JPH01201048A - Method for modifying surface of glass container - Google Patents

Method for modifying surface of glass container

Info

Publication number
JPH01201048A
JPH01201048A JP2605188A JP2605188A JPH01201048A JP H01201048 A JPH01201048 A JP H01201048A JP 2605188 A JP2605188 A JP 2605188A JP 2605188 A JP2605188 A JP 2605188A JP H01201048 A JPH01201048 A JP H01201048A
Authority
JP
Japan
Prior art keywords
glass
container
water
glass container
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2605188A
Other languages
Japanese (ja)
Other versions
JPH0676234B2 (en
Inventor
Kiyohisa Eguchi
江口 清久
Tetsuo Yazawa
哲夫 矢澤
Takeshi Umehara
武 梅原
Kenichi Miyamoto
憲一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIWA TOKUSHU GLASS KK
National Institute of Advanced Industrial Science and Technology AIST
Takeda Pharmaceutical Co Ltd
Original Assignee
DAIWA TOKUSHU GLASS KK
Agency of Industrial Science and Technology
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIWA TOKUSHU GLASS KK, Agency of Industrial Science and Technology, Takeda Chemical Industries Ltd filed Critical DAIWA TOKUSHU GLASS KK
Priority to JP63026051A priority Critical patent/JPH0676234B2/en
Publication of JPH01201048A publication Critical patent/JPH01201048A/en
Publication of JPH0676234B2 publication Critical patent/JPH0676234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a glass container capable of preventing migration of components in the container to filled contents without requiring a special apparatus and affecting productivity, by bringing the inner surface of the glass container into contact with water optionally containing a specific substance and heat-treating the inner surface. CONSTITUTION:An adequate amount (e.g., tens of g - several g) of water, such as pure water or distilled water, or water containing a substance, such as an inert gas or alcohol, having no interaction with glass without eliminating glass components from the glass surface is added through a suitable filling machine, e.g., dispenser, to the inner surface of a glass container and in the liquid or gaseous state brought into contact therewith in the course of forming and processing or after completing the forming thereof. The resultant container is then heated to 400-900 deg.C, kept at the temperature for a prescribed time (e.g., tens of sec - several hr) and heat-treated to form a modified layer with hardly any content of constituent components readily dissolving and migrating into filled contents of the glass container on the inner surface thereof.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、充てん内容物と相互作用の少ないガラス容器
を製造するための、ガラス容器表面(内表面)改質方法
に関するものである。 [従来の技術および解決すべき課題] ガラスは、その特性から容器素材として汎用されている
が、充てん内容物中ヘガラスの構成成分が脱離移行する
ことが往々にしである。 充てん内容物の安全性と安定性を特に厳しく確保しなけ
ればならない医薬品・化粧品または食品を充てんするガ
ラス容器にあっては脱離移行成分の極少化が特に望まれ
るために脱離移行成分が他のガラスにくらべ一段と少な
いホウケイ酸ガラス(すなわちSi0. 5Q〜85%
、[31035〜16%、AQt032〜25%、Na
tOおよび/またはに、02〜10%を主成分とする素
材)を選定し、さらには成型工程では溶融固化過程にも
ける分相現象で容器表面層に素材配合成分のa度ムラが
生じることを抑制するためになるべく溶融温度を低くし
たり溶融時間を短くする方法がとられ、加えて容器成型
後においては脱離移行し易い成分を積極的に除外する処
理、例えば成型品を600〜900℃で少なくとも30
分以上再加熱し移行成分を揮散する方法、成型品にぶつ
酸、硫酸などの強酸液あるいは水酸化ナトリウム、水酸
化カリウムなどの強アルカリ液を接触し移行成分を洗浄
する方法、または成型品に亜硫酸ガス、硫酸アンモニウ
ム、塩化アンモニウムなど移行成分と反応生成物をつく
り易い物質を添加し加熱によって反応さ什成型品表面層
の反応生成物を洗浄する方法等が一般的に行なわれてい
る。 しかしながら、低温、短時間で成型加工する方法は、形
状バラツキが大きくなり、単位時間当りの生産量が低下
しかつ改質効果も小さい。再加熱や酸やアルカリ液で成
型品を洗浄処理ずろ方法は工程追加となるので大巾なコ
ストの上昇をきたし、成型品を脆弱化することもある。 また移行成分と反応生成物をっ(り易い物質を添加し加
熱によって作用させる方法は、工程追加に加えて、添加
物質の純品化が難しく、添加物質またはその類縁物質を
工程環境周辺に拡散させない処理設備を構築することが
難しいためきわめて大巾なコストの上昇をきたしあわせ
て成型品表面に微粒膜状に付着する反応生成物を完全に
除去するためには重厚な洗浄か必要である。 このように従来の改質技術は問題点が多いため、適用対
象あるいは適用の程度を限定せざるを得ないのが現状で
ある。 [課題を解決するための手段] 本発明は、水あるいはガラス表面からのガラス成分を離
脱させない物質を含む水をガラス容器の表面に接触させ
て加熱処理することを特徴とするガラス容器表面の改質
方法を提供するものである。 本発明の方法においては、ガラス容器の内表面に、充て
ん内容物へ溶解移行しやすい構成成分の含a量が少ない
改質層が形成され、充てん内容物に対してのガラス成分
の移行を大巾に防止することができる。 水又はガラス表面からガラス成分を離脱させない物質を
含む水については、純水、蒸留水又は不活性ガス(窒素
ガス、二酸化炭素ガスなど)や、アルコールなどの有機
物、電解質イオンなどガラスに対して相互作用のない物
質を微量含む水を使用する。 水又はガラス表面からガラス成分を離脱させない水をガ
ラス容器表面に接触させる方法は、微量充填の可能なデ
イスペンサーなど、適当な充填機により容器の成型加工
工程(歪除去工程を含む)途上、もしくは成型終了後に
適量(数十ミリグラム−数グラム)添加することにより
行われる。この時添加物は液体又は水蒸気のような気体
の状態で添加される。さらに、容器の成型加工工程途上
にガス燃焼バーナーによって成型する工程のあるものに
ついては、燃焼により生じた水蒸気を主体とするガスを
、容器内に凝集させ反応させることも可能である。 水とガラス容器との反応(加熱処理工程)は、容器の温
度を高温(400〜900°C)まで昇温させ、一定時
間(数十秒〜数時間、好ましくは数十秒〜数十分)保持
することにより行わせる。この時、ガラス容器表面の移
行性成分は、水の存在下で選択的に除去され、ガラス容
器表面は高度に安定な状態に改質される。容器の加熱方
法は、その成型加工途上に歪みを除去するための徐冷炉
がある場合、徐冷工程と同時に行うことができる。当然
専用の熱処理炉を使用することも可能である。 又、強制的に水又はガラス表面からガラス成分を離脱さ
せない物質を含む水を注入する方法以外に、加熱処理を
行う工程において、熱処理装置の雰囲気、あるいはガラ
ス容器内雰囲気を高濃度の水蒸気を含むガスで充満させ
高水分環境とすることにより改質を行うことも可能であ
る。 本発明を実施するに当たって、添加する水又はガラス表
面からガラス成分を離脱させない物質を含む水の添加量
は、加熱温度及び反応させる時間により変動しうる。添
加する水又はガラス表面からガラス成分を離脱させない
物質を含む水の量は、成型品の形状や容積、ガラスの組
成によって異なるが容量10戒程度のホウケイ酸ガラス
製アンプル容器の場合50〜loomg程度である。こ
の時の添加mは、反応時に完全に消費されうる範囲で添
加すべきであり、過剰に添加すると成型品を冷却した時
、加熱後の冷却の速度が急であると容器内に水分が露結
し好ましくない。また反応時間を長くしすぎた場合、容
器の改質された表面上にクリストバライトの結晶が成長
する。反応時間は、目標とする改質1より決定する。 本発明の方法は特にホウケイ酸ガラス容器(例、アンプ
ル、管瓶などの医薬品用、化粒品用、食品用ガラス容器
)の内表面改質に有効である。 [実施例] 以下に本発明の実施例として、日本電気ガラス(株)製
アンプル用ガラス管(商品名:BS管)を成型してなる
医薬品用アンプルを例にとり具体的に説明する。
[Industrial Field of Application] The present invention relates to a method for modifying the surface (inner surface) of a glass container for producing a glass container that has little interaction with the filled contents. [Prior Art and Problems to be Solved] Glass is widely used as a material for containers due to its characteristics, but constituent components of glass often desorb and migrate into the filled contents. For glass containers filled with pharmaceuticals, cosmetics, or foods, where the safety and stability of the filled contents must be particularly strictly ensured, it is particularly desirable to minimize the amount of components that can be eliminated and migrated. borosilicate glass (i.e. Si0.5Q~85%)
, [31035-16%, AQt032-25%, Na
In addition, in the molding process, the phase separation phenomenon that occurs during the melting and solidification process may cause unevenness in the material composition on the container surface layer. In order to suppress this, methods are used to lower the melting temperature and shorten the melting time as much as possible, and in addition, after forming the container, a process is carried out to actively exclude components that are easily desorbed and transferred, for example, molded products are heated to 600 to 900 at least 30 °C
A method of reheating for more than a minute to volatilize the migrated components, a method of cleaning the migrated components by contacting the molded product with a strong acid solution such as butic acid or sulfuric acid, or a strong alkaline solution such as sodium hydroxide or potassium hydroxide, or A commonly used method is to add a substance that easily forms a reaction product with a migrating component, such as sulfur dioxide gas, ammonium sulfate, or ammonium chloride, react by heating, and then clean the reaction product on the surface layer of the molded article. However, the method of molding at low temperatures and in a short time increases shape variations, reduces production per unit time, and has a small reforming effect. Reheating or cleaning the molded product with an acid or alkaline solution requires an additional process, which significantly increases costs and can also make the molded product brittle. In addition, the method of adding a substance that easily reacts with the transitional component and the reaction product by heating requires an additional process, and it is difficult to purify the additive substance, causing the additive substance or its related substances to diffuse into the surrounding process environment. It is difficult to construct processing equipment that will prevent the formation of molded products, resulting in an extremely large increase in costs, and extensive cleaning is required to completely remove the reaction products that adhere to the surface of the molded product in the form of a fine film. As described above, the conventional reforming technology has many problems, and the present situation has no choice but to limit the scope of application or the degree of application. [Means for Solving the Problems] The present invention provides a method for modifying the surface of a glass container, which comprises heating the surface of the glass container by bringing water containing a substance that does not remove glass components from the surface into contact with the surface. On the inner surface of the glass container, a modified layer with a low content of constituent components that are easily dissolved and transferred to the filled contents is formed, making it possible to largely prevent the glass components from transferring to the filled contents. For water that contains substances that do not release glass components from the water or glass surface, pure water, distilled water, inert gases (nitrogen gas, carbon dioxide gas, etc.), organic substances such as alcohol, electrolyte ions, etc. Use water that contains trace amounts of non-interacting substances.A method of bringing water into contact with the surface of a glass container without causing glass components to separate from the water or glass surface is to fill the container with a suitable filling machine, such as a dispenser that can fill a small amount. This is done by adding an appropriate amount (several tens of milligrams to several grams) during the molding process (including the strain removal process) or after the molding process is complete.At this time, the additive is added in the form of a liquid or gas such as water vapor. Furthermore, in cases where the container is molded using a gas combustion burner during the molding process, it is also possible to cause the gas mainly composed of water vapor produced by the combustion to condense and react within the container. The reaction with the glass container (heat treatment step) involves raising the temperature of the container to a high temperature (400 to 900°C) and maintaining it for a certain period of time (several tens of seconds to several hours, preferably tens of seconds to several tens of minutes). At this time, migratory components on the surface of the glass container are selectively removed in the presence of water, and the surface of the glass container is modified to a highly stable state.The method of heating the container is as follows: If there is an annealing furnace for removing distortion during the molding process, it can be carried out simultaneously with the annealing process.Of course, it is also possible to use a dedicated heat treatment oven. In addition to the method of forcibly injecting water or water containing a substance that does not cause glass components to separate from the glass surface, in the heat treatment process, the atmosphere of the heat treatment equipment or the atmosphere inside the glass container contains high concentration of water vapor. It is also possible to perform reforming by filling it with gas to create a high moisture environment. In carrying out the present invention, the amount of water to be added or water containing a substance that does not separate glass components from the glass surface may vary depending on the heating temperature and reaction time. The amount of water to be added or water containing a substance that does not separate glass components from the glass surface varies depending on the shape and volume of the molded product and the composition of the glass, but in the case of a borosilicate glass ampoule container with a capacity of about 10 precepts, it is about 50 to 100 looms. It is. The amount of m added at this time should be within the range that can be completely consumed during the reaction; if it is added in excess, when the molded product is cooled, if the cooling rate after heating is rapid, moisture will be exposed in the container. I don't like it. Furthermore, if the reaction time is too long, cristobalite crystals will grow on the modified surface of the container. The reaction time is determined based on the target modification 1. The method of the present invention is particularly effective for modifying the inner surface of borosilicate glass containers (eg, glass containers for pharmaceuticals, granulated products, and foods such as ampoules and tube bottles). [Example] As an example of the present invention, a pharmaceutical ampoule formed by molding a glass tube for ampules (trade name: BS tube) manufactured by Nippon Electric Glass Co., Ltd. will be specifically described below.

【実施例1】 内容ff1lOdのアンプルについて、その成型加工途
上、何形工程終了後に蒸留水を50mg注入し、通常使
用する温度より50〜lOO℃高温の700〜800℃
の温度にて約70秒間徐冷工程と兼用で熱処理をし、改
質操作を行った。 改質した容器の評価は、このアンプルに蒸留水をlod
充填し、溶封後オートクレーブを使用して121 ℃で
30分滅菌操作を行い、充填した蒸留水中にガラスから
の移行成分を溶出させ、原子吸光法でNa、A12につ
いて測定した。結果を表1に示す。 又、比較対象のために改質操作を行わない従来品につい
ても同様の溶出操作を行い、溶出成分を測定した。結果
を表2に示す。 表2 ここに示したように、改質品のNa溶出量は約1/2に
、又、A(溶出量は約1/10となった。 【実施例2] 実施例1と同じアンプルの成型工程において、何形工程
終了後に、ボイラーより発生させた水蒸気を導管および
注射針を介しアンプル内に約0゜5秒間注入することに
よりアンプル内を水蒸気で満たした。この時注入された
水蒸気の虫は約50〜loomgの水の量に相当する。 内部が水蒸気で満たされたアンプルを、実施例1と同様
に700〜800℃の温度にて約70秒間徐冷工程と兼
用で熱処理をし、改質操作を行った。 改質した容器の評価は、実施例1と同様に行った。結果
を表3に示す。 表3 ここに示したように、改質品のNa溶出量は約172に
、又、A(溶出量は約171Oとなった。 【実施例3] 実施例1と同じアンプルの成型工程において、熱処理を
行う徐冷炉内にボートを設置し、蒸留水を満たして70
0〜800℃で熱処理を行ない熱処理装置内を高温水蒸
気の環境とし、その中をアンプルを通過させることによ
り改質を行った。 改質した容器の評価は、実施例1と同様に行った。結果
を表4に示す。 表4 ここに示したように、改質品のNa溶出量は約1/2に
、又、AC溶出量は約1/10となった。 し発明の作用および効果] 本発明の方法により改質されたガラス容器はガラス容器
から充てん内容物への移行成分が大巾に減少される。本
発明の実施には、成型加工工程中にたやすく組み込む事
ができ、生産性に全く影響を与えることがない。又、工
程中に組み込むことができない場合についても特別な装
置を必要とせず、目的とする改質効果を得ることができ
る。 又、本改質法を行った改質品の外観形状における品質に
ついては、従来品と同等もしくは従来品以上の品質とな
った。さらに残留歪みの量や、圧縮強度などの特性値に
ついても一切問題は無く、従来品と同等の特性値を示し
た。 特許出頼人  工業技術院長 武田薬品工業株式会社 大和特殊硝子株式会社
[Example 1] For an ampoule with a content of ff11Od, 50mg of distilled water was injected during the molding process and after the completion of the shaping process, and the temperature was 700~800°C, which is 50~100°C higher than the temperature normally used.
A heat treatment was carried out for about 70 seconds at a temperature of 70 seconds, which also served as a slow cooling step, and a reforming operation was carried out. To evaluate the modified container, add distilled water to this ampoule.
After filling and melt-sealing, sterilization was performed at 121° C. for 30 minutes using an autoclave, and components migrated from the glass were eluted into the filled distilled water, and Na and A12 were measured by atomic absorption spectrometry. The results are shown in Table 1. In addition, for comparison purposes, the same elution operation was performed on a conventional product that was not subjected to the modification operation, and the eluted components were measured. The results are shown in Table 2. Table 2 As shown here, the amount of Na elution from the modified product was approximately 1/2, and the amount of A (elution amount was approximately 1/10). In the molding process, after completing the shape process, the ampoule was filled with steam by injecting steam generated from a boiler into the ampoule for approximately 0°5 seconds through a conduit and a syringe needle. The amount of insects corresponds to about 50 to loomg of water.The ampoule, whose interior was filled with water vapor, was heat-treated at a temperature of 700 to 800°C for about 70 seconds, also serving as a slow cooling process, in the same manner as in Example 1. The modified container was evaluated in the same manner as in Example 1. The results are shown in Table 3. Table 3 As shown here, the amount of Na eluted from the modified product was approximately 172, and A (the elution amount was about 171 O. [Example 3] In the same ampoule forming process as in Example 1, a boat was installed in the slow cooling furnace for heat treatment, and filled with distilled water to
The heat treatment was performed at 0 to 800° C. to create a high-temperature steam environment inside the heat treatment device, and the ampoule was passed through the environment to perform reforming. The modified container was evaluated in the same manner as in Example 1. The results are shown in Table 4. Table 4 As shown here, the amount of Na eluted from the modified product was about 1/2, and the amount of AC eluted was about 1/10. Functions and Effects of the Invention] In the glass container modified by the method of the invention, components transferred from the glass container to the filled contents are greatly reduced. The implementation of the present invention can be easily incorporated into the molding process without affecting productivity in any way. Furthermore, even in cases where it cannot be incorporated into the process, the desired modification effect can be obtained without requiring any special equipment. Furthermore, the quality of the appearance and shape of the modified products obtained by this modification method was equal to or higher than that of conventional products. Furthermore, there were no problems with the amount of residual strain, compressive strength, and other characteristic values, and the characteristic values were comparable to those of conventional products. Patent source Director of the Agency of Industrial Science and Technology Takeda Pharmaceutical Co., Ltd. Daiwa Special Glass Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)水あるいはガラス表面からガラス成分を離脱させ
ない物質を含む水をガラス容器の表面に接触させて加熱
処理することを特徴とするガラス容器表面の改質方法。
(1) A method for modifying the surface of a glass container, which comprises heating the surface of the glass container by bringing water or water containing a substance that does not remove glass components from the glass surface into contact with the surface of the glass container.
(2)水あるいはガラス表面からガラス成分を離脱させ
ない物質を含む水を、ガラス容器の成型工程あるいは歪
除去工程もしくは、その後の処理工程で、ガラス容器の
表面に接触させて加熱処理する、請求項1記載の方法。
(2) A claim in which water or water containing a substance that does not separate glass components from the glass surface is brought into contact with the surface of the glass container and heat-treated in the molding process or strain removal process of the glass container, or in a subsequent treatment process. The method described in 1.
JP63026051A 1988-02-05 1988-02-05 Method of modifying glass container surface Expired - Lifetime JPH0676234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026051A JPH0676234B2 (en) 1988-02-05 1988-02-05 Method of modifying glass container surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026051A JPH0676234B2 (en) 1988-02-05 1988-02-05 Method of modifying glass container surface

Publications (2)

Publication Number Publication Date
JPH01201048A true JPH01201048A (en) 1989-08-14
JPH0676234B2 JPH0676234B2 (en) 1994-09-28

Family

ID=12182887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026051A Expired - Lifetime JPH0676234B2 (en) 1988-02-05 1988-02-05 Method of modifying glass container surface

Country Status (1)

Country Link
JP (1) JPH0676234B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137867A (en) * 2006-12-04 2008-06-19 Asahi Glass Co Ltd Surface-treated glass and method for manufacturing the same
US8887528B2 (en) 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
JP2016504259A (en) * 2012-11-30 2016-02-12 コーニング インコーポレイテッド Method for forming a delamination-resistant glass container
JP2018505836A (en) * 2014-12-31 2018-03-01 コーニング インコーポレイテッド Method for processing glass articles
US9988174B2 (en) 2012-06-07 2018-06-05 Corning Incorporated Delamination resistant glass containers
US10065884B2 (en) 2014-11-26 2018-09-04 Corning Incorporated Methods for producing strengthened and durable glass containers
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
US10273049B2 (en) 2012-06-28 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US10710920B2 (en) 2014-12-31 2020-07-14 Corning Incorporated Methods for thermally treating glass articles
US10899659B2 (en) 2014-09-05 2021-01-26 Corning Incorporated Glass articles and methods for improving the reliability of glass articles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933909A (en) * 1971-07-21 1974-03-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933909A (en) * 1971-07-21 1974-03-28

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8359885B2 (en) 2006-12-04 2013-01-29 Asahi Glass Company, Limited Surface-treated glass and process for producing the same
US8887528B2 (en) 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
JP2008137867A (en) * 2006-12-04 2008-06-19 Asahi Glass Co Ltd Surface-treated glass and method for manufacturing the same
US11124328B2 (en) 2012-06-07 2021-09-21 Corning Incorporated Delamination resistant glass containers
US9988174B2 (en) 2012-06-07 2018-06-05 Corning Incorporated Delamination resistant glass containers
US10273048B2 (en) 2012-06-07 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US10273049B2 (en) 2012-06-28 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US11608290B2 (en) 2012-06-28 2023-03-21 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US10787292B2 (en) 2012-06-28 2020-09-29 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US10307334B2 (en) 2012-11-30 2019-06-04 Corning Incorporated Glass containers with delamination resistance and improved damage tolerance
US10023495B2 (en) 2012-11-30 2018-07-17 Corning Incorporated Glass containers with improved strength and improved damage tolerance
US10307333B2 (en) 2012-11-30 2019-06-04 Corning Incorporated Glass containers with delamination resistance and improved damage tolerance
US11963927B2 (en) 2012-11-30 2024-04-23 Corning Incorporated Glass containers with delamination resistance and improved damage tolerance
US10507164B2 (en) 2012-11-30 2019-12-17 Corning Incorporated Glass containers with improved strength and improved damage tolerance
US11951072B2 (en) 2012-11-30 2024-04-09 Corning Incorporated Glass containers with improved strength and improved damage tolerance
JP2016504259A (en) * 2012-11-30 2016-02-12 コーニング インコーポレイテッド Method for forming a delamination-resistant glass container
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
US10786431B2 (en) 2012-11-30 2020-09-29 Corning Incorporated Glass containers with delamination resistance and improved damage tolerance
US10813835B2 (en) 2012-11-30 2020-10-27 Corning Incorporated Glass containers with improved strength and improved damage tolerance
US10899659B2 (en) 2014-09-05 2021-01-26 Corning Incorporated Glass articles and methods for improving the reliability of glass articles
US10065884B2 (en) 2014-11-26 2018-09-04 Corning Incorporated Methods for producing strengthened and durable glass containers
JP2018505836A (en) * 2014-12-31 2018-03-01 コーニング インコーポレイテッド Method for processing glass articles
US10710920B2 (en) 2014-12-31 2020-07-14 Corning Incorporated Methods for thermally treating glass articles
US10669196B2 (en) 2014-12-31 2020-06-02 Corning Incorporated Methods for treating glass articles

Also Published As

Publication number Publication date
JPH0676234B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US2982053A (en) Method of removing dissolved water from 96 percent silica glass
JPH01201048A (en) Method for modifying surface of glass container
CA1071409A (en) Method for the production of bubble-free objects of quartz glass by drawing
US3785793A (en) Method of leaching high silica glass having 0.5-2.0% p2o5
GB835820A (en) Method of treating glass articles
US3697242A (en) Strengthening borosilicate glass by crowding surface layer with lioh and/or koh
US3615319A (en) Ion exchange strengthening of glasses with lithium vapor
JPH02192436A (en) Production of glass vessel having low alkali content
JPH01126238A (en) Quartz glass member
US3116991A (en) Desalkalinisation of glass
US2386685A (en) Method of making glass
US3281225A (en) Method of increasing the durability of glassware
US2805130A (en) Process of producing boron halides
JPH04187545A (en) Method for treating inner surface of glass tube bottle
JPH0317775B2 (en)
SU640981A1 (en) Method of manufacturing glass articles from melt
JPS649824A (en) Method for thermally treating quartz glass
US1612661A (en) Introduction of hygroscopic material into evacuated devices
SU702076A1 (en) Method of producing silicate enamels
JPH04164839A (en) Treatment of inner surface of glass tube bottle
JPS63218521A (en) Production of chalcogenide glass
JPS5873360A (en) Suppressing of production of nitrous acid nitrogen in glass container
KR930023292A (en) How to reduce lead and / or barium emissions in crystalline glassware containing lead and / or barium when in contact with the liquid phase
JPH09295826A (en) Production of high-purity transparent silica glass
GB1070369A (en) Process for etching the glass of glass-coated wires

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term