JPH11171599A - De-alkalization treatment of glass surface - Google Patents

De-alkalization treatment of glass surface

Info

Publication number
JPH11171599A
JPH11171599A JP9348197A JP34819797A JPH11171599A JP H11171599 A JPH11171599 A JP H11171599A JP 9348197 A JP9348197 A JP 9348197A JP 34819797 A JP34819797 A JP 34819797A JP H11171599 A JPH11171599 A JP H11171599A
Authority
JP
Japan
Prior art keywords
glass surface
water
concentration
aqueous solution
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9348197A
Other languages
Japanese (ja)
Inventor
Seiji Azuma
誠二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9348197A priority Critical patent/JPH11171599A/en
Publication of JPH11171599A publication Critical patent/JPH11171599A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step

Abstract

PROBLEM TO BE SOLVED: To provide a dealkalization treatment method of a glass surface enabling to prevent diffusion of an alkaline component from a glass surface into an electrically-conductive layer. SOLUTION: Silicate glass containing the alkaline component is brought into contact with water in a liquid state of higher than 120 deg.C or kept in an aqueous solution in a state of 2-218 atmospheric pressures and 120-374 deg.C. Thus, the alkaline concentration of the glass surface layer up to 100 nm depth from the surface is made less than 1/10 of it before the treatment by the treatment within three hrs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ成分を含
むシリケートガラス表面のアルカリ濃度を低下させる、
ガラス表面の脱アルカリ処理方法に関する。
The present invention relates to a method for reducing the alkali concentration on the surface of a silicate glass containing an alkali component.
The present invention relates to a method for removing alkali from a glass surface.

【0002】[0002]

【従来の技術】フラットパネルディスプレイや太陽電池
などの電子部材の基板としてNa等のアルカリ成分を含
むシリケートガラスが用いられているが、ガラス表面上
に設けられた導電層へのガラス表面からのアルカリ成分
拡散は製品品質に重大な欠陥を与える。
2. Description of the Related Art A silicate glass containing an alkali component such as Na is used as a substrate for an electronic member such as a flat panel display or a solar cell. However, a silicate glass from a glass surface to a conductive layer provided on the glass surface is used. Ingredient diffusion can cause serious defects in product quality.

【0003】従来から、ガラス表面から導電層へのアル
カリ成分拡散を防止する方法として、ディップコート法
やCVD法のような成膜法を用いてアルカリ成分を含ま
ない拡散抑止膜を形成させる方法、ガラス表面の脱アル
カリ処理によりアルカリ濃度が低いまたはアルカリを含
まないガラス表面層を形成する方法、等が知られてい
る。ガラス表面の脱アルカリ処理方法としては、ガラス
中のアルカリ成分との間でイオン交換反応が起る溶液ま
たは雰囲気で処理する方法(特表平7−50776
2)、電界の作用下でのイオン移動による方法(特開昭
62−230653)が知られている。
Conventionally, as a method for preventing diffusion of an alkali component from a glass surface to a conductive layer, a method of forming a diffusion suppressing film containing no alkali component by using a film forming method such as a dip coating method or a CVD method, A method of forming a glass surface layer having a low alkali concentration or containing no alkali by a dealkalization treatment of the glass surface is known. As a method of dealkalizing the glass surface, a method of treating in a solution or atmosphere in which an ion exchange reaction occurs with an alkali component in the glass (Japanese Patent Application Laid-Open No. 7-50776).
2) A method using ion movement under the action of an electric field (Japanese Patent Laid-Open No. 62-230653) is known.

【0004】[0004]

【発明が解決しようとする課題】従来用いられているデ
ィップコート法やCVD法などの成膜法で形成された拡
散抑止膜にはピンホールが存在することが多く、このピ
ンホールを通してアルカリ成分が拡散する問題があっ
た。また、成膜装置は一般に複雑な装置であることが多
く、装置製作費が高い、保守労力がかかる、等の問題が
あった。
The diffusion suppressing film formed by a conventional film forming method such as a dip coating method or a CVD method often has a pinhole, through which an alkali component is passed. There was a problem of spreading. Further, the film forming apparatus is generally a complicated apparatus in many cases, and there are problems such as high apparatus manufacturing cost and high maintenance labor.

【0005】また、従来のガラス表面の脱アルカリ処理
方法は、脱アルカリ反応の反応性を向上させるために通
常は室温以上かつ100℃以下の温度まで加熱して実施
される。これは、脱アルカリ反応の反応溶媒として水を
用いた場合、脱アルカリ反応は溶媒の水が気体状態であ
るよりは液体状態である方が速く進行するが、水は大気
圧下では100℃以下でしか液体状態として存在できな
いためである。
[0005] In addition, the conventional method of dealkalizing a glass surface is usually carried out by heating to a temperature not lower than room temperature and not higher than 100 ° C in order to improve the reactivity of the dealkalization reaction. This means that when water is used as a reaction solvent for the dealkalization reaction, the dealkalization reaction proceeds faster in a liquid state than when the solvent water is in a gaseous state. This is because it can exist only in the liquid state.

【0006】この条件下では、通常の連続処理には適さ
ない3時間以上の反応時間が必要となる。例えば、H+
とNa+ の各濃度分布が平衡に達するには90℃で48
時間の処理が必要である旨が知られている(Physi
cs and Chemistry of Glass
21(5),198(1980))。また、脱アルカ
リ反応に伴い90℃で3.83時間の処理によりガラス
表面から約0.1μmすなわち約100nmの深さまで
+ が侵入していることが認められる(J.Non−C
rystalline Solids,33,254
(1979)。本発明の目的は、以上の課題を解決する
ガラス表面の脱アルカリ処理方法を提供にある。
[0006] Under these conditions, a reaction time of 3 hours or more, which is not suitable for ordinary continuous processing, is required. For example, H +
48 at 90 ° C. Each concentration distribution of Na + to reach equilibrium with the
It is known that time processing is necessary (Physi
cs and Chemistry of Glass
21 (5), 198 (1980)). Further, it is recognized that H + has penetrated from the glass surface to a depth of about 0.1 μm, that is, a depth of about 100 nm from the glass surface by the treatment at 90 ° C. for 3.83 hours accompanying the dealkalization reaction (J. Non-C).
crystalline Solids, 33,254
(1979). An object of the present invention is to provide a method for dealkalizing a glass surface which solves the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は、アルカリ成分
を含むシリケートガラスを、120℃以上の液体状態の
水(H2 O)と接触させることを特徴とする、ガラス表
面の脱アルカリ処理方法を提供する。また、アルカリ成
分を含むシリケートガラスを、圧力2気圧〜218気圧
かつ温度120℃〜374℃の範囲内の状態の水溶液中
に保持することを特徴とする、ガラス表面の脱アルカリ
処理方法を提供する。
According to the present invention, there is provided a method for dealkalizing a glass surface, comprising bringing a silicate glass containing an alkali component into contact with water (H 2 O) in a liquid state at 120 ° C. or higher. I will provide a. Further, the present invention provides a method for dealkalizing a glass surface, wherein a silicate glass containing an alkali component is held in an aqueous solution at a pressure of 2 to 218 atm and a temperature in a range of 120 to 374 ° C. .

【0008】[0008]

【発明の実施の形態】本発明のガラス表面の脱アルカリ
処理方法は、ガラス表面上に設けられた導電層へのガラ
ス表面からのアルカリ成分拡散を防止するためのもので
ある。低コストでガラス表面の脱アルカリ処理を行うた
めには連続処理を行わなければならないが、そのために
は3時間以内で処理を完了する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION The method for dealkalizing a glass surface according to the present invention is for preventing diffusion of an alkali component from the glass surface to a conductive layer provided on the glass surface. In order to perform the alkali removal treatment of the glass surface at low cost, continuous treatment must be performed, but for that purpose, the treatment must be completed within 3 hours.

【0009】また、ガラス表面上に設けられた導電層へ
のガラス表面からのアルカリ成分拡散を防止するために
は、ガラス表面から少なくとも100nmの深さまでの
ガラス表面層のアルカリ濃度を、脱アルカリ処理前のア
ルカリ濃度の1/10以下にしなければならない。
Further, in order to prevent the diffusion of alkali components from the glass surface to the conductive layer provided on the glass surface, the alkali concentration of the glass surface layer from the glass surface to a depth of at least 100 nm is determined by the alkali removal treatment. It must be less than 1/10 of the previous alkali concentration.

【0010】ところで、液体状態の水によるガラス表面
の脱アルカリ現象は、アルカリ分がNaの場合、以下の
3つの段階(a)、(b)、(c)が順次繰り返し起っ
ているものである。 (a)ガラス内部からガラス表面へのアルカリ分の輸送
(ガラス内部でのNa+ とH+ の交換反応)。 (b)ガラス表面でのNa+ と水中のH+ の交換反応。 (c)H+ と交換したNa+ のガラス表面からの除去
(水中への拡散)。
By the way, the alkali removal phenomenon on the glass surface by water in a liquid state is such that, when the alkali component is Na, the following three steps (a), (b) and (c) are sequentially repeated. is there. (A) Transport of alkali content from inside the glass to the glass surface (exchange reaction between Na + and H + inside the glass). (B) Exchange reaction between Na + and H + in water on the glass surface. (C) Removal of Na + exchanged for H + from the glass surface (diffusion into water).

【0011】これらの反応のうち、通常は(a)の交換
反応の速度が最も遅く、したがって(a)が脱アルカリ
現象の律速段階となる(25℃におけるNa+ の拡散係
数は、ガラス内部では10-14 cm2 /秒程度であるの
に対し、水中では10-5cm2 /秒程度であり、ガラス
中では水中に比べNa+ の動きは10-9倍程度動きが遅
い)。
Of these reactions, the rate of the exchange reaction (a) is usually the slowest, and therefore (a) is the rate-determining step of the dealkalization phenomenon (the diffusion coefficient of Na + at 25 ° C. While it is about 10 -14 cm 2 / sec, it is about 10 -5 cm 2 / sec in water, and the movement of Na + is about 10 -9 times slower in glass than in water.)

【0012】段階(a)を加速できる条件を探索するた
めに、以下に述べるような計算機シミュレーションを行
った。計算に当たっては、ドレムス(Doremus)
の提案したイオンの相互拡散モデル(J.Phys.C
hem.,68,2212−2213(1964))の
式(1)〜(10)等を用いた。レンフォード(Lan
ford)らの報告(J.Non−Crystalli
ne Solids 33,260(1979))に基
づき、90℃における拡散係数は、Na+ については
1.4×10-13cm2 /秒、H+ については1.4×
10-16 cm2 /秒とし、温度による拡散係数の変化は
活性化エネルギーを20kcal/molとして計算し
た。
In order to search for a condition capable of accelerating the step (a), a computer simulation as described below was performed. For the calculation, Dremus
Proposed ion interdiffusion model (J. Phys. C
hem. , 68, 2212-2213 (1964)). Lenford
Ford) et al. (J. Non-Crystalli)
ne Solids 33, 260 (1979)), the diffusion coefficient at 90 ° C. is 1.4 × 10 −13 cm 2 / sec for Na + and 1.4 × for H +.
And 10 -16 cm 2 / sec, the change in the diffusion coefficient with temperature were calculated activation energy as 20 kcal / mol.

【0013】計算結果を図1および図2に示す。図1
は、100℃〜350℃の範囲内の種々の温度下に置い
たガラスの、30分後のNa+ 濃度分布である。図2
は、ガラス表面から100nmの深さまでの領域のNa
+ 濃度を初期のNa+ 濃度の1/10以下および1/1
000以下にするのに必要な時間と温度の関係、および
水の飽和蒸気圧を示す。
FIGS. 1 and 2 show the calculation results. FIG.
Is the Na + concentration distribution of the glass after 30 minutes at various temperatures in the range of 100 ° C. to 350 ° C. FIG.
Represents Na in the region from the glass surface to a depth of 100 nm.
+ Concentration is less than 1/10 and 1/1 of the initial Na + concentration.
It shows the relationship between time and temperature required to reduce the water content to 000 or less, and the saturated vapor pressure of water.

【0014】図2から、ガラス表面から100nmの深
さまでの領域のNa+ 濃度を初期濃度の1/1000に
するのに必要な時間は、100℃では4×104 分すな
わち約28日間であるのに対し、250℃では約20分
で処理であることがわかる。また、同じ計算モデルを用
いて計算すると、ガラス表面から100nmの深さまで
の領域のNa+ 濃度が3時間以内に初期濃度の1/10
になる温度は120℃以上であった。そして、120℃
に対応する飽和蒸気圧は2気圧(絶対圧、以下同じ)で
ある。
From FIG. 2, the time required for reducing the Na + concentration in the region from the glass surface to a depth of 100 nm to 1/1000 of the initial concentration is 4 × 10 4 minutes at 100 ° C., that is, about 28 days. On the other hand, at 250 ° C., it can be seen that the treatment is performed in about 20 minutes. When calculated using the same calculation model, the Na + concentration in the region from the glass surface to a depth of 100 nm is 1/10 of the initial concentration within 3 hours.
Was 120 ° C. or higher. And 120 ° C
Is 2 atm (absolute pressure, the same applies hereinafter).

【0015】段階(b)を加速するためには、pHが7
未満の水溶液すなわち酸性水溶液の使用が有効である。
その理由は次のとおりである(なお、水溶液は水を溶媒
とする溶液であるが、ここでは溶質のない純粋の水も含
む概念として使用する。)。
In order to accelerate step (b), the pH must be 7
It is effective to use less than an aqueous solution, that is, an acidic aqueous solution.
The reason is as follows (the aqueous solution is a solution using water as a solvent, but is used here as a concept including pure water without a solute).

【0016】すなわち、ガラス表面での、Na+ などの
アルカリイオンとH+ のイオン交換においては、ガラス
表面と水溶液バルク部分の間に存在し濃度勾配を有する
境膜層を通して行われる拡散が律速である。したがっ
て、拡散速度を上げれば、このイオン交換反応が促進さ
れる。拡散速度は、ガラス表面のH+ 濃度と水溶液バル
ク部分のH+ 濃度の差に比例する(フィックの拡散法
則)ので、水溶液バルク部分のH+ 濃度を上げること、
すなわちpHを下げることが反応速度上昇に有効であ
る。酸性水溶液としては、カルボン酸、炭酸、塩酸、硝
酸、および硫酸からなる群から選ばれる1種以上の水溶
液を使用することが好ましい。
That is, in the ion exchange of alkali ions such as Na + and H + on the glass surface, diffusion performed through a film layer having a concentration gradient between the glass surface and the bulk portion of the aqueous solution is rate-limiting. is there. Therefore, increasing the diffusion rate promotes this ion exchange reaction. Diffusion rate is proportional to the difference in the H + concentration of H + concentration and aqueous bulk portion of the glass surface (diffusion Fick's Law), increasing the H + concentration of the aqueous solution bulk portion,
That is, lowering the pH is effective for increasing the reaction rate. As the acidic aqueous solution, it is preferable to use one or more aqueous solutions selected from the group consisting of carboxylic acid, carbonic acid, hydrochloric acid, nitric acid, and sulfuric acid.

【0017】段階(c)を加速するためには、水溶液を
液体状況に保持することが有効である。その理由は次の
とおりである。すなわち、水溶液バルク部分に拡散した
Na+ からは次式の反応によりNaOHが生成する。 Na+ +H2 O=NaOH+H+ NaOHの水に対する溶解度はきわめて高く、60℃で
174g/100gH2 Oである。したがって、Na+
除去には問題ない。しかし、上式の反応を大気圧下で行
うと水は水蒸気となり、液体状態の水中におけるNaO
Hの電離、すなわち液体状態の水へのNaOHの溶解は
起こらなくなり、NaOHは気体として水蒸気中に拡散
するのみである。
To accelerate step (c), it is advantageous to keep the aqueous solution in a liquid state. The reason is as follows. In other words, NaOH is generated from Na + diffused in the bulk portion of the aqueous solution by the following reaction. Na + + H 2 O = NaOH + H + NaOH has a very high solubility in water: 174 g / 100 g H 2 O at 60 ° C. Therefore, Na +
There is no problem in removal. However, when the above reaction is carried out at atmospheric pressure, water becomes water vapor, and NaO in liquid water
Ionization of H, that is, dissolution of NaOH in water in a liquid state does not occur, and NaOH only diffuses in water vapor as a gas.

【0018】一方、NaOHの標準沸点は1830Kす
なわち1557℃であり、それ以下の温度ではほとんど
蒸発せず、ガラス表面にはNaOH(酸性水溶液を使っ
た場合は、NaCl、NaNO3 などの塩) が析出す
る。その結果、ガラス表面からのNa+ 除去の進行はき
わめて遅くなる。これを防ぐには、NaOHが電離でき
る状態、すなわち電離したNa+ またはOH+ の周りを
水分子が取り囲むように水を液体状態にすることが必要
となる。高温の水を液体状態にするためには、高圧にす
る必要がある。図2に、このために必要な最低圧力(飽
和蒸気圧)を示す。ただし、水の臨界温度374℃およ
び臨界圧力218気圧が、水を液体状態に保持するため
の温度および圧力の上限値である。
On the other hand, the standard boiling point of NaOH is 1830 K, that is, 1557 ° C., and at a temperature lower than that, it hardly evaporates, and NaOH (a salt such as NaCl or NaNO 3 when an acidic aqueous solution is used) is deposited on the glass surface. Precipitates. As a result, the progress of Na + removal from the glass surface becomes extremely slow. To prevent this, it is necessary to make water into a liquid state in which NaOH can be ionized, that is, water molecules surround ionized Na + or OH + . In order to convert hot water into a liquid state, it is necessary to increase the pressure. FIG. 2 shows the minimum pressure (saturated vapor pressure) required for this. However, the critical temperature of water of 374 ° C. and the critical pressure of 218 atm are the upper limits of the temperature and pressure for keeping the water in a liquid state.

【0019】[0019]

【発明の効果】本発明によれば、3時間以内の処理時間
でガラス表面から導電層へのアルカリ成分拡散を防止で
きるガラス表面脱アルカリ処理方法を提供できる。
According to the present invention, there can be provided a glass surface dealkalization method capable of preventing the diffusion of alkali components from the glass surface to the conductive layer within a processing time of 3 hours or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる、種々の処理温度における処理
時間30分後のNa+ 濃度分布を計算した結果を示す
図。
FIG. 1 is a view showing a result of calculating a Na + concentration distribution after a treatment time of 30 minutes at various treatment temperatures according to the present invention.

【図2】本発明に係わる、ガラス表面から100nmの
深さまでのNa+ 濃度を初期のNa+ 濃度の1/10以
下および1/1000以下にするのに必要な時間と温度
の関係、および水の飽和蒸気圧を示す図。
FIG. 2 shows the relationship between time and temperature required to reduce the Na + concentration from the glass surface to a depth of 100 nm to 1/10 or less and 1/1000 or less of the initial Na + concentration, and water according to the present invention. FIG.

【符号の説明】[Explanation of symbols]

1:処理温度100℃ 2:処理温度120℃ 3:処理温度150℃ 4:処理温度200℃ 5:処理温度250℃ 6:処理温度300℃ 7:処理温度350℃ 8:ガラス表面から100nmの深さまでのNa+ 濃度
を初期のNa+ 濃度の1/10にするのに必要な処理温
度と処理時間の関係 9:ガラス表面から100nmの深さまでのNa+ 濃度
を初期のNa+ 濃度の1/1000にするのに必要な処
理温度と処理時間の関係 10:各温度における水の飽和蒸気圧
1: Processing temperature 100 ° C 2: Processing temperature 120 ° C 3: Processing temperature 150 ° C 4: Processing temperature 200 ° C 5: Processing temperature 250 ° C 6: Processing temperature 300 ° C 7: Processing temperature 350 ° C 8: Depth of 100 nm from the glass surface Between the processing temperature and the processing time required to make the previous Na + concentration 1/10 of the initial Na + concentration 9: The Na + concentration from the glass surface to a depth of 100 nm is reduced to 1 / the initial Na + concentration. Relationship between processing temperature and processing time required to make 1000 10: Saturated vapor pressure of water at each temperature

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アルカリ成分を含むシリケートガラスを、
120℃以上の液体状態の水(H2O)と接触させるこ
とを特徴とする、ガラス表面の脱アルカリ処理方法。
1. A silicate glass containing an alkali component,
A method for dealkalizing a glass surface, comprising contacting with water (H 2 O) in a liquid state at 120 ° C. or higher.
【請求項2】アルカリ成分を含むシリケートガラスを、
圧力2気圧〜218気圧かつ温度120℃〜374℃の
範囲内の状態の水溶液中に保持することを特徴とする、
ガラス表面の脱アルカリ処理方法。
2. A silicate glass containing an alkali component,
Characterized by being maintained in an aqueous solution in a state of a pressure of 2 to 218 atm and a temperature of 120 to 374 ° C,
A method for dealkalizing glass surfaces.
【請求項3】水溶液のpHが7未満である請求項2記載
のガラス表面の脱アルカリ処理方法。
3. The method according to claim 2, wherein the pH of the aqueous solution is less than 7.
【請求項4】水溶液が、カルボン酸、炭酸、塩酸、硝
酸、および硫酸からなる群から選ばれる1種以上の酸の
水溶液である請求項3記載のガラス表面の脱アルカリ処
理方法。
4. The method according to claim 3, wherein the aqueous solution is an aqueous solution of at least one acid selected from the group consisting of carboxylic acid, carbonic acid, hydrochloric acid, nitric acid and sulfuric acid.
JP9348197A 1997-12-17 1997-12-17 De-alkalization treatment of glass surface Pending JPH11171599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9348197A JPH11171599A (en) 1997-12-17 1997-12-17 De-alkalization treatment of glass surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9348197A JPH11171599A (en) 1997-12-17 1997-12-17 De-alkalization treatment of glass surface

Publications (1)

Publication Number Publication Date
JPH11171599A true JPH11171599A (en) 1999-06-29

Family

ID=18395409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9348197A Pending JPH11171599A (en) 1997-12-17 1997-12-17 De-alkalization treatment of glass surface

Country Status (1)

Country Link
JP (1) JPH11171599A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030828A (en) * 2001-07-18 2003-01-31 Fuji Electric Co Ltd Method for manufacturing substrate for information recording medium, substrate for information recording medium and information recording medium
US7158309B2 (en) 2004-10-12 2007-01-02 Nippon Sheet Glass Company, Limited Glass optical element and method for producing the same
WO2008068962A1 (en) * 2006-12-04 2008-06-12 Asahi Glass Co., Ltd. Surface-treated glass and process for producing the same
WO2009116300A1 (en) * 2008-03-21 2009-09-24 大和特殊硝子株式会社 Process for producing low alkali glass containers
JP2010534187A (en) * 2007-07-23 2010-11-04 セントル・ルクセンブルジョア・ド・ルシェルシュ・プール・ル・ヴェール・エ・ラ・セラミック・エス.アー.(シー.アール.ブイ.シー.) A glass manufacturing method in which an aluminum chloride is used for surface treatment in an annealing furnace or immediately before the annealing furnace
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
US8887528B2 (en) 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
FR3017613A1 (en) * 2014-02-18 2015-08-21 Glass Surface Technology METHOD AND DEVICE FOR PASSIVING THE INTERNAL SURFACE OF A GLASS BOTTLE AND BOTTLE OBTAINED BY SUCH A METHOD
JP2016056092A (en) * 2012-03-26 2016-04-21 旭硝子株式会社 Glass sheet capable of being inhibited from warping in chemical strengthening
DE102016109085A1 (en) 2016-05-18 2017-11-23 Schott Ag Process for the asymmetrization of the hydrogen content and for the production of a chemically highly pretensionable disc-shaped glass article and glass articles obtained according to the method
WO2018063910A1 (en) * 2016-09-29 2018-04-05 Corning Incorporated Compositional modification of glass articles through laser heating and methods for making the same
TWI673175B (en) * 2017-06-02 2019-10-01 日商日東電工股份有限公司 Optical laminate, polarizing film and image display device
CN111410420A (en) * 2019-01-08 2020-07-14 肖特股份有限公司 Element made of glass for reducing static electricity

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030828A (en) * 2001-07-18 2003-01-31 Fuji Electric Co Ltd Method for manufacturing substrate for information recording medium, substrate for information recording medium and information recording medium
US7158309B2 (en) 2004-10-12 2007-01-02 Nippon Sheet Glass Company, Limited Glass optical element and method for producing the same
WO2008068962A1 (en) * 2006-12-04 2008-06-12 Asahi Glass Co., Ltd. Surface-treated glass and process for producing the same
JP2008137867A (en) * 2006-12-04 2008-06-19 Asahi Glass Co Ltd Surface-treated glass and method for manufacturing the same
US8359885B2 (en) 2006-12-04 2013-01-29 Asahi Glass Company, Limited Surface-treated glass and process for producing the same
US8887528B2 (en) 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
JP2010534187A (en) * 2007-07-23 2010-11-04 セントル・ルクセンブルジョア・ド・ルシェルシュ・プール・ル・ヴェール・エ・ラ・セラミック・エス.アー.(シー.アール.ブイ.シー.) A glass manufacturing method in which an aluminum chloride is used for surface treatment in an annealing furnace or immediately before the annealing furnace
WO2009116300A1 (en) * 2008-03-21 2009-09-24 大和特殊硝子株式会社 Process for producing low alkali glass containers
JPWO2009116300A1 (en) * 2008-03-21 2011-07-21 大和特殊硝子株式会社 Method for producing low alkali glass container
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
JP2016056092A (en) * 2012-03-26 2016-04-21 旭硝子株式会社 Glass sheet capable of being inhibited from warping in chemical strengthening
FR3017613A1 (en) * 2014-02-18 2015-08-21 Glass Surface Technology METHOD AND DEVICE FOR PASSIVING THE INTERNAL SURFACE OF A GLASS BOTTLE AND BOTTLE OBTAINED BY SUCH A METHOD
WO2015124865A1 (en) * 2014-02-18 2015-08-27 Glass Surface Technology Method and device for passivating the inner surface of a glass flask, and flask obtained with such a method
JP2017512173A (en) * 2014-02-18 2017-05-18 グラス・サーフェス・テクノロジーGlass Surface Technology Method and apparatus for passivating the inner surface of a glass flask and flask obtained by such a method
DE102016109085A1 (en) 2016-05-18 2017-11-23 Schott Ag Process for the asymmetrization of the hydrogen content and for the production of a chemically highly pretensionable disc-shaped glass article and glass articles obtained according to the method
WO2018063910A1 (en) * 2016-09-29 2018-04-05 Corning Incorporated Compositional modification of glass articles through laser heating and methods for making the same
CN109803936A (en) * 2016-09-29 2019-05-24 康宁股份有限公司 The glassware and its manufacturing method for changing composition by laser heating
JP2019531249A (en) * 2016-09-29 2019-10-31 コーニング インコーポレイテッド Composition change of glass article by laser heating and manufacturing method thereof
US11236017B2 (en) 2016-09-29 2022-02-01 Corning Incorporated Compositional modification of glass articles through laser heating and methods for making the same
TWI673175B (en) * 2017-06-02 2019-10-01 日商日東電工股份有限公司 Optical laminate, polarizing film and image display device
CN111410420A (en) * 2019-01-08 2020-07-14 肖特股份有限公司 Element made of glass for reducing static electricity
JP2020111498A (en) * 2019-01-08 2020-07-27 ショット アクチエンゲゼルシャフトSchott AG Element composed of glass displaying reduced electrostatic charging
US11932573B2 (en) 2019-01-08 2024-03-19 Schott Ag Element composed of glass displaying reduced electrostatic charging

Similar Documents

Publication Publication Date Title
JPH11171599A (en) De-alkalization treatment of glass surface
US5132140A (en) Process for depositing silicon dioxide films
JP2005516882A5 (en)
CN1784365A (en) Alkaline glasses with modified surfaces and method for producing
US4578100A (en) Method of making non-glare coated glass
US3711263A (en) Surface treatment of glass and similar materials
JPH11278875A (en) Surface treatment of glass
US4431683A (en) Process for producing transparent electroconductive film
US5292354A (en) Method of producing dealkalized sheet glass
JPH01201048A (en) Method for modifying surface of glass container
US4040893A (en) Method of selective etching of materials utilizing masks of binary silicate glasses
JPS62179113A (en) Manufacture of semiconductor device and equipment therefor
SE465921B (en) PYROLYTIC COATED GLASS AND SET TO MANUFACTURE THE SAME
JP3446492B2 (en) Method for removing foreign matter from float glass substrate surface
JPH02135619A (en) Wet etching method
JPS6273203A (en) Non-reflection-treated substrate and its production
JPS6112034A (en) Formation of silicon oxide film on silicon substrate surface
JPS6365620B2 (en)
US7718550B2 (en) Method for low temperature growth of inorganic materials from solution using catalyzed growth and re-growth
JPH06157033A (en) Formation of metal oxide thin film
JPH1067544A (en) Surface treatment of glass
JPH07223843A (en) Production of chemically tempered glass
JPS59189320A (en) Electrode plate for liquid crystal display body
JPH021122A (en) Method and apparatus for forming thin film
JPH04280812A (en) Formation of porous coating film of silica on substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040406

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20040512

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20050622

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A02 Decision of refusal

Effective date: 20060322

Free format text: JAPANESE INTERMEDIATE CODE: A02