JPH11278875A - Surface treatment of glass - Google Patents

Surface treatment of glass

Info

Publication number
JPH11278875A
JPH11278875A JP10079714A JP7971498A JPH11278875A JP H11278875 A JPH11278875 A JP H11278875A JP 10079714 A JP10079714 A JP 10079714A JP 7971498 A JP7971498 A JP 7971498A JP H11278875 A JPH11278875 A JP H11278875A
Authority
JP
Japan
Prior art keywords
glass
aqueous solution
surface treatment
vapor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10079714A
Other languages
Japanese (ja)
Inventor
Gen Kojima
弦 小島
Osamu Sakamoto
修 酒本
Kiyoshi Matsumoto
松本  潔
Isamu Kaneko
勇 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10079714A priority Critical patent/JPH11278875A/en
Publication of JPH11278875A publication Critical patent/JPH11278875A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step

Abstract

PROBLEM TO BE SOLVED: To obtain a new and useful method of surface treatment to decrease the alkali concn. of a glass surface which satisfies the requirements of quality and cost. SOLUTION: A glass having the glass surface temp. higher than the glass transition temp. of the glass itself is brought into contact with >=0.001 N acidic aq. soln. or its vapor to elute and remove the alkali component in the glass surface layer. Thus, the obtd. glass product has the glass surface layer having a lower alkali concn. than in the center layer part and has a dense surface structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規なガラスの表面
処理方法に関する。
[0001] The present invention relates to a novel glass surface treatment method.

【0002】[0002]

【従来の技術】現在広く行われているガラスの表面処理
方法は大別すると所要の膜形成成分を含有又は分散した
溶液をスプレー、ディップ等の方法でガラス表面にコー
トするいわゆる湿式コーティング法、減圧雰囲気下で膜
形成成分を蒸着ないし電圧等により加速してガラス表面
にコートするいわゆる乾式コーティング法、高エネルギ
ーのイオン等の加速粒子をガラス表面に当ててガラス表
面を削ったり、加速粒子を積層ないし打ち込む方法等が
ある。
2. Description of the Related Art Glass surface treatment methods widely used at present are roughly classified into a so-called wet coating method in which a solution containing or dispersing a required film-forming component is coated on the glass surface by a method such as spraying or dipping. A so-called dry coating method in which the film forming components are accelerated by vapor deposition or voltage under an atmosphere to coat the glass surface, a so-called dry coating method, where the accelerated particles such as high-energy ions are applied to the glass surface to scrape the glass surface, There is a method of driving.

【0003】また、ガラス表面をフッ酸等で溶解除去す
る方法やSO3 等を用いてガラス表面層のアルカリ成分
を反応除去する方法がある。また、圧力反応容器等を用
いて200℃程度の温度で加圧下に水・水蒸気等でガラ
ス表面層のアルカリ成分を反応抽出する方法が知られて
いる。上記ガラスの表面処理方法のうち、ガラス表面層
のアルカリ成分を除去し又はその濃度を低減するために
採られている方法は、SO3 等を用いてガラス表面のア
ルカリ成分を反応除去する方法、圧力反応容器等を用い
て水・水蒸気等でガラス表面層のアルカリ成分を反応抽
出する方法である。
Further, there is a method of dissolving and removing the glass surface with hydrofluoric acid or the like, or a method of reacting and removing an alkali component of the glass surface layer using SO 3 or the like. In addition, there is known a method in which an alkali component of a glass surface layer is reactively extracted with water, steam, or the like under pressure at a temperature of about 200 ° C. using a pressure reaction vessel or the like. Among the glass surface treatment methods, a method employed for removing an alkali component of a glass surface layer or reducing its concentration is a method of reacting and removing an alkali component on a glass surface using SO 3 or the like, This is a method in which an alkali component of a glass surface layer is reactively extracted with water, steam, or the like using a pressure reaction vessel or the like.

【0004】[0004]

【発明が解決しようとする課題】上記ガラス表面層のア
ルカリ成分を除去し又はその濃度を低減するために採ら
れている方法のうち、SO3 等を用いてガラス表面のア
ルカリ成分を反応除去する方法は表面のごく近傍の数十
〜数百nmの深さまでのわずかなアルカリ成分の濃度低
減しかできない。また、圧力反応容器等を用いて水・水
蒸気等でガラス表面のアルカリ成分を反応抽出する方法
では除去されるアルカリ成分の量もわずかであるのに加
えてアルカリ成分の除去に伴いガラス表面が粗雑な構造
となり光学的・物理的な欠陥として残存し、再処理が必
要とされたり、また、圧力反応容器を用いる高圧の危険
な作業となる。さらにこれらの従来法ではアルカリ金属
の除去・濃度低減はできても、アルカリ土類金属の除去
・濃度低減は一般的には困難である。
Among the methods employed to remove or reduce the concentration of the alkali component in the glass surface layer, the alkali component on the glass surface is reacted and removed using SO 3 or the like. The method can only slightly reduce the concentration of the alkali component to a depth of several tens to several hundreds of nanometers very close to the surface. In addition, in the method in which the alkali component on the glass surface is reactively extracted with water, steam, or the like using a pressure reaction vessel or the like, the amount of the alkali component to be removed is small, and the glass surface becomes rough due to the removal of the alkali component. It becomes a complicated structure, remains as an optical and physical defect, requires reprocessing, and is a dangerous operation at high pressure using a pressure reaction vessel. Furthermore, although these conventional methods can remove and reduce the concentration of an alkali metal, it is generally difficult to remove and reduce the concentration of an alkaline earth metal.

