A matrix resin composition is formed by mixing 10-70pts.wt., desirably, 20-50pts.wt. cresol novolac epoxy resin (A) (e.g., ECN-1273, a product of Japan Ciba-Geigy) is mixed with 10-70pts.wt., desirably, 20-50pts.wt. bisphenol epoxy resin (B) (e.g., Araldite 6071, a product of Japan Ciba-Geigy) and 3-40pts.wt., desirably, 5-20pts.wt. phenoxy resin or its epoxy-modified resin (C) (e.g., PKHM-30, a product of UCC), 1-10pts.wt., based on 100pts.wt. in total of A, B and C, dicyandiamide (D) and 1-10pts.wt. cure accelerator (E) (e.g., 3-(3,4-dichlorophenyl)-1,1-N-dimethylurea.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマトリックス樹脂組成物に係D、さらに詳しく
は耐熱性と伸度のバランスがとれ、かつ成形硬化時の耐
レジンフロー性に優れたコンポジット物性を得ることの
できる炭素繊維強化プラスチツク用樹脂組成物に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a matrix resin composition, more specifically, a matrix resin composition that has a good balance between heat resistance and elongation, and has excellent resin flow resistance during molding and curing. The present invention relates to a resin composition for carbon fiber-reinforced plastics that can provide composite physical properties.

〔従来の技術〕[Conventional technology]

炭素繊維は軽量であD、しかも高強度、高弾性率を有す
るため、樹脂との複合材として、いわゆるプリプレグの
形で、例えば釣竿、ゴルフクラブやバドミントンのシャ
フト等のスポーツレジャー用品、仮バネやハニカム構造
材等の工業材料、さらには自動車用、航空機用、或いは
医療材料用等の素材として、成形材料の分野で広(利用
されているのが現状である。
Because carbon fiber is lightweight, has high strength, and high modulus of elasticity, it is used as a composite material with resin in the form of so-called prepreg, for example, for sports leisure goods such as fishing rods, golf clubs and badminton shafts, temporary springs, etc. At present, it is widely used in the field of molding materials, including industrial materials such as honeycomb structural materials, as well as materials for automobiles, aircraft, and medical materials.

所で従来このような炭素繊維強化プラスチック(以下C
FRPと略す。)に用いられる樹脂組成としては、数多
くの特許が出願されている。そして主組成としては、例
えば特公昭60−58420号公報、或いは特公昭58
−167625号公報などに見られるように、フェノー
ルノボラック型エポキシ樹脂が50%以上、又はフェノ
ールノボラック型及びクレゾールノボラック型エポキシ
樹脂などのノボラック型エポキシ樹脂の混合物にビスフ
ェノールA型エポキシ樹脂が配合使用されるものが知ら
れている。所でこのようなCFRPは種々の製品に成形
する際、切削加工が行なわれ、その時の温度上昇に耐え
るため、通常150℃程度のガラス転n>A度(Tg)
が必要となる。そこで、耐熱性の良いノボラック型エポ
キシ樹脂を多(配合した樹脂組成物が従来用いられて来
た。しかしノボラック型エポキシ樹脂の割合が多いと成
形物が脆化してしまう1頃向がある。
However, conventionally, such carbon fiber reinforced plastics (hereinafter referred to as C
It is abbreviated as FRP. ) Many patents have been filed for resin compositions used in As for the main composition, for example, Japanese Patent Publication No. 60-58420 or Japanese Patent Publication No. 58
As seen in Publication No. 167625, 50% or more of phenol novolac type epoxy resin or bisphenol A type epoxy resin is mixed and used in a mixture of novolac type epoxy resins such as phenol novolac type and cresol novolac type epoxy resin. something is known. However, when such CFRP is molded into various products, it is subjected to cutting processing, and in order to withstand the temperature rise at that time, it is usually heated at a glass temperature of about 150°C (n>A degrees (Tg)).
Is required. Therefore, resin compositions containing a large amount of novolac-type epoxy resin with good heat resistance have been conventionally used. However, if the proportion of novolac-type epoxy resin is too high, the molded product tends to become brittle.

また、ノボラック型エポキシ樹脂の割合が多い樹脂組成
物で成形品を作ると、炭素繊維の配列方向が同一の場合
さほど問題は無いが、CFRPとして使用する場合、C
FRPが示す異方性を少な(する目的で繊維の配列方向
が0°/±45゛10°の如くなるのが普通である。所
がこのように積層した後硬化させると、繊維方向の違い
に起因する熱収縮の差に伴って応力が発生し、そのため
繊維が交叉する層間において剥離が生し、著しい場合は
クラ、りを発生する。これはノボラック型エポキシ樹脂
の割合が多い樹脂組成物の伸度がノボラック型エポキシ
樹脂の割合が少ない樹脂組成物と比べて低いためだと考
えられる。
In addition, when molded products are made from resin compositions with a high proportion of novolac type epoxy resin, there is no problem if the carbon fibers are aligned in the same direction, but when used as CFRP, C
In order to reduce the anisotropy exhibited by FRP, it is common for the fibers to be aligned in an angle of 0°/±45° or 10°. Stress is generated due to the difference in thermal contraction caused by the fibers, which causes peeling between layers where fibers intersect, and in severe cases, cracks and cracks occur.This is because resin compositions with a high proportion of novolac type epoxy resin This is thought to be because the elongation of the resin composition is lower than that of resin compositions containing a small proportion of novolac-type epoxy resin.

また、炭素繊維が持つ高強度かつ高※p性の特性を十分
に引き出すには、マトリックス樹脂はある程度の伸度が
必要である。
In addition, in order to fully bring out the high strength and high p property of carbon fiber, the matrix resin needs to have a certain degree of elongation.

これら樹脂の伸度を向上させる為に、例えばゴム質重合
体等を添加した樹脂組成が提案されているが、この様な
組成では、樹脂の伸度は向上するものの弾性率が低下し
たD、ガラス転移温度が降下し、前記した様に成形後の
2次加工時の耐熱性不足という問題が残ってしまう。
In order to improve the elongation of these resins, resin compositions containing, for example, rubbery polymers have been proposed. The glass transition temperature decreases, and as described above, the problem of insufficient heat resistance during secondary processing after molding remains.

又、ビスフェノールA(BPA)型、フェノールノボラ
ック(PN)型、クレゾールノボラック(CN)型エポ
キシ樹脂を1種、或いは2種以上を適当な割合で混合し
た樹脂を、ジシアンジアミドおよび硬化促進剤で、徐々
に熱を加え硬化する場合、最低粘度が低くなりすぎると
いう欠点がある。最低粘度が低すぎる樹脂を炭素繊維に
含浸させたプリプレグを用い、パイプ成形品を作る場合
、加熱硬化時に凍れ出る樹脂量が多(なる。
In addition, a resin obtained by mixing one or more of bisphenol A (BPA) type, phenol novolak (PN) type, and cresol novolac (CN) type epoxy resin in an appropriate ratio is gradually cured with dicyandiamide and a curing accelerator. When curing by applying heat, the disadvantage is that the minimum viscosity becomes too low. When making a pipe molded product using a prepreg in which carbon fiber is impregnated with a resin whose minimum viscosity is too low, a large amount of resin freezes out during heat curing.

流れ出る樹脂量が多いと、パイプ成形品の重量にばらつ
きが生じたD、炭素繊維と樹脂の分布が不均一となD、
この為著しい場合、パイプ成形品にそりが生じる。
If the amount of resin flowing out is large, the weight of the pipe molded product will vary (D), the distribution of carbon fiber and resin will be uneven (D)
For this reason, in severe cases, warpage occurs in the pipe molded product.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにCFRPのマトリックス樹脂については、伸
度の高いこと、および耐熱性が必要であること、成形品
の流出レジン量が少ない事が条件であった。
As described above, the conditions for the matrix resin of CFRP were that it should have high elongation, heat resistance, and the amount of resin flowing out of the molded product should be small.

しかしCFRPの成形品の脆化を防ぐためにマトリック
ス樹脂の伸度を上げる目的でゴム成分を添加すると、耐
熱温度が下がる。これとは逆に耐熱性を向上させれば、
マトリックス樹脂の脆化の原因となる。又、BPA型、
PN型、CN型エポキシ樹脂を単に混合使用するだけで
は、最低粘度が低くなり流出する樹脂量が増加し先述し
た様な問題が生じる1本発明はマトリックス樹脂組成物
を改良し、耐熱性を低下させる事なく、伸度が高く、し
かも加熱硬化時の最低粘度が高いという性能を有するマ
トリックス樹脂組成物を提供することを目的とするもの
である。
However, when a rubber component is added for the purpose of increasing the elongation of the matrix resin to prevent embrittlement of CFRP molded products, the heat resistance temperature decreases. On the other hand, if you improve heat resistance,
This causes embrittlement of the matrix resin. Also, BPA type,
Simply mixing and using PN-type and CN-type epoxy resins lowers the minimum viscosity and increases the amount of resin that flows out, causing the aforementioned problems.1 The present invention improves the matrix resin composition and reduces heat resistance. It is an object of the present invention to provide a matrix resin composition that has high elongation and a high minimum viscosity during heat curing without causing any viscosity.

(課題を解決するための手段) 本発明者らは、前記の目的を達成すべく鋭意検討を行っ
た結果、本発明を完成したものであって、その要旨とす
る所は下記A、B、C,D及びE成分を必須成分とし、
A、B及びC成分の総量100重量部に対してD成分を
1〜10重量部、E成分を1〜lO重量部配合してなる
マトリックス樹脂組成物にある。
(Means for Solving the Problem) The present inventors have completed the present invention as a result of intensive studies to achieve the above object, and the gist thereof is as follows: C, D and E components are essential components,
The matrix resin composition contains 1 to 10 parts by weight of component D and 1 to 10 parts by weight of component E, based on 100 parts by weight of the total amount of components A, B, and C.

但し A、クレゾールノボラック型エポキシ樹脂10〜70重
量部 B、ビスフェノールA型エポキシ樹脂 10〜70重量部 C,フェノキシ樹脂またはそのエポキシ変成樹脂のどち
らか一方、或いは両者の混合物3〜40重量部 D、ジシアンジ7ミド E、硬化促進剤 である、以下本発明の詳細な説明する。
However, A, 10 to 70 parts by weight of a cresol novolac type epoxy resin B, 10 to 70 parts by weight of a bisphenol A type epoxy resin C, 3 to 40 parts by weight of either a phenoxy resin or its epoxy modified resin, or a mixture of both D. Dicyandi-7mide E, which is a curing accelerator, will be described in detail below.

まず、本発明においてA成分として用いられるクレゾー
ルノボラック型エポキシ樹脂としては例えば市販品とし
て知られる日本チバガイギー■製のECN−1273、
ECN−1280、或いは住人化学工業■製のESCN
−220シリーズ、更にはこれら相当品を適宜選択して
用いることができる。これらエポキシ樹脂はいずれもエ
ボキン当量が小さく架橋密度が高くなるため、得られる
硬化後の成形体は弾性率ならびに耐熱性に優れた成形品
が得られる反面、過剰に用いた場合はいずれも成形体の
伸度を低下させ、脆化の原因となる。
First, as the cresol novolak type epoxy resin used as component A in the present invention, for example, ECN-1273 manufactured by Ciba Geigy Japan, which is known as a commercial product,
ECN-1280, or ESCN manufactured by Sumiya Chemical Industry ■
-220 series, or products equivalent to these can be appropriately selected and used. All of these epoxy resins have a small Evoquine equivalent and a high crosslinking density, so the resulting cured molded product has excellent elastic modulus and heat resistance, but if used in excess, the molded product It reduces the elongation and causes embrittlement.

そこでこのような特性を考慮して組成物中の配合量とし
て、A成分、B成分及びC成分の&8量のうち10〜7
0重量部、望ましくは20〜50重量部添加するもので
ある。A成分の樹脂が10重量部より少ないと充分な弾
性率或いは耐熱性をCFRP硬化体に付与することがで
きない、一方70重量部より多くなると、夫々のCFR
P硬化体の伸度が低下し、材質が脆化する。
Therefore, in consideration of such characteristics, the blending amount in the composition is 10 to 7 of the &8 amount of component A, component B, and component C.
It is added in an amount of 0 parts by weight, preferably 20 to 50 parts by weight. If the amount of resin as component A is less than 10 parts by weight, sufficient elastic modulus or heat resistance cannot be imparted to the cured CFRP body, while if it is more than 70 parts by weight, the respective CFR
The elongation of the P cured product decreases and the material becomes brittle.

又、B成分として用いられるビスフェノールA型エポキ
シ樹脂とは具体的にはエピコート828、エピコート8
34、エピコート1001、エピコート1004 (油
化シェルエポキシ■製)、アラルダイトCY2O5、C
Y230、GY250、GY260、アラルダイト60
71  (日本チハガイギーー製)などがあD、更には
これらの相当品を適宜選択して用いることができる。
In addition, the bisphenol A type epoxy resin used as component B is specifically Epicote 828 and Epicote 8.
34, Epicote 1001, Epicote 1004 (manufactured by Yuka Shell Epoxy ■), Araldite CY2O5, C
Y230, GY250, GY260, Araldite 60
71 (manufactured by Nippon Chiha Geigy Co., Ltd.), etc., and equivalent products thereof can be appropriately selected and used.

これらB成分であるビスフェノールA型エポキシ樹脂は
分子量の差によD、固形から液状までの種々のグレード
があD、プリプレグ用マトリックス樹脂に配合する場合
、適宜これらを混合する事により粘度調整を行う事がで
き、また硬化後の成形体の伸度もA成分であるノボラッ
ク型エポキシよりも高い。しかしながら耐熱性がおとる
。そこでB成分はA成分とB成分とC成分の総量のうち
10重量部から70重量部、望ましくは、20〜50重
量部を添加するものである。B成分の重量が10重量部
よりも少ないと十分な伸度が得られず、70重量部より
も多いと十分な耐熱性を付与する事ができない。
These bisphenol A type epoxy resins, which are component B, come in various grades from solid to liquid due to the difference in molecular weight. When blended into matrix resin for prepreg, the viscosity is adjusted by appropriately mixing these. Furthermore, the elongation of the molded product after curing is higher than that of the novolak type epoxy, which is component A. However, the heat resistance is poor. Therefore, component B is added in an amount of 10 to 70 parts by weight, preferably 20 to 50 parts by weight, out of the total amount of components A, B, and C. If the weight of component B is less than 10 parts by weight, sufficient elongation cannot be obtained, and if it is more than 70 parts by weight, sufficient heat resistance cannot be imparted.

次に、本発明に用いられるC成分であるフェノキシ樹脂
は線状高分子であD、エポキシ樹脂とも相溶性が良く又
、極性が大きくしかも分子中に水酸基のような官能基を
含有しておD、さらには分子量が高いことから粘度の温
度依存性が鈍く、先述したA+B成分に添加する事によ
D、最低粘度を上昇させることができるという特性をも
っているためプリプレグ用マトリックスとして良好な特
性を与える。
Next, the phenoxy resin which is component C used in the present invention is a linear polymer, has good compatibility with epoxy resins, is highly polar, and contains functional groups such as hydroxyl groups in the molecule. Furthermore, due to its high molecular weight, the temperature dependence of the viscosity is low, and by adding it to the above-mentioned A+B component, the minimum viscosity can be increased, making it a good property as a prepreg matrix. give.

これらA、B、C3成分を混合し、D、E成分にて硬化
を行った成形体は完全な三次元網目構造ではなく、架橋
高分子と線状高分子が絡み合う構造となD、得られた成
形体は、耐熱性に優れ、伸度も高く、しかも流出レジン
量が少ない事から均一な製品となる。
The molded product obtained by mixing these three components A, B, and C and curing with components D and E does not have a complete three-dimensional network structure, but a structure in which crosslinked polymers and linear polymers are entangled. The molded product has excellent heat resistance, high elongation, and has a small amount of resin flowing out, resulting in a uniform product.

又、成形体の使用状況に応じて例えば耐溶剤性が必要な
場・)には、フェノキシ樹脂をエポキシ変成した樹脂を
用いれば良い。エポキシ変成したフェノキシ樹脂を用い
たとしても、上述した優れた特性は変化しない、この場
合、C成分のどちらか一方、或いは両者を混合して用い
得ることはいうまでもない、C成分を添加したプリプレ
グ用のマトリックス樹脂の粘度の温度依存性は、A、 
B成分だけの混合樹脂よりも鈍くなる。
Depending on the usage conditions of the molded article, for example, when solvent resistance is required, a resin obtained by modifying a phenoxy resin with epoxy may be used. Even if an epoxy-modified phenoxy resin is used, the above-mentioned excellent properties do not change.In this case, it goes without saying that either one of the C components or a mixture of both can be used. The temperature dependence of the viscosity of the matrix resin for prepreg is A,
It becomes duller than a mixed resin containing only component B.

この事は、室温下でプリプレグを積層する場合、作業場
の2〜3℃程度の温度差に対しても粘度変化が少なく作
業性(タック性、ドレープ性)が変化しにくいという利
点を持つ。
This has the advantage that when prepregs are laminated at room temperature, the viscosity does not change much even with a temperature difference of about 2 to 3° C. in the workplace, and the workability (tackiness, drapeability) is less likely to change.

又、先述した様に加熱成形する場合、最低粘度が高く、
従来プリプレグで問題とされてきた流出レジンの量をC
成分の添加量により制御nする事ができる。この事によ
り成形品の重量をコントロールでき、品質管理上非常に
優位性をもっておD、又、C成分の添加量により流出す
るレジンのない、いわゆるノンブリードの成形品を得る
事も可能である。C成分の組成物中の配合量として、こ
れらA+B+C成分の総量100重量部のうち、C成分
は3〜40重量部、望ましくは5〜20重量部が必要で
ある。配合量が3重量部より少い場合、上記したような
効果は得られず、40重量部を越えると粘度が高くなD
、プリプレグ用マトリックス樹脂として使用不可能とな
る。なおここでC成分として用いられるフェノキシ樹脂
とは、平均分子量が通常10,000〜100.000
程度の高分子量エポキシ樹脂を指すものであD、具体的
な市販品としては、エビ]−ト0L−53−B−40゜
エピコート0L−55−840(油化シェルエポキン!
111製) 、DER684EK40 (ダウケミカル
■製)、フェノトートYP50EX40 (東部化成側
製’) 、PKHH,、PKHM−30(UCC■製)
等があD、更にはこれらの相当品を適宜選択して用いる
ことができる。
Also, as mentioned earlier, when heat forming, the minimum viscosity is high;
C
It can be controlled by adding the amount of the component. This makes it possible to control the weight of the molded product, which is very advantageous in terms of quality control, and also makes it possible to obtain a so-called non-bleed molded product without resin flowing out depending on the amount of components D and C added. The amount of component C to be blended in the composition is 3 to 40 parts by weight, preferably 5 to 20 parts by weight out of 100 parts by weight of the total amount of components A+B+C. If the amount is less than 3 parts by weight, the above-mentioned effects will not be obtained, and if it exceeds 40 parts by weight, the viscosity will be high.
, it becomes unusable as a matrix resin for prepreg. Note that the phenoxy resin used as component C here has an average molecular weight of usually 10,000 to 100.000.
It refers to a high molecular weight epoxy resin of approximately D. Specific commercially available products include Ebito 0L-53-B-40° Epicoat 0L-55-840 (Yuka Shell Epokin!
111), DER684EK40 (manufactured by Dow Chemical), Phenotote YP50EX40 (manufactured by Tobu Kasei), PKHH,, PKHM-30 (manufactured by UCC)
etc., and further equivalents thereof can be selected and used as appropriate.

次に上述したA、B、C成分からなるマトリックス樹脂
に対し、本発明においてはD成分としてジシアンジアミ
ドを硬化剤として、前記マトリックス樹脂A+B十C成
分の総ff1100重世部に対し1〜10重量部配合す
るものである。この場合、1重量部より少ないと硬化速
度が遅く、成形に時間を要し、一方10重量部より多い
と、積層プリプレグ成形体とした場合の層間せん断強度
等の特性が低下するようになる。
Next, for the matrix resin consisting of the above-mentioned A, B, and C components, in the present invention, dicyandiamide is used as a curing agent as the D component, and 1 to 10 parts by weight are added to the total ff 1100 parts of the matrix resin A + B + C components. It is to be blended. In this case, if it is less than 1 part by weight, the curing rate is slow and it takes time to mold, while if it is more than 10 parts by weight, the properties such as interlaminar shear strength when formed into a laminated prepreg molded product will deteriorate.

このD成分のジシアンジアミドは本発明においてE成分
とする硬化促進剤と併用することにより所望の効果を発
揮するものである。即ち、ジシアンジアミドの硬化促進
剤となりうる適当な化合物を併用することにより140
℃以下の低温硬化が可能となD、且つシェルフライフも
20℃で2ケ月以上を保つ事ができるようになる。この
ような硬化促進剤としては、イミタゾール誘導体、たと
えば四国化成工業■製のキュアゾール2P4MH71或
いはイミタゾールのカルボン酸塩や金属錯塩等、又は尿
素化合物、たとえば3− (3,4−ジクロロフェニル
)−1,1〜Nジメチル尿素等がE成分として優れた効
果を示すものである。この場合E成分のA+B+Cの樹
脂総量100重景重量対する配合量は1〜10重量部で
あって、1重量部より少ないとD成分硬化剤の硬化速度
を促進させることがむつかしく、10重量部より多いと
硬化成形体の強度が低下するようになる。
Dicyandiamide, component D, exhibits the desired effect when used in combination with the curing accelerator, component E, in the present invention. That is, by using a suitable compound that can act as a curing accelerator for dicyandiamide, 140
D can be cured at a low temperature of 20°C or lower, and has a shelf life of 2 months or more at 20°C. Such curing accelerators include imitazole derivatives, such as Curazole 2P4MH71 manufactured by Shikoku Kasei Kogyo 2, carboxylic acid salts and metal complex salts of imitazole, or urea compounds, such as 3-(3,4-dichlorophenyl)-1,1 -N dimethylurea and the like exhibit excellent effects as component E. In this case, the blending amount of component E, A+B+C, per 100 weight parts of the total resin amount is 1 to 10 parts by weight, and if it is less than 1 part by weight, it will be difficult to accelerate the curing speed of the component D curing agent, and if it is less than 10 parts by weight. If the amount is too large, the strength of the cured molded product will decrease.

本発明の組成物は以上述べたA、B、C,DおよびE成
分を必須とするものであるが、本発明においては必要に
より無水シリカ、顔料等を添加することもできる。
The composition of the present invention essentially requires the components A, B, C, D, and E described above, but in the present invention, anhydrous silica, pigments, etc. may be added as necessary.

又、本発明のマトリックス樹脂組成物と共に使用する炭
素繊維としてはレーヨン系、ポリアクリロニトリル系、
ピッチ系などのいずれの炭素繊維(広義には黒鉛繊維)
であっても差支えない。
Further, carbon fibers used with the matrix resin composition of the present invention include rayon-based, polyacrylonitrile-based,
Any carbon fiber such as pitch type (graphite fiber in a broad sense)
There is no problem even if it is.

〔実施例〕〔Example〕

以下実施例により本発明について更に詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

A成分のタレゾールノボランク型エポキシ樹脂として、
日本チバガイギーー製のECN−1273、B成分のビ
スフェノールA型エポキシ樹脂として、日本チバガイギ
ーー製のアラルダイト6071、油化シェルエポキシ■
製のエピコート828、C成分のフェノキシ樹脂として
はUCC■製のPKHM−30、D成分の硬化剤として
ジシアンジアミド(以下DTCY)、E成分の硬化促進
剤として3− (3,4−ジクロロフェニル)−1,1
〜Nジメチル尿素(以下D CM [+ )を夫々用い
、第1表に示す配合のプリプレグ用マトリックス樹脂組
成物を単純混合により得た。
As component A, Talesol novolank type epoxy resin,
ECN-1273 manufactured by Ciba Geigy Japan, Araldite 6071 manufactured by Ciba Geigy Japan as bisphenol A type epoxy resin as component B, oil-based shell epoxy ■
Epikote 828 manufactured by Manufacturer Co., Ltd., PKHM-30 manufactured by UCC ■ as the phenoxy resin for the C component, dicyandiamide (hereinafter referred to as DTCY) as the curing agent for the D component, and 3-(3,4-dichlorophenyl)-1 as the curing accelerator for the E component. ,1
~ N dimethyl urea (hereinafter referred to as D CM [+)] were used to obtain prepreg matrix resin compositions having the formulations shown in Table 1 by simple mixing.

次に市販のポリアクリロニトリル系炭素繊維ANC高強
度タイプ(旭日本カーボン■製)に前記混合物をホント
メルト法により含浸させ、一方向性炭素繊維プリプレグ
を得た。
Next, a commercially available polyacrylonitrile carbon fiber ANC high-strength type (manufactured by Asahi Nippon Carbon ■) was impregnated with the mixture by the true melt method to obtain a unidirectional carbon fiber prepreg.

次にこのようにして得られたプリプレグについて、一方
では繊維方向が0゛方向になるように厚さ21、軸的1
3龍の平板に積層してガラス転移温度(Tg)の測定用
試験材とし、他方では繊維方向がO°方向と45°方向
になるように交互に積層して厚さ21m、内径25龍の
パイプ状に捲き、流出レジン量測定用試験材とした。平
板の場合8kg / aaの面圧で、パイプの場合、4
 k、 fのテンションがかかる様、ラフピングテープ
をプリプレグの上に捲きつけ、これらについていずれも
140℃、120分の硬化を行った。
Next, regarding the prepreg obtained in this way, on the one hand, the thickness was 21 and the axial direction was 1 so that the fiber direction was in the 0° direction.
A test material for measuring the glass transition temperature (Tg) was obtained by laminating 3 flat plates of 3 mm, and a 21 m thick and 25 mm inner diameter plate was laminated alternately so that the fiber directions were in the 0° direction and 45° direction. It was rolled up into a pipe shape and used as a test material for measuring the amount of resin flowing out. For a flat plate, the surface pressure is 8 kg/aa, for a pipe, it is 4
Ruffing tape was wrapped over the prepreg so that tensions k and f were applied, and both were cured at 140° C. for 120 minutes.

これらの測定結果を第1表に併せて示す。These measurement results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上の実施例からも明らかな通D、本発明によれば、耐
熱性と伸度のバランスがとれ、かつ成形硬化時の耐レジ
ンフロー性に優れたCFRPを得ることが可能となるも
のであD、産業の発展に貢献する所、極めて大なるもの
がある。
As is clear from the above examples, according to the present invention, it is possible to obtain a CFRP that has a good balance between heat resistance and elongation, and has excellent resin flow resistance during molding and curing. D. There is an extremely significant contribution to the development of industry.

Claims (1)

【特許請求の範囲】 下記A、B、C、D及びE成分を必須成分とし、A、B
及びC成分の総量100重量部に対してD成分を1〜1
0重量部、E成分を1〜10重量部配合してなるマトリ
ックス樹脂組成物。 A、クレゾールノボラック型エポキシ樹脂10〜70重
量部 B、ビスフェノールA型エポキシ樹脂10〜70重量部 C、フェノキシ樹脂またはそのエポキシ変成樹脂のどち
らか一方、或いは両者の混合物3〜40重量部 D、ジシアンジアミド E、硬化促進剤
[Claims] The following components A, B, C, D and E are essential components, and A, B
and 1 to 1 part of D component per 100 parts by weight of the total amount of C component.
A matrix resin composition containing 0 parts by weight and 1 to 10 parts by weight of component E. A, 10 to 70 parts by weight of a cresol novolak epoxy resin B, 10 to 70 parts by weight of a bisphenol A epoxy resin C, 3 to 40 parts by weight of either a phenoxy resin or its epoxy modified resin, or a mixture of both D, dicyandiamide E, curing accelerator
JP63022850A 1988-02-04 1988-02-04 Matrix resin composition Expired - Fee Related JP2604778B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63022850A JP2604778B2 (en) 1988-02-04 1988-02-04 Matrix resin composition
CN89100628A CN1031718C (en) 1988-02-04 1989-02-03 Parent resinous compositions
KR1019890001277A KR890013120A (en) 1988-02-04 1989-02-03 Matrix Resin Sintered Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022850A JP2604778B2 (en) 1988-02-04 1988-02-04 Matrix resin composition

Publications (2)

Publication Number Publication Date
JPH01201321A true JPH01201321A (en) 1989-08-14
JP2604778B2 JP2604778B2 (en) 1997-04-30

Family

ID=12094193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022850A Expired - Fee Related JP2604778B2 (en) 1988-02-04 1988-02-04 Matrix resin composition

Country Status (3)

Country Link
JP (1) JP2604778B2 (en)
KR (1) KR890013120A (en)
CN (1) CN1031718C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614280B2 (en) * 2009-03-25 2014-10-29 東レ株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and electronic / electrical component casing
WO2019065470A1 (en) * 2017-09-29 2019-04-04 日鉄ケミカル&マテリアル株式会社 Curable epoxy resin composition and fiber-reinforced composite material using same
CN112313262A (en) * 2018-06-27 2021-02-02 3M创新有限公司 Curable compositions and related methods
US20210047460A1 (en) * 2018-03-01 2021-02-18 Cytec Industries, Inc. Fast-cure resin formulations with consistent handling characteristics

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276024C (en) * 2004-09-30 2006-09-20 北京科技大学 Strengthening carbon fiber composite material and method for repairing defective pipeline
CN1853847B (en) * 2005-04-15 2010-12-08 北京安科管道工程科技有限公司 Method for repairing and reinforcing weld seam defects
CN101903437B (en) * 2007-12-20 2012-09-26 日立化成工业株式会社 Film-like resin composition for encapsulation filling, method for manufacturing semiconductor package or semiconductor device using the same, and semiconductor device
CN104945885A (en) * 2015-07-14 2015-09-30 江苏兆鋆新材料股份有限公司 Preparing method of epoxy resin carbon fiber prepreg

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621721A (en) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd Epoxy resin composition
JPS62127317A (en) * 1985-11-28 1987-06-09 Toray Ind Inc Epoxy resin composition for prepreg
JPS62129308A (en) * 1985-12-02 1987-06-11 Toray Ind Inc Epoxy resin composition having improved moldability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621721A (en) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd Epoxy resin composition
JPS62127317A (en) * 1985-11-28 1987-06-09 Toray Ind Inc Epoxy resin composition for prepreg
JPS62129308A (en) * 1985-12-02 1987-06-11 Toray Ind Inc Epoxy resin composition having improved moldability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614280B2 (en) * 2009-03-25 2014-10-29 東レ株式会社 Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and electronic / electrical component casing
KR101530754B1 (en) * 2009-03-25 2015-06-22 도레이 카부시키가이샤 Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and housing for electronic or electrical component
WO2019065470A1 (en) * 2017-09-29 2019-04-04 日鉄ケミカル&マテリアル株式会社 Curable epoxy resin composition and fiber-reinforced composite material using same
JPWO2019065470A1 (en) * 2017-09-29 2020-11-05 日鉄ケミカル&マテリアル株式会社 Curable epoxy resin composition and fiber reinforced composite material using it
US11427707B2 (en) 2017-09-29 2022-08-30 Nippon Steel Chemical & Material Co., Ltd. Curable epoxy resin composition and fiber-reinforced composite material using same
US20210047460A1 (en) * 2018-03-01 2021-02-18 Cytec Industries, Inc. Fast-cure resin formulations with consistent handling characteristics
CN112313262A (en) * 2018-06-27 2021-02-02 3M创新有限公司 Curable compositions and related methods

Also Published As

Publication number Publication date
CN1036972A (en) 1989-11-08
KR890013120A (en) 1989-09-21
JP2604778B2 (en) 1997-04-30
CN1031718C (en) 1996-05-01

Similar Documents

Publication Publication Date Title
JP3796953B2 (en) Resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material
JP2003238657A (en) Epoxy resin composition, cured resin, prepreg and fiber reinforced composite material
JPH02151623A (en) Epoxy resin composition and prepreg
JPH01201321A (en) Matrix resin composition
JPH11172076A (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
WO2022039050A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JPH04249544A (en) Resin composition, prepreg and production of prepreg
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
JPS6236421A (en) Epoxy resin composition for prepreg
JPH0834864A (en) Impact-resistant prepreg
JPH08337707A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPS5817535B2 (en) Epoxy resin composition for carbon fiber reinforcement
JP2004027043A (en) Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material
JPH11279261A (en) Heat-resistant epoxy resin composition for fiber-reinforced composite material
JP2003055534A (en) Resin composition for composite material, intermediate material for composite material, and composite material
JPS6143616A (en) Epoxy resin composition
JPS59174616A (en) Epoxy resin composition and prepreg
JP2011057851A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JPS62141039A (en) Resin composition for fiber reinforced prepreg
JPH04153252A (en) Matrix resin composition
JP2003041093A (en) Resin composition for composite material, intermediate material for composite material and composite material
JPS6360056B2 (en)
JPH01161040A (en) Matrix resin composition
JPH03243619A (en) Epoxy resin composition
JPH0586425B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees