JPH01201099A - Removal of useless material - Google Patents

Removal of useless material

Info

Publication number
JPH01201099A
JPH01201099A JP63319139A JP31913988A JPH01201099A JP H01201099 A JPH01201099 A JP H01201099A JP 63319139 A JP63319139 A JP 63319139A JP 31913988 A JP31913988 A JP 31913988A JP H01201099 A JPH01201099 A JP H01201099A
Authority
JP
Japan
Prior art keywords
carbon
substrate
space
magnetic field
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63319139A
Other languages
Japanese (ja)
Other versions
JPH0814022B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62041749A external-priority patent/JPS63210275A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63319139A priority Critical patent/JPH0814022B2/en
Publication of JPH01201099A publication Critical patent/JPH01201099A/en
Publication of JPH0814022B2 publication Critical patent/JPH0814022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the damage of the inner wall of a reaction furnace or a substrate holder and to improve the mass-production efficiency, by forming a material composed mainly of carbon on a substrate under specific condition using a plasma CVD apparatus, taking the formed material out of the apparatus, introducing O2 or O2+H2 gas into the apparatus and etching useless material by the application of high-frequency wave or microwave. CONSTITUTION:A substrate 10 is supported on a substrate holder 10' in a plasma generation space 1 maintained in evacuated state in a plasma CVD apparatus. The substrate 10 is made to be heatable with an infrared heater 20, a parabolic reflector 21, etc. A microwave electric field and an external magnetic field can be applied to the substrate by a microwave generator 4 and electromagnets 5, 5'. A gas produced by mixing H2 6 with CH4 7, etc., is introduced into a high-density plasma generation region 2 and imposed with microwave electric field and external magnetic field to generate a high-density carbon plasma in the plasma generation space 1. The pressure in the space 1 is increased to increase the hydrogen radical concentration per unit volume and form a material composed mainly of carbon on the substrate 10. The substrate having deposited carbon material is taken out of the space, O2 gas or a mixture of O2 and H2 gas is introduced into the space 1 and microwave electric field and magnetic field are applied to effect the etching of the useless material.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマイクロ波電界を加えるとともに、外部磁場を
加え、それらの相互作用を用いて炭素または炭素を主成
分とした物体を形成するためのプラズマ反応装置であっ
て、かかる物体の生成に伴い装置の内壁に付着した不要
物を酸素、水素または酸素化合物によりエツチングし内
壁を清浄にすることによりより量産化の効率を高める方
法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention applies a microwave electric field and an external magnetic field, and uses their interaction to form a plasma that forms carbon or an object mainly composed of carbon. The present invention relates to a method of increasing the efficiency of mass production of a reaction apparatus by cleaning the inner wall by etching unnecessary substances attached to the inner wall of the apparatus with oxygen, hydrogen, or an oxygen compound during the production of such objects.

〔従来の技術] 従来、薄膜のエツチング手段としてECR(電子サイク
ロトロン共鳴)を用い、10″3〜10−5torrの
低い圧力条件下で少なくとも電子がサイクロトロン共鳴
をするために1周するに十分な低い圧力で活性種を作り
、その発散磁場を利用してこの共鳴空間より「離れた位
置」に基板を配設し、そこで弗化物気体または塩化物気
体の如きハロゲン元素を用いて被膜特にアモルファス構
造を有する被膜をエツチングする方法が知られている。
[Prior Art] Conventionally, ECR (Electron Cyclotron Resonance) is used as a thin film etching means under low pressure conditions of 10"3 to 10-5 Torr, which is low enough for electrons to make at least one revolution for cyclotron resonance. Activated species are created by pressure, and the divergent magnetic field is used to place a substrate "at a distance" from this resonant space, where a halogen element such as fluoride gas or chloride gas is used to form a coating, especially an amorphous structure. Methods are known for etching coatings that contain.

[従来の問題点] しかしかかるハロゲン元素の反応性気体を用いたエンチ
ング方法においては、そのエツチング用気体として弗化
物または塩化物を用いている。このため装置が劣化し、
特に排気オイルが劣化する欠点を有していた。
[Conventional Problems] However, in such an etching method using a reactive gas of a halogen element, a fluoride or a chloride is used as the etching gas. As a result, the equipment deteriorates and
In particular, the exhaust oil deteriorated.