【0005】このように従来公知の方法では、コスト・
ガラスの品質両面にわたり満足すべき、ガラス表面のア
ルカリ濃度低減の技術に至っていない。本発明の目的
は、コスト・品質両面にわたり満足すべきガラス表面の
アルカリ濃度低減の技術を実現しようとするものであ
る。
[0005] As described above, in the conventionally known method, cost and cost are reduced.
The technology for reducing the alkali concentration on the glass surface, which is satisfactory in both aspects of glass quality, has not yet been achieved. An object of the present invention is to realize a technique for reducing alkali concentration on a glass surface which is satisfactory in both cost and quality.

【0006】[0006]

【課題を実現するための手段】本発明は、ガラスの表面
を処理する方法であって、少なくともガラス表面の温度
が該ガラスのガラス転移点以上であるガラスを0.01
規定以上の酸性の水溶液又は該水溶液から発生する蒸気
と接触させて、ガラス表面層のアルカリ成分を溶出除去
することにより、ガラス表面層のアルカリ濃度が中心層
部分より低く、かつ緻密な表面構造を有するガラス製品
を得ることを特徴とするガラスの表面処理方法である。
SUMMARY OF THE INVENTION The present invention is a method for treating the surface of a glass, wherein the temperature of the glass surface is at least equal to or higher than the glass transition point of the glass.
By contacting with an acidic aqueous solution or a vapor generated from the aqueous solution, the alkali component of the glass surface layer is eluted and removed, so that the alkali concentration of the glass surface layer is lower than that of the central layer portion, and a dense surface structure is obtained. A glass surface treatment method characterized by obtaining a glass product having the same.

【0007】本発明によれば、高温に加熱されたガラス
に酸性分子が水分子とともに接触することにより、水と
ガラス表面層のアルカリ成分との反応又はなんらかの相
互作用が進行し、ガラス表面からアルカリ成分が脱離す
るに従い、高温のガラス中に溶存しているアルカリ成分
が濃度勾配を補うべくガラス表面近傍に移動するなどし
て、さらにアルカリ成分の除去が進行することによっ
て、一定内部までのアルカリ成分の濃度が低減するもの
と推定される。
According to the present invention, when acidic molecules come into contact with glass heated at a high temperature together with water molecules, a reaction or some kind of interaction between water and an alkali component of the glass surface layer progresses, and alkalis are removed from the glass surface. As the components are desorbed, the alkali components dissolved in the high-temperature glass move to the vicinity of the glass surface to compensate for the concentration gradient, and the removal of the alkali components further progresses. It is estimated that the concentration of the component is reduced.

【0008】したがって、どの程度内部までアルカリ成
分の濃度が低減するかは、酸性分子とガラス中アルカリ
成分との反応、アルカリ成分の易動度、ガラスの温度、
処理時間等によって異なるが、いずれにしてもガラス中
のアルカリ成分が十分な易動度及び、酸性分子や水分子
との十分な相互作用を有するに足る高い活性状態にある
ことが肝要である。つまり、ガラスが十分高い温度レベ
ルと十分高い流動レベルにあることが重要である。
Therefore, the extent to which the concentration of the alkali component is reduced to the inside depends on the reaction between the acidic molecule and the alkali component in the glass, the mobility of the alkali component, the temperature of the glass,
In any case, it is important that the alkali component in the glass be in a sufficiently active state and have a sufficient mobility and a sufficient interaction with acidic molecules and water molecules, although it depends on the treatment time and the like. That is, it is important that the glass be at a sufficiently high temperature level and a sufficiently high flow level.

【0009】こうした高温・高流動下にガラスがある場
合には、除去されたアルカリ成分の化学的な結合や物理
的な欠落状態はただちに周囲の他の成分の化学結合や移
動により補完されるので、ガラスはなんらの実質的な欠
陥を残すことなく緻密な高品質の表面状態を与えること
になる。
When the glass is under such high temperature and high fluidity, the chemically bonded or physically missing state of the removed alkali component is immediately complemented by the chemical bonding or movement of other surrounding components. On the other hand, glass will give a dense, high quality surface state without leaving any substantial defects.

【0010】[0010]

【発明の実施の形態】本発明でいう水溶液から発生する
蒸気とは、水溶液を加熱するときに水溶液から発生する
気体であって、多くの場合水蒸気が主成分である。本発
明でいうガラス表面層とは、ガラス表面から深さ100
μm未満の部分をいう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The vapor generated from an aqueous solution as referred to in the present invention is a gas generated from an aqueous solution when the aqueous solution is heated, and in most cases, water vapor is a main component. The glass surface layer referred to in the present invention has a depth of 100 from the glass surface.
Refers to a portion smaller than μm.

【0011】本発明でいうアルカリ成分とは、いわゆる
アルカリ金属成分とアルカリ土類金属成分の両者を意味
し、具体的には、リチウム、ナトリウム、カリウム、ル
ビジウム、セシウム、フランシウム、ベリリウム、マグ
ネシウム、カルシウム、ストロンチウム、バリウム、ラ
ジウム等が例示される。
The alkali component referred to in the present invention means both a so-called alkali metal component and an alkaline earth metal component, and specifically includes lithium, sodium, potassium, rubidium, cesium, fransium, beryllium, magnesium, and calcium. , Strontium, barium, radium and the like.

【0012】本発明でいう中心層部分とは、ガラス表面
からの深さが100μm以上の部分である。本発明でい
う水溶液又は水溶液から発生する蒸気を含浸させた多孔
体とは、その内部に該水溶液又は該水溶液から発生する
蒸気を含む多孔体である。本発明でいう水溶液又は水溶
液から発生する蒸気を含浸させた親水性基材とは、その
内部に該水溶液又は該水溶液から発生する蒸気を含む多
孔体である。以下、「酸性の水溶液又は該水溶液から発
生する蒸気」を「酸性の水溶液又はその蒸気」と記す。
The central layer portion in the present invention is a portion having a depth of 100 μm or more from the glass surface. The porous body impregnated with the aqueous solution or the vapor generated from the aqueous solution in the present invention is a porous body containing the aqueous solution or the vapor generated from the aqueous solution therein. The hydrophilic substrate impregnated with the aqueous solution or the vapor generated from the aqueous solution in the present invention is a porous body containing the aqueous solution or the vapor generated from the aqueous solution therein. Hereinafter, “acidic aqueous solution or vapor generated from the aqueous solution” is referred to as “acidic aqueous solution or vapor thereof”.

【0013】本発明においては、少なくともガラス表面
の温度がガラス転移点以上の温度に保持された高温のガ
ラスと酸性の水溶液又はその蒸気とを一定時間接触させ
る。この際、ガラスを高い活性状態に維持するために、
ガラスの表面の粘度が102〜105 ポアズとなるよう
に、すなわち実質的に流動可能な状態にすることが好ま
しい。
In the present invention, a high-temperature glass in which at least the temperature of the glass surface is maintained at a temperature equal to or higher than the glass transition point is brought into contact with an acidic aqueous solution or its vapor for a certain period of time. At this time, in order to maintain the glass in a high active state,
It is preferable that the glass surface has a viscosity of 10 2 to 10 5 poise, that is, is in a substantially flowable state.

【0014】少なくともガラス表面の温度がガラス転移
点以上の温度に保持された高温のガラスと酸性の水溶液
又はその蒸気とを一定時間接触させる方法としては、前
記ガラスに酸性の水溶液又はその蒸気を一定時間噴射若
しくは噴霧する方法、前記ガラスに酸性の水溶液又はそ
の蒸気を含浸させた基材を一定時間接触させる方法、前
記ガラスに化学反応によって作製した酸性の水溶液又は
その蒸気を一定時間接触させる方法等、いずれの方法を
用いてもよい。
As a method of contacting a high-temperature glass having at least a glass surface temperature equal to or higher than the glass transition point with an acidic aqueous solution or its vapor for a certain period of time, the acidic aqueous solution or its vapor is brought into contact with the glass at a constant temperature. A method of time-spraying or spraying, a method of contacting the glass with a substrate impregnated with an acidic aqueous solution or vapor thereof for a certain period of time, a method of contacting the glass with an acidic aqueous solution produced by a chemical reaction or its vapor for a certain period of time, etc. Any method may be used.

【0015】前記の酸性の水溶液又はその蒸気を噴射又
は噴霧させる方法においては、高温のガラスに霧状の酸
性の水溶液又はその蒸気を常圧又は加圧下に噴射又は噴
霧させることができる。この際、少なくともガラス表面
の温度は該ガラスのガラス転移点以上の高温にあるため
に流動性を示し、特にガラスの粘度が102 〜105
アズである場合には、酸性の水溶液又はその蒸気との接
触、又は重力等によって意図しない変形が起る可能性が
高い。そのような場合にはなんらかの成形手段を組み合
わせて実施することが好ましい。
In the method of spraying or spraying the acidic aqueous solution or its vapor, the acidic aqueous solution or its vapor can be sprayed or sprayed on the high-temperature glass at normal pressure or under pressure. At this time, at least the temperature of the glass surface is a high temperature equal to or higher than the glass transition point of the glass, so that the glass exhibits fluidity. In particular, when the viscosity of the glass is 10 2 to 10 5 poise, an acidic aqueous solution or its vapor There is a high possibility that unintended deformation occurs due to contact with the object or gravity. In such a case, it is preferable to carry out by combining some molding means.

【0016】こうした観点から、酸性の水溶液又はその
蒸気を含浸させた基材を高温のガラスに接触させる方法
は、ガラスを意図する形状に維持ないし成形できるので
好ましい。前記基材としては、酸性の水溶液又はその蒸
気を含浸できる多孔体又は親水性基材が好ましく用いら
れる。親水性基材としては親水性多孔質カーボンを用い
ることがより好ましい。
From such a viewpoint, a method in which a substrate impregnated with an acidic aqueous solution or a vapor thereof is brought into contact with high-temperature glass is preferable because the glass can be maintained or formed in an intended shape. As the substrate, an acidic aqueous solution or a porous body or a hydrophilic substrate that can be impregnated with the vapor thereof is preferably used. It is more preferable to use hydrophilic porous carbon as the hydrophilic substrate.

【0017】本発明においては、少なくともガラス表面
の温度は該ガラスのガラス転移点以上の高温にあること
が必要であるが、酸性の水溶液又はその蒸気との接触下
にこうした高温に一定温度で維持することは容易ではな
く、一般的には時間の経過とともに温度は低下する。し
たがって本発明ではガラスを表面処理に必要な温度帯域
に所定範囲の時間保持することが重要である。
In the present invention, it is necessary that the temperature of the glass surface is at least a high temperature equal to or higher than the glass transition point of the glass, and is maintained at such a high temperature under a contact with an acidic aqueous solution or vapor thereof. It is not easy to do so, and generally the temperature drops over time. Therefore, in the present invention, it is important to keep the glass in a temperature range necessary for the surface treatment for a predetermined range of time.

【0018】この時間はガラスの温度によっても異なる
が、この時間があまりに短いとガラス表面層のアルカリ
成分が酸性の水溶液又はその蒸気と接触して溶出除去さ
れたり、さらにはガラス中をアルカリ成分が拡散・移動
したりすることが困難になる。これらの溶出や物理化学
的現象の発現に必要な時間として概略3秒以上、通常は
10秒以上の時間を要する。逆にこの時間があまりに長
くてガラス表面の温度がガラス転移点以下に下がると、
酸性の水溶液又はその蒸気の温度が低い場合にはガラス
にクラックが入ったりするおそれがある。ガラスの冷却
速度はガラスの熱容量、雰囲気温度、ガラス表面近傍の
気流等により一概には規定できないので、これらの要件
によって処理時間を設定することが望ましい。さらに
は、一回の処理で冷却したガラスを再び加熱して少なく
とも表面温度を所定の温度にまで上げて処理を繰り返す
ことも有用な実施形態である。
Although this time varies depending on the temperature of the glass, if this time is too short, the alkali component of the glass surface layer comes into contact with the acidic aqueous solution or its vapor to be eluted and removed, and further, the alkali component in the glass. It becomes difficult to diffuse and move. It takes about 3 seconds or more, usually 10 seconds or more, as the time required for the dissolution or the manifestation of the physicochemical phenomenon. Conversely, if this time is too long and the temperature of the glass surface falls below the glass transition point,
If the temperature of the acidic aqueous solution or its vapor is low, the glass may be cracked. Since the cooling rate of the glass cannot be unconditionally determined by the heat capacity of the glass, the ambient temperature, the air flow near the glass surface, and the like, it is desirable to set the processing time according to these requirements. Further, it is also a useful embodiment to reheat the glass cooled in one treatment and raise the surface temperature to at least a predetermined temperature and repeat the treatment.

【0019】また、酸性の水溶液又はその蒸気でガラス
の表面処理を行った後、引き続いて実質的に中性の水又
は水蒸気による該ガラスに表面処理を施すことも有効で
ある。この場合には酸性分子によってガラス中から除去
されたアルカリ成分と酸性分子との反応生成物等をガラ
ス表面から洗浄除去する効果も得られる。また、このよ
うな工程を繰り返し行ってもよい。
It is also effective that after the surface treatment of the glass with an acidic aqueous solution or its vapor, the glass is subsequently subjected to a surface treatment with substantially neutral water or steam. In this case, the effect of washing and removing the reaction product of the alkali component and the acidic molecule removed from the glass by the acidic molecule from the glass surface can be obtained. Further, such a step may be repeatedly performed.

【0020】本発明では処理に供するガラスの温度が本
質的に重要であって、少なくともガラス表面の温度がガ
ラス転移点以上であることが必要であるが、その具体的
な温度はガラス組成によって異なる。通常のソーダライ
ム系ガラスの場合ガラス転移点はおおむね500〜65
0℃の間にある。したがってこのようなソーダライムガ
ラスの場合には上記温度以上、好ましくは900℃以上
の温度で処理することが望ましく、ガラスの冷却等を考
慮すると処理を開始する温度としては1100℃以上が
好ましい。こうした好適な温度レベルはガラス組成によ
って異なるので、ガラスの特性に合わせて選定すること
が望ましい。
In the present invention, the temperature of the glass to be treated is essentially important, and it is necessary that at least the temperature of the glass surface is equal to or higher than the glass transition point, and the specific temperature depends on the glass composition. . In the case of ordinary soda-lime glass, the glass transition point is approximately 500 to 65.
Between 0 ° C. Therefore, in the case of such a soda lime glass, it is desirable to treat at a temperature higher than the above temperature, preferably 900 ° C. or higher. Considering cooling of the glass, the temperature at which the process is started is preferably 1100 ° C. or higher. Since such a suitable temperature level depends on the glass composition, it is desirable to select the temperature level according to the properties of the glass.

【0021】本発明で扱うガラスの種類はアルカリ成分
を含有すれば特に限定されず、一般的なソーダライムガ
ラス、ホウケイ酸ガラス、ブラウン管パネル用ガラス、
ディスプレイ用ガラス、透明導電性ガラスに用いる基板
ガラス、ガラス磁気ディスクに用いる基板ガラス、クリ
スタルガラス等各種のガラスを対象にできる。
The kind of glass used in the present invention is not particularly limited as long as the glass contains an alkali component, and general soda lime glass, borosilicate glass, glass for CRT panel,
Various types of glass such as display glass, substrate glass used for transparent conductive glass, substrate glass used for glass magnetic disks, and crystal glass can be used.

【0022】本発明の適用されるガラスの形態・形状と
しては平板状、曲板状、円柱状、角柱状、円管状、角管
状、繊維状、パネル状、ロート状、その他どのような形
状・形態であってもよく、具体的には板ガラス、ガラス
ファイバ、ブラウン管パネル等が例示される。
The form and shape of the glass to which the present invention is applied are flat, curved, cylindrical, prismatic, tubular, square tubular, fibrous, panel-like, funnel-like, and any other shapes and shapes. It may be in the form of a glass plate, a glass fiber, a CRT panel, or the like.

【0023】[0023]

【実施例】(例1)0.5規定の硫酸水溶液を含浸させ
た濾紙を内面に敷いた多孔性円筒(直径30mm、長さ
1000mm、外側から前記硫酸水溶液をスプレーで供
給)内に1300℃の溶融状態にあるソーダライムガラ
スを流下させる。このガラスの組成は酸化物換算で、シ
リカ71.5%(重量%、以下同じ)、アルミナ1.8
%、酸化マグネシウム4.2%、酸化カルシウム8.9
%、酸化ナトリウム13.0%、酸化カリウム0.5
%、無水硫酸0.2%であり、ガラス転移点は約560
℃である。
(Example 1) 1300 ° C. in a porous cylinder (diameter 30 mm, length 1000 mm, sprayed with the aqueous sulfuric acid solution from the outside) having a filter paper impregnated with 0.5 N aqueous sulfuric acid solution spread on the inner surface. The soda lime glass in the molten state is allowed to flow down. The composition of this glass is 71.5% of silica (weight%, the same applies hereinafter) and 1.8 of alumina in terms of oxide.
%, Magnesium oxide 4.2%, calcium oxide 8.9
%, Sodium oxide 13.0%, potassium oxide 0.5
%, Sulfuric anhydride 0.2%, and a glass transition point of about 560.
° C.

【0024】ガラスが円筒下端から出てくるまでに要し
た時間は30秒であった。また、円筒出口から出た直後
のガラス表面の温度は700℃であった。得られたガラ
スを徐冷炉にて一昼夜かけて室温まで徐冷した後、前記
表面処理をしたガラス表面の蛍光X線による組成分析の
結果は、酸化物換算で、シリカ73.0%、アルミナ
2.0%、酸化マグネシウム4.0%、酸化カルシウム
8.6%、酸化ナトリウム11.5%、酸化カリウム
0.5%、無水硫酸0.2%であった。すなわち、酸化
ナトリウムの減少が明らかに認められる。
The time required for the glass to emerge from the lower end of the cylinder was 30 seconds. The temperature of the glass surface immediately after exiting the cylindrical outlet was 700 ° C. After the obtained glass was gradually cooled to room temperature in an annealing furnace for 24 hours, the result of composition analysis of the surface-treated glass surface by fluorescent X-rays was 73.0% of silica and 2.10% of alumina in terms of oxide. 0%, magnesium oxide 4.0%, calcium oxide 8.6%, sodium oxide 11.5%, potassium oxide 0.5%, and sulfuric anhydride 0.2%. That is, a decrease in sodium oxide is clearly observed.

【0025】(例2)シリカ70%、アルミナ2%、酸
化マグネシウム4%、酸化カルシウム9%、酸化ナトリ
ウム13%、酸化カリウム0.5%、酸化鉄0.1%、
無水硫酸0.2%からなるソーダライムガラス(ガラス
転移点は約560℃)を1500℃で溶解した後、2規
定の硫酸水溶液を含浸させた親水性多孔質カーボンの円
板(直径20cm、8rpmで回転)の上に流下し、4
0秒後にガラスを取り出し別途準備したイオン交換水を
含浸させた前記のものと同一仕様の親水性多孔質カーボ
ンの円板の上に移し10秒後に取り出した。
(Example 2) 70% silica, 2% alumina, 4% magnesium oxide, 9% calcium oxide, 13% sodium oxide, 0.5% potassium oxide, 0.1% iron oxide,
A soda lime glass (glass transition point: about 560 ° C.) composed of 0.2% sulfuric anhydride is melted at 1500 ° C., and then a hydrophilic porous carbon disk (diameter 20 cm, 8 rpm) impregnated with a 2N aqueous sulfuric acid solution. 4)
After 0 seconds, the glass was taken out and transferred onto a hydrophilic porous carbon disk of the same specification as that described above impregnated with separately prepared ion-exchanged water, and taken out after 10 seconds.

【0026】取り出した直後のガラス表面の温度は60
0℃であった。例1と同様に徐冷した後、親水性多孔質
カーボンの円板と接触した面(処理面)と空気中で開放
されていた面(開放面)とを、ESCAで表面分析測定
した結果(シリコン、カルシウム、ナトリウムの合計を
100%とした、相対原子%表示)を表1に示す。表1
のESCA処理時間の欄には、各ESCA処理時間に対
応する、測定部分の表面からの深さを括弧内に示す。
The temperature of the glass surface immediately after being taken out is 60
It was 0 ° C. After slowly cooling in the same manner as in Example 1, the surface of the hydrophilic porous carbon in contact with the disk (treated surface) and the surface that had been opened in the air (open surface) were measured by surface analysis using ESCA ( Table 1 shows the relative atomic% (the total of silicon, calcium, and sodium is 100%). Table 1
In the column of ESCA processing time, the depth from the surface of the measurement portion corresponding to each ESCA processing time is shown in parentheses.

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかなとおり、処理面における
各アルカリ成分の量は開放面における各アルカリ成分に
対して有効に減少している。例えば表1中処理時間5分
(表面からの深さ20〜25nm相当)の場合、開放面
のカルシウムの相対モル濃度は14%であるのに対し
て、開放面のそれは0%にまで減少している。
As is apparent from Table 1, the amount of each alkali component on the treated surface is effectively reduced with respect to each alkali component on the open surface. For example, in Table 1, when the treatment time is 5 minutes (corresponding to a depth of 20 to 25 nm from the surface), the relative molar concentration of calcium on the open surface is 14%, whereas that on the open surface is reduced to 0%. ing.

【0029】[0029]

【発明の効果】本発明の表面処理によって、ガラス表面
近傍のアルカリ成分の濃度が一定深さまで減少し、しか
もガラス本来の緻密な表面構造が維持されるので、
(1)ガラス製品の焼け現象の軽減、(2)表面への導
電性付与等の機能性コートの阻害要因の軽減、(3)各
種物質との接触時のアルカリ成分の溶出低減、(4)各
種物質と接触した際の該物質へのアルカリ成分に起因す
る影響の軽減、(5)未処理ガラスと比較して機械的特
性は同等以上、(6)屈折率傾斜材料への応用の可能
性、等の効果があり、また、(7)特別な薬剤等を使用
しないので安価に表面処理を施しうる、(8)板ガラス
等の成形と同時に実施することもでき、コスト的にさら
に有利となりうる、(9)ガラスの種類や形状に関する
柔軟な対応ができる、(10)高圧反応容器等の特殊な
加圧装置を用いることも必要なく、安価なガラスの表面
処理方法である、等、生産上の効果・利点もある。
According to the surface treatment of the present invention, the concentration of the alkali component in the vicinity of the glass surface is reduced to a certain depth, and the original dense surface structure of the glass is maintained.
(1) Reduction of burning phenomenon of glass products, (2) Reduction of inhibiting factors of functional coating such as imparting conductivity to the surface, (3) Reduction of elution of alkali components upon contact with various substances, (4) Reduction of the influence of alkali components on various substances when in contact with the substances, (5) Mechanical properties equal to or better than untreated glass, (6) Possibility of application to refractive index gradient materials And (7) surface treatment can be performed at a low cost because no special chemicals or the like are used, and (8) it can be carried out simultaneously with the molding of a sheet glass or the like, which can be more advantageous in terms of cost. (9) It is possible to flexibly deal with the type and shape of glass, (10) It is not necessary to use a special pressurizing device such as a high-pressure reaction vessel, and it is an inexpensive glass surface treatment method. There are also the effects and advantages of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 勇 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Isamu Kaneko 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Asahi Glass Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガラスの表面を処理する方法であって、少
なくともガラス表面の温度が該ガラスのガラス転移点以
上であるガラスを0.01規定以上の酸性の水溶液又は
該水溶液から発生する蒸気と接触させて、ガラス表面層
のアルカリ成分を溶出除去することにより、ガラス表面
層のアルカリ濃度が中心層部分より低く、かつ緻密な表
面構造を有するガラス製品を得ることを特徴とするガラ
スの表面処理方法。
1. A method for treating the surface of a glass, wherein the glass having a temperature at least equal to or higher than the glass transition point of the glass is treated with an acidic aqueous solution of 0.01 N or more or vapor generated from the aqueous solution. A glass surface treatment characterized by obtaining a glass product having a dense surface structure in which the alkali concentration of the glass surface layer is lower than that of the central layer portion by contacting and eluting and removing an alkali component of the glass surface layer. Method.
【請求項2】表面処理に供するガラスの表面の粘度が1
2 〜105 ポアズで、該ガラスが実質的に流動可能な
状態で0.01規定以上の酸性の水溶液又は該水溶液か
ら発生する蒸気と接触させることを特徴とする請求項1
記載のガラスの表面処理方法。
2. The viscosity of the surface of glass to be subjected to a surface treatment is 1
2. The method according to claim 1, wherein the glass is brought into contact with an acidic aqueous solution of 0.01 N or more or vapor generated from the aqueous solution in a flowable state at a pressure of 0 2 to 10 5 poise.
The glass surface treatment method according to the above.
【請求項3】表面処理に用いる0.01規定以上の酸性
の水溶液又は該水溶液から発生する蒸気が該水溶液又は
該蒸気を含浸させた多孔体から供給されることを特徴と
する請求項1又は2記載のガラスの表面処理方法。
3. The method according to claim 1, wherein the aqueous solution having an acidity of 0.01 N or more used for the surface treatment or the vapor generated from the aqueous solution is supplied from the aqueous solution or the porous body impregnated with the vapor. 3. The method for surface treatment of glass according to 2.
【請求項4】表面処理に用いる0.01規定以上の酸性
の水溶液又は該水溶液から発生する蒸気が該水溶液又は
該蒸気を含浸させた親水性基材から供給されることを特
徴とする請求項1又は2記載のガラスの表面処理方法。
4. The method according to claim 1, wherein the aqueous solution of 0.01 N or more used for surface treatment or the vapor generated from the aqueous solution is supplied from the aqueous solution or the hydrophilic substrate impregnated with the vapor. 3. The method for surface treatment of glass according to 1 or 2.
【請求項5】ガラスを0.01規定以上の酸性の水溶液
又は該水溶液から発生する蒸気と接触させる工程に引き
続いて実質的に中性である水又は水蒸気と接触させる工
程を設けることを特徴とする請求項1、2、3又は4記
載のガラスの表面処理方法。
5. The method according to claim 1, further comprising the step of bringing the glass into contact with substantially neutral water or water vapor following the step of bringing the glass into contact with an acidic aqueous solution of 0.01 N or more or vapor generated from the aqueous solution. The method for surface treatment of glass according to claim 1, 2, 3, or 4.
JP10079714A 1998-03-26 1998-03-26 Surface treatment of glass Pending JPH11278875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10079714A JPH11278875A (en) 1998-03-26 1998-03-26 Surface treatment of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10079714A JPH11278875A (en) 1998-03-26 1998-03-26 Surface treatment of glass

Publications (1)

Publication Number Publication Date
JPH11278875A true JPH11278875A (en) 1999-10-12

Family

ID=13697887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10079714A Pending JPH11278875A (en) 1998-03-26 1998-03-26 Surface treatment of glass

Country Status (1)

Country Link
JP (1) JPH11278875A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170736A (en) * 2003-12-11 2005-06-30 Ishizuka Glass Co Ltd Oxidation reaction inhibiting glass material and oxidation reaction inhibiting glass container
WO2008068962A1 (en) * 2006-12-04 2008-06-12 Asahi Glass Co., Ltd. Surface-treated glass and process for producing the same
JP2009079597A (en) * 2002-09-30 2009-04-16 Unifrax I Llc Exhaust gas treatment device and method of manufacturing the same
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
WO2012014854A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR BATTERY, AND SOLAR BATTERY USING SAME
WO2014104302A1 (en) * 2012-12-27 2014-07-03 旭硝子株式会社 Float glass for chemical strengthening
US8887528B2 (en) 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
WO2014189003A1 (en) * 2013-05-20 2014-11-27 旭硝子株式会社 Glass substrate and cigs solar cell
WO2015115100A1 (en) 2014-01-31 2015-08-06 日本板硝子株式会社 Process for producing glass plate, and glass plate
CN104909581A (en) * 2014-03-10 2015-09-16 东京应化工业株式会社 Pretreatment method of glass substrate used for forming etching mask
CN105862171A (en) * 2016-04-07 2016-08-17 中原工学院 Preparation method of cuprous sulfide/carboxylation chitosan/glass fiber composite conductive fiber
WO2019049770A1 (en) * 2017-09-06 2019-03-14 富士フイルム株式会社 Chemical solution accommodating body
JP2019531249A (en) * 2016-09-29 2019-10-31 コーニング インコーポレイテッド Composition change of glass article by laser heating and manufacturing method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079597A (en) * 2002-09-30 2009-04-16 Unifrax I Llc Exhaust gas treatment device and method of manufacturing the same
JP4663778B2 (en) * 2002-09-30 2011-04-06 ユニフラックス ワン リミテッド ライアビリティ カンパニー Exhaust gas treatment apparatus and method for manufacturing the same
JP2005170736A (en) * 2003-12-11 2005-06-30 Ishizuka Glass Co Ltd Oxidation reaction inhibiting glass material and oxidation reaction inhibiting glass container
US8887528B2 (en) 2006-12-04 2014-11-18 Asahi Glass Company, Limited Process for producing surface-treated glass plate
WO2008068962A1 (en) * 2006-12-04 2008-06-12 Asahi Glass Co., Ltd. Surface-treated glass and process for producing the same
JP2008137867A (en) * 2006-12-04 2008-06-19 Asahi Glass Co Ltd Surface-treated glass and method for manufacturing the same
US8359885B2 (en) 2006-12-04 2013-01-29 Asahi Glass Company, Limited Surface-treated glass and process for producing the same
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
CN102639457A (en) * 2009-12-04 2012-08-15 旭硝子株式会社 Glass plate and process for production thereof
WO2012014854A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR BATTERY, AND SOLAR BATTERY USING SAME
US8895463B2 (en) 2010-07-26 2014-11-25 Asahi Glass Company, Limited Glass substrate for Cu-In-Ga-Se solar cell and solar cell using same
WO2014104302A1 (en) * 2012-12-27 2014-07-03 旭硝子株式会社 Float glass for chemical strengthening
JPWO2014104302A1 (en) * 2012-12-27 2017-01-19 旭硝子株式会社 Float glass for chemical strengthening
US9714193B2 (en) 2012-12-27 2017-07-25 Asahi Glass Company, Limited Float glass for chemical strengthening
WO2014189003A1 (en) * 2013-05-20 2014-11-27 旭硝子株式会社 Glass substrate and cigs solar cell
JPWO2014189003A1 (en) * 2013-05-20 2017-02-23 旭硝子株式会社 Glass substrate and CIGS solar cell
JPWO2015115100A1 (en) * 2014-01-31 2017-03-23 日本板硝子株式会社 Glass plate manufacturing method and glass plate
WO2015115100A1 (en) 2014-01-31 2015-08-06 日本板硝子株式会社 Process for producing glass plate, and glass plate
US10358381B2 (en) 2014-01-31 2019-07-23 Nippon Sheet Glass Company, Limited Method for producing glass sheet, and glass sheet
CN104909581A (en) * 2014-03-10 2015-09-16 东京应化工业株式会社 Pretreatment method of glass substrate used for forming etching mask
CN105862171A (en) * 2016-04-07 2016-08-17 中原工学院 Preparation method of cuprous sulfide/carboxylation chitosan/glass fiber composite conductive fiber
JP2019531249A (en) * 2016-09-29 2019-10-31 コーニング インコーポレイテッド Composition change of glass article by laser heating and manufacturing method thereof
US11236017B2 (en) 2016-09-29 2022-02-01 Corning Incorporated Compositional modification of glass articles through laser heating and methods for making the same
WO2019049770A1 (en) * 2017-09-06 2019-03-14 富士フイルム株式会社 Chemical solution accommodating body

Similar Documents

Publication Publication Date Title
JPH11278875A (en) Surface treatment of glass
US20100089097A1 (en) Method for the production of pharmaceutical packaging
JP5721348B2 (en) Glass manufacturing method
US4983255A (en) Process for removing metallic ions from items made of glass or ceramic materials
JP5564744B2 (en) Method for producing surface-treated glass plate
US20060075783A1 (en) Method for strengthening flat glass plate for display
JP2008500256A (en) Method for producing a hydrophobic coating, apparatus for carrying out the method and support with a hydrophobic coating
US3314772A (en) Corrosion retarding fluorine treatment of glass surfaces
CN105073675A (en) Ion beam treatment method for producing superhydrophilic glass materials
Mellott et al. Evaluation of surface preparation methods for glass
US4017291A (en) Process for the treatment of glass by metal migration
JPH11171599A (en) De-alkalization treatment of glass surface
US4762736A (en) Process for forming a coating
JP5725734B2 (en) Glass manufacturing method
JPH11171598A (en) Surface treatment of glass
US3526530A (en) Siliceous coatings
Armelao et al. Silica glass interaction with calcium hydroxide: a surface chemistry approach
Tichane et al. Microstructure of a Soda‐Lime Glass Surface
BE618738A (en) Advanced glass processing process
JP3446492B2 (en) Method for removing foreign matter from float glass substrate surface
WO2014192097A1 (en) Film formation method
US3795535A (en) Method of treating a surface of a glass article and the glass article produced therefrom
JPH07223843A (en) Production of chemically tempered glass
JPH0741335A (en) Treatment of glass container
US5350717A (en) Method for treating beta-spodumene ceramics