そのため、かかる弗化物気体または塩化物気体を用いず
炭素または炭素を主成分とする物体、特にそれらの基板
上での成膜後、この基板を除去してその後このプラズマ
CVD装置の内壁に付着した不要物をかかる装置の内壁
を腐食等で損傷させることなく除去する方法が求められ
ていた。
Therefore, after forming a film on a substrate of carbon or carbon-based material without using such fluoride gas or chloride gas, this substrate is removed and the film is then deposited on the inner wall of this plasma CVD apparatus. There has been a need for a method for removing unnecessary materials without damaging the inner walls of such devices due to corrosion or the like.

(問題を解決すべき手段〕 本発明はかかる要望を満たすもので、特にプラズマCV
D装置の内壁、基板ホルダ上に不本意に付着している炭
素を主成分とする付着物をかかる装置をまったく劣化さ
せることない気体即ち酸素または酸化物気体(NO,N
O2,N20.O20等)によりエツチングを行うもの
である。この目的のために、マイクロ波電力の電界強度
が最も大きくなる領域をECI?条件とする875ガウ
ス(マイクロ波周波数2.45GII2の場合)または
その近傍の酸素の活性状態が持続している位置をこの磁
場の強さを変えることにより可変し、この強いプラズマ
の発生している面を全内壁に渡って移設し、装置の内壁
および基板ホルダ上の不要炭素(炭素を主成分とするす
べてを以下単に炭素という)を除去するものである。
(Means to Solve the Problem) The present invention satisfies such needs, and in particular,
D. Remove deposits mainly composed of carbon that are inadvertently attached to the inner walls of the device and onto the substrate holder with a gas that does not deteriorate the device at all, that is, oxygen or oxide gas (NO, N, etc.).
O2, N20. Etching is performed using O20, etc.). For this purpose, the ECI? By changing the strength of this magnetic field, the position where the active state of oxygen persists at or near 875 Gauss (in the case of a microwave frequency of 2.45 GII2) is determined, and this strong plasma is generated. The surface is moved across the entire inner wall to remove unnecessary carbon (anything containing carbon as a main component will hereinafter be simply referred to as carbon) on the inner wall of the device and the substrate holder.

即ち、まずこのプラズマCVD装置により炭素を作製す
る工程につき記す。
That is, first, the process of producing carbon using this plasma CVD apparatus will be described.

被形成面を有する基板を装置内に挿入配設する。A substrate having a surface to be formed is inserted into the apparatus.

この基板を真空下に保持し、600〜1000°C例え
ば850°Cに加熱する。更にここに水素を導入し、空
間の圧力を徐々に上げ1×10柑〜3 X10”tor
rとし、さらにメタン、エチレン、アセチレンの如き炭
化水素気体を水素に対し0.1〜5χの濃度、例えばメ
タン/水素=1.5χに混入する。そしてマイクロ波と
磁場を加える。すると、この空間の活性水素はこれまで
のECRCVD法に比べて102〜10’程度の高濃度
にすることができる。するとかかる高い圧力において初
めて活性水素の濃度がきわめて濃くできるためアモルフ
ァス構造の部分をエツチング除去しダイヤモンド構造を
主として有する炭素を作ることができる。この後このマ
イクロ波導入を中止し、磁場を除去して反応炉内を大気
により大気圧とする。冷却後、iカーボン(ダイヤモン
ド粒とアモルファスとの混合物)またはダイヤモンド粒
を主成分とする炭素が形成された基板を除去して、基板
ホルダを再び反応炉内に配設する。さらにこれら全体を
真空引きし、酸素(0□)を導入する。この反応炉内の
圧力を0.1〜10torrとし、マイクロ波と磁場を
加え活性酸素を作る。そしてこのプラズマ反り炉の内壁
の基板上に炭素を形成する際、同時に不本意に形成され
た不要物の炭素をエツチングして除去する。
This substrate is held under vacuum and heated to 600-1000°C, for example 850°C. Furthermore, hydrogen is introduced here and the pressure in the space is gradually increased to 1 x 10" to 3 x 10"tor.
Further, a hydrocarbon gas such as methane, ethylene, or acetylene is mixed with hydrogen at a concentration of 0.1 to 5x, for example, methane/hydrogen = 1.5x. Then add microwaves and a magnetic field. Then, the concentration of active hydrogen in this space can be increased to about 102 to 10' compared to the conventional ECRCVD method. Then, only at such high pressure can the concentration of active hydrogen become extremely high, so that the amorphous structure can be etched away and carbon mainly having a diamond structure can be produced. Thereafter, the microwave introduction is stopped, the magnetic field is removed, and the inside of the reactor is brought to atmospheric pressure by the atmosphere. After cooling, the substrate on which i-carbon (a mixture of diamond grains and amorphous) or carbon whose main component is diamond grains is formed is removed, and the substrate holder is placed in the reactor again. Furthermore, the whole is evacuated and oxygen (0□) is introduced. The pressure inside this reactor is set to 0.1 to 10 torr, and microwaves and a magnetic field are applied to produce active oxygen. When carbon is formed on the substrate on the inner wall of the plasma warping furnace, at the same time, unnecessary carbon that has been formed unintentionally is removed by etching.

すなわち本発明は従来より知られたマイクロ波を用いた
プラズマCVD法に磁場の力を加え、マイクロ波の電場
と磁場との相互作用、好ましくはECI?(エレクトロ
ンサイクロトロン共鳴)条件又はホイッスラー共鳴条件
を含む相互作用を用いて炭素を形成する。さらに本発明
はかかる炭素の形成に際して用いられたマイクロ波と磁
場を用い、反応炉内の不要物をエツチング除去する。
That is, the present invention adds the force of a magnetic field to the conventionally known plasma CVD method using microwaves, and the interaction between the electric field of the microwave and the magnetic field, preferably ECI? (electron cyclotron resonance) conditions or Whistler resonance conditions to form carbon. Furthermore, the present invention etches and removes unnecessary materials in the reactor using microwaves and magnetic fields used in the formation of carbon.

また本発明の構成において、マイクロ波と磁場との相互
作用により高密度プラズマを発生させた後、基板表面上
まで至る間に高エネルギを持つ光(例えば紫外光)を照
射し、活性種にエネルギを与え続けると、マイクロ波電
界の最大となる領域即ち高密度プラズマ発生領域より1
〜50cmもの離れた位置においても高エネルギ状態に
励起されたエツチング用水素が存在し、より大面積にア
モルファスまたはダイヤモンド構造の粒子または膜の炭
素のエツチングを行うことが可能となった。
In addition, in the configuration of the present invention, after high-density plasma is generated by the interaction between microwaves and a magnetic field, high-energy light (for example, ultraviolet light) is irradiated on the way to the substrate surface to impart energy to the active species. If we continue to apply the
Etching hydrogen excited to a high energy state exists even at a distance of ~50 cm, making it possible to etch amorphous or diamond-structured particles or carbon in a film over a larger area.

以下に実施例を示し、さらに本発明を説明する。Examples will be shown below to further explain the present invention.

〔実施例〕〔Example〕

第1図に本発明にて用いた磁場印加可能なマイクロ波プ
ラズマ装置を示す。
FIG. 1 shows a microwave plasma device capable of applying a magnetic field used in the present invention.

同図において、この装置は減圧状態に保持可能なプラズ
マ発生空間(1)、加熱空間(3)、補助空間(2)、
磁場を発生する電磁石(5) 、(5”)およびその電
源(25)、マイクロ波発振器(4)、排気系を構成す
るターボ分子ポンプ(8)、ロータリーポンプ(14)
、圧力調整パルプ(11)、赤外線加熱ヒータ(20)
、およびその電源(23)、赤外線反射面(21)、基
板ホルダ(10’) 、基板(10)、マイクロ波導入
窓(15)、ガス導入系(6L(7) 、水冷系(18
) 、 (18”)より構成されている。
In the figure, this device includes a plasma generation space (1) that can be maintained in a reduced pressure state, a heating space (3), an auxiliary space (2),
Electromagnet (5), (5") that generates a magnetic field and its power source (25), microwave oscillator (4), turbo molecular pump (8) that constitutes the exhaust system, rotary pump (14)
, pressure adjustment pulp (11), infrared heater (20)
, and its power source (23), infrared reflective surface (21), substrate holder (10'), substrate (10), microwave introduction window (15), gas introduction system (6L (7), water cooling system (18)
), (18”).

まず基板(10)をホルダ(10’)上に設置する。こ
のホルダは高熱伝導性を有し、かつマイクロ波および磁
場をできるだけ乱さないためにセラミックの窒化アルミ
ニュームを用いた。この基板ホルダを赤外線ヒータ(2
0)より放物反射面(21)レンズ系(22)を用いて
集光し加熱する。(例えば800°C)次に水素(6)
を100 SCCMさらにメタンを1.5SCCM混入
しガス系(7)を通して高密度プラズマ発生領域(2)
へと導入し、外部より2.45GIlzの周波数のマイ
クロ波を500Wの強さで加える。さらに、磁場約2に
ガウスを磁石(5)、(5’)より印加し、高密度炭素
プラズマをプラズマ発生空間(1)にて発生させる。
First, the substrate (10) is placed on the holder (10'). This holder has high thermal conductivity and was made of ceramic aluminum nitride to minimize disturbance of microwave and magnetic fields. Place this substrate holder on an infrared heater (2
0), the parabolic reflecting surface (21) and lens system (22) are used to condense and heat the light. (e.g. 800°C) then hydrogen (6)
100 SCCM and 1.5 SCCM of methane are mixed in and passed through the gas system (7) to the high-density plasma generation area (2).
A microwave with a frequency of 2.45 GIlz is applied at an intensity of 500 W from the outside. Furthermore, a magnetic field of about 2 Gauss is applied from the magnets (5) and (5') to generate high-density carbon plasma in the plasma generation space (1).

そして空間の圧力はプラズマ状態を保持しつつI X 
10− ’ 〜3 X 10”torr好ましくは3〜
300tOrr例えば10torrの圧力に変化させる
ことができる。
And the pressure in the space maintains the plasma state while I
10-' to 3 X 10"torr, preferably 3 to
The pressure can be changed to 300 tOrr, for example, 10 torr.

この空間の圧力を高くすることにより、単位空間あたり
の水素ラジカルの濃度を太き(し、炭素特に結晶化炭素
、即ちダイヤモンドの成長速度を大きくできる。
By increasing the pressure in this space, the concentration of hydrogen radicals per unit space can be increased (and the growth rate of carbon, especially crystallized carbon, that is, diamond) can be increased.

次に基板の冷却、マイクロ波および磁場の導入を中止し
、炭素の形成された基板を外部に取り出す。さらに再び
この反応炉内に基板ホルダを導入しこれら全体を500
〜1000°Cに加熱しつつ酸素を導入する。さらに0
.1〜10torrとした後、マイクロ波および磁場を
被膜形成時と同じようにして加える。
Next, the cooling of the substrate and the introduction of microwaves and magnetic fields are stopped, and the substrate on which carbon has been formed is taken out. Furthermore, the substrate holder was introduced into this reactor again, and the whole was
Oxygen is introduced while heating to ~1000°C. 0 more
.. After setting the pressure to 1 to 10 torr, microwaves and a magnetic field are applied in the same manner as during film formation.

すると炭素形成の際不本意に形成された反応炉内壁に付
着した炭素を除去することができた。
As a result, it was possible to remove the carbon that was inadvertently formed on the inner wall of the reactor during carbon formation.

第1図において、磁場は2つのリング状の磁石(5) 
、 (5’)を用いたヘルムホルツコイル方式を採用し
た。さらに、4分割した空間(30)に対し電場・磁場
の強度を調べた結果を第2図に示す。
In Figure 1, the magnetic field is connected to two ring-shaped magnets (5).
, (5') was adopted. Furthermore, FIG. 2 shows the results of examining the strength of the electric and magnetic fields for the space (30) divided into four parts.

第2図(A)において、横軸(X軸)は空間(20)の
横方向(反応性気体の放出方向)であり、縦軸(R軸)
は磁石の直径方向を示す。図面における曲線は磁場の等
電位面を示す。そしてその線に示されている数字は磁石
(5)が約2000ガウスの時に得られる磁場の強さを
示す。磁石(5)の強度を調整すると、電極・磁場の相
互作用を有する空間(100)(875±185ガウス
)で大面積において磁場の強さを基板の被形成面の広い
面積にわたって概略均一にさせることができる。図面は
等磁場面を示し、特に線(26)が875ガウスとなる
共鳴条件を生ずる等磁場面である。
In FIG. 2 (A), the horizontal axis (X-axis) is the horizontal direction of the space (20) (reactive gas release direction), and the vertical axis (R-axis)
indicates the diameter direction of the magnet. The curves in the drawings indicate equipotential surfaces of the magnetic field. The number shown on the line indicates the strength of the magnetic field obtained when the magnet (5) is approximately 2000 Gauss. By adjusting the strength of the magnet (5), the strength of the magnetic field is made approximately uniform over a large area of the formation surface of the substrate in the space (100) (875 ± 185 Gauss) where the electrode-magnetic field interacts. be able to. The drawing shows an isomagnetic scene, in particular the isomagnetic scene that gives rise to the resonance condition where the line (26) is 875 Gauss.

さらにこの共鳴条件を生ずる空間(100)は第2図(
B)に示す如く、電場が最大となる領域となるようにし
ている。第2図(B)の横軸は第2図(A)と同じく反
応性気体の流れる方向を示し、縦軸は電場(電界強度)
の強さを示す。
Furthermore, the space (100) that produces this resonance condition is shown in Figure 2 (
As shown in B), the area is set to have the maximum electric field. The horizontal axis in Figure 2 (B) indicates the flow direction of the reactive gas as in Figure 2 (A), and the vertical axis indicates the electric field (field strength).
Shows the strength of

すると電界領域(100)以外に領域(100”)も最
大となる領域に該当する。しかじにここに対応する磁場
(第2図(A))はきわめて等磁場面が多く存在してい
る。即ち領域(100’)には基板の被形成面の直径方
向(第2図(八)における縦軸方向)での膜厚のばらつ
きが大きくなり、(26”)の共鳴条件を満たすECR
条件部分で速やかなる被膜のエツチングができるのみで
ある。
Then, in addition to the electric field region (100), the region (100'') also corresponds to the region where the maximum occurs.However, the magnetic field corresponding to this region (FIG. 2 (A)) has many isomagnetic fields. That is, in the region (100'), there is a large variation in film thickness in the diametrical direction (vertical axis direction in FIG. 2 (8)) of the surface on which the substrate is formed, and the ECR that satisfies the resonance condition of (26'')
Only certain coatings can be etched quickly under certain conditions.

マイクロ波の出力を500Hの場合0.3μ/分のエツ
チング速度であった。しかしこの出力を1.2KWとす
ると、そのエツチング速度を約3倍にすることができた
。またエツチング圧力をQ、 l torrより30 
torrとより高い圧力とするとよりエツチング速度を
太き(できる。しかし実験的には30torr以上にす
るとプラズマ状態の連続的な保持が困難であり、実用上
は使いにくくなってしまった。
When the microwave output was 500H, the etching rate was 0.3 μ/min. However, when this output was set to 1.2 KW, the etching speed could be increased approximately three times. Also, the etching pressure is Q, 30 from l torr.
If the pressure is higher than 30 torr, the etching rate can be increased.However, it has been experimentally shown that if the pressure is increased to 30 torr or higher, it is difficult to maintain a plasma state continuously, making it difficult to use in practice.

また領域(100)に対してその原点対称の反対の側に
も電場が最大であり、かつ磁場が広い領域にわたって一
定となる領域を有する。基板の加熱を行う必要がない場
合はかかる空間でのエツチングが有効である。しかしマ
イクロ波の電場を乱すことなく加熱を行う手段が得にく
い。
Furthermore, there is a region on the opposite side of the region (100) symmetrical to the origin, where the electric field is maximum and the magnetic field is constant over a wide region. Etching in such a space is effective when there is no need to heat the substrate. However, it is difficult to find a way to perform heating without disturbing the microwave electric field.

これらの結果、基板の出し入れの容易さ、加熱の容易さ
を考慮し、均一にエツチングを行うためには第2[ff
1(A)の領域(100)が3つの領域の中で最も工業
的に量産性の優れた位置と推定される。
As a result, in order to perform uniform etching, the second [ff
It is estimated that the region 1(A) (100) is the position with the highest industrial productivity among the three regions.

第3図は第2図における基板(10)の位置における円
形空間の磁場(A)および電場(B)の等磁場、等電場
の図面である。第3図(B)より明らかなごとく、電場
は最大25KV/mにまで達せしめ得ることがわかる。
FIG. 3 is a diagram of equal magnetic fields and equal electric fields of the magnetic field (A) and electric field (B) in a circular space at the position of the substrate (10) in FIG. 2. FIG. As is clear from FIG. 3(B), it can be seen that the electric field can reach a maximum of 25 KV/m.

(効果〕 本発明において、エツチングは弗化物または塩化物の如
きハロゲン化物気体ではなく、酸化物気体を用い、反応
炉の内壁、基板ホルダ等を全く損傷させない。そしてこ
の酸素または酸化物気体により被形成面以外の領域に作
られてしまった炭素を酸素と反応させ二酸化炭素とし、
気体化し除去するものである。その結果、成膜毎に固い
炭素の反応炉内壁の湿式によるエツチングを不要とする
ことができる。
(Effects) In the present invention, etching uses an oxide gas instead of a halide gas such as fluoride or chloride, so that the inner wall of the reactor, the substrate holder, etc. are not damaged at all. The carbon that has been created in areas other than the formation surface is reacted with oxygen to become carbon dioxide,
It is gasified and removed. As a result, it is possible to eliminate the need for wet etching of the hard carbon inner wall of the reactor every time a film is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる磁場・電場相互作用を用いたマ
イクロ波CVD装置の概略を示す。 第2図はコンピュータシミュレイションによる磁場およ
び電場特性を示す。 第3図は電場・磁場相互作用をさせた位置での磁場およ
び電場の特性を示す。 1・・・・プラズマ発生空間 10、10’・・基板および基板ホルダ4・・・・マイ
クロ波発振器 5.5゛・・・外部磁場発生器 20・・・・基板加熱ヒータ 100 ・・・最大電場となる空間
FIG. 1 schematically shows a microwave CVD apparatus using magnetic field/electric field interaction used in the present invention. FIG. 2 shows the magnetic field and electric field characteristics by computer simulation. Figure 3 shows the characteristics of the magnetic field and electric field at a position where the electric field and magnetic field interact. 1... Plasma generation space 10, 10'... Substrate and substrate holder 4... Microwave oscillator 5.5''... External magnetic field generator 20... Substrate heating heater 100... Maximum Space that becomes an electric field

Claims (1)

【特許請求の範囲】 1、高周波またはマイクロ波を利用した炭素製造装置を
用いて、減圧下で水素を含む炭素物気体よりなる生成物
気体を導入して炭素を主成分とする物体を基板上の被形
成面上にプラズマ気相法により生成する工程と、前記ダ
イヤモンド又はiカーボンの形成された被形成面を有す
る基体を取り出す工程と、この後前記炭素製造装置内に
酸素または酸素と水素との混合物気体を導入し、かつ高
周波またはマイクロ波を加えることにより前記装置内の
不要部分に付着形成されたダイヤモンド又はiカーボン
をエッチングして除去することを特徴とする炭素製造装
置内の炭素不要物の除去方法。 2、特許請求の範囲第1項において、前記混合物気体は
酸素とアルゴンよりなるとともに、プラズマ化して炭素
と反応せしめ、炭素酸化物としてエッチング除去するこ
とを特徴とする炭素製造装置内の炭素不要物の除去方法
。 3、特許請求の範囲第1項において、0.1〜300t
orrの圧力下でエッチングを行うことを特徴とする炭
素製造装置内の炭素不要物の除去方法。
[Claims] 1. Using a carbon production device that uses high frequency or microwaves, a product gas consisting of a carbon material gas containing hydrogen is introduced under reduced pressure to deposit an object mainly composed of carbon on a substrate. a step of generating diamond or i-carbon on the surface to be formed by a plasma vapor phase method, a step of taking out the substrate having the surface on which the diamond or i-carbon is formed, and then adding oxygen or oxygen and hydrogen into the carbon production apparatus. An unnecessary carbon substance in a carbon manufacturing apparatus, characterized in that diamond or i-carbon deposited on unnecessary parts in the apparatus is etched and removed by introducing a mixture gas and applying high frequency or microwaves. How to remove. 2. In claim 1, the carbon waste in a carbon manufacturing apparatus is characterized in that the mixture gas is made of oxygen and argon, is turned into plasma, reacts with carbon, and is removed by etching as carbon oxide. How to remove. 3. In claim 1, 0.1 to 300t
1. A method for removing unnecessary carbon materials in a carbon production device, the method comprising performing etching under a pressure of 0.05 to 10.0 m.
JP63319139A 1987-02-24 1988-12-16 How to remove unwanted materials Expired - Fee Related JPH0814022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63319139A JPH0814022B2 (en) 1987-02-24 1988-12-16 How to remove unwanted materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62041749A JPS63210275A (en) 1987-02-24 1987-02-24 Method for removing unnecessary carbon matter in apparatus for producing carbon
JP63319139A JPH0814022B2 (en) 1987-02-24 1988-12-16 How to remove unwanted materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62041749A Division JPS63210275A (en) 1987-02-24 1987-02-24 Method for removing unnecessary carbon matter in apparatus for producing carbon

Publications (2)

Publication Number Publication Date
JPH01201099A true JPH01201099A (en) 1989-08-14
JPH0814022B2 JPH0814022B2 (en) 1996-02-14

Family

ID=26381399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319139A Expired - Fee Related JPH0814022B2 (en) 1987-02-24 1988-12-16 How to remove unwanted materials

Country Status (1)

Country Link
JP (1) JPH0814022B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087817U (en) * 1983-11-24 1985-06-17 マツダ株式会社 vehicle door

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633477A (en) * 1979-08-22 1981-04-03 Toshiba Corp Plasma etching method
JPS5669382A (en) * 1979-11-08 1981-06-10 Toshiba Corp Surface treatment by plasma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633477A (en) * 1979-08-22 1981-04-03 Toshiba Corp Plasma etching method
JPS5669382A (en) * 1979-11-08 1981-06-10 Toshiba Corp Surface treatment by plasma

Also Published As

Publication number Publication date
JPH0814022B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
JPS63210275A (en) Method for removing unnecessary carbon matter in apparatus for producing carbon
JPH0672306B2 (en) Plasma processing apparatus and plasma processing method
JPS63121667A (en) Device and method for forming thin film
JPH01201099A (en) Removal of useless material
JPS63145782A (en) Formation of thin film
JPS62254419A (en) Plasma deposition device
JPS644591B2 (en)
JP2660244B2 (en) Surface treatment method
JP3445657B2 (en) ECR plasma etching method for diamond thin film
JPH029787A (en) Plasma processing device
JP2715277B2 (en) Thin film forming equipment
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JP2965935B2 (en) Plasma CVD method
JP2691399B2 (en) Plasma processing method
JP2769977B2 (en) Plasma processing method
JP2892347B2 (en) Thin film formation method
JPH04132684A (en) Method for forming diamond thin film
JPH0543792B2 (en)
JP2739286B2 (en) Plasma processing method
JPS63169387A (en) Formation of thin film
JPH01298098A (en) Production of diamondlike carbon film
JPS6277465A (en) Formation of amorphous silicon film
JP3193178B2 (en) Thin film formation method
JPH04232261A (en) Device for forming thin film
JPH03120822A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees