JPWO2009116300A1 - Method for producing low alkali glass container - Google Patents

Method for producing low alkali glass container Download PDF

Info

Publication number
JPWO2009116300A1
JPWO2009116300A1 JP2010503788A JP2010503788A JPWO2009116300A1 JP WO2009116300 A1 JPWO2009116300 A1 JP WO2009116300A1 JP 2010503788 A JP2010503788 A JP 2010503788A JP 2010503788 A JP2010503788 A JP 2010503788A JP WO2009116300 A1 JPWO2009116300 A1 JP WO2009116300A1
Authority
JP
Japan
Prior art keywords
glass container
acid
glass
low alkali
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010503788A
Other languages
Japanese (ja)
Inventor
孝敏 樋端
孝敏 樋端
昌宏 角谷
昌宏 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIWA SPECIAL GLASS CO., LTD.
Original Assignee
DAIWA SPECIAL GLASS CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIWA SPECIAL GLASS CO., LTD. filed Critical DAIWA SPECIAL GLASS CO., LTD.
Publication of JPWO2009116300A1 publication Critical patent/JPWO2009116300A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/11Reshaping by drawing without blowing, in combination with separating, e.g. for making ampoules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/20Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought
    • B08B9/28Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking
    • B08B9/283Cleaning containers, e.g. tanks by using apparatus into or on to which containers, e.g. bottles, jars, cans are brought the apparatus cleaning by splash, spray, or jet application, with or without soaking by gas jets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/09Reshaping the ends, e.g. as grooves, threads or mouths
    • C03B23/095Reshaping the ends, e.g. as grooves, threads or mouths by rolling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/09Reshaping the ends, e.g. as grooves, threads or mouths
    • C03B23/097Reshaping the ends, e.g. as grooves, threads or mouths by blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/18Re-forming and sealing ampoules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/06Tempering or quenching glass products using gas for glass products other than flat or bent glass plates, e.g. hollow glassware, lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass

Abstract

本発明は(1)ガラス管を加熱下に成形加工してガラス容器を得るガラス容器の製造工程、(2)ガラス容器の製造工程で得たガラス容器の内表面を、水、酸の水溶液または界面活性剤水溶液からなる洗浄液で洗浄する洗浄工程、および(3)洗浄工程で洗浄したガラス容器を加熱昇温、冷却により除歪する除歪工程、を含む低アルカリガラス容器の製造方法であり、ガラス内表面からのアルカリ成分の溶出が低減したガラス容器の製造方法を提供する。The present invention includes (1) a glass container manufacturing process for obtaining a glass container by molding a glass tube under heating, (2) an inner surface of the glass container obtained in the glass container manufacturing process, water, an acid aqueous solution or A method for producing a low alkali glass container, comprising: a washing step of washing with a washing solution comprising an aqueous surfactant solution; and (3) a distortion removing step of removing distortion by heating and heating and cooling the glass vessel washed in the washing step, Provided is a method for producing a glass container in which elution of alkali components from the inner surface of the glass is reduced.

Description

本発明は、医薬品、食品又は化粧品製品などを収納するアンプル、管瓶などのガラス容器の製造方法に関する。   The present invention relates to a method of manufacturing a glass container such as an ampoule or a tube bottle for storing pharmaceuticals, foods or cosmetic products.

医薬品、食品、化粧品等を収納する管瓶、バイアル、アンプル、シリンジ等のガラス容器はガラス管を加熱下に成形加工して製造される場合が多い。
その典型的な成形加工法として縦型成形方法がある。この方法は、一定の径を有し両端が開放されたガラス管を垂直に立て、口部となる下端部を加熱して軟化させ所望の形状に加工成形し、次いで、該ガラス管を所望の長さで切断後、ガラス容器の底部を形成し目的とするガラス容器を製造するものである。切断された残部のガラス管はガラス容器を1個製造した分だけ短くなり、前述の作業を繰り返すことによって、ガラス容器を大量生産することができる。この方法は機械を用いて自動的に行われ、通常は縦式成型機が用いられる。
In many cases, glass containers such as tube bottles, vials, ampoules, and syringes for storing pharmaceuticals, foods, cosmetics, and the like are manufactured by molding a glass tube under heating.
There is a vertical molding method as a typical molding method. In this method, a glass tube having a constant diameter and open at both ends is set up vertically, and a lower end portion serving as a mouth is heated and softened to be processed into a desired shape, and then the glass tube is formed into a desired shape. After cutting by length, the bottom part of a glass container is formed and the target glass container is manufactured. The remaining glass tube that has been cut is shortened by the amount of one glass container manufactured, and the glass container can be mass-produced by repeating the above operations. This method is automatically performed using a machine, and a vertical molding machine is usually used.

しかしながら、このようにして製造されるガラス容器に、例えば液状の医薬品等を収納すると、ガラス容器の内側のガラス表面からアルカリ成分が溶出して、医薬品等が汚染され、例えばpH値が上昇したり、場合によってはガラス表面から溶出したアルカリ成分が内溶液と反応して沈殿物が発生することで内溶液の品質が損われるという問題点があった。   However, when a liquid medicine or the like is stored in the glass container manufactured in this manner, the alkaline component is eluted from the glass surface inside the glass container and the medicine or the like is contaminated, for example, the pH value increases. In some cases, the alkaline component eluted from the glass surface reacts with the inner solution to generate a precipitate, which causes a problem that the quality of the inner solution is impaired.

これらの問題点を解決するために、成形加工の時の加熱条件をできるだけ低く抑えることでガラスの加工劣化を少なくする方法を採用したり、ガラス容器を製造後、ガラス内表面をコーティングする方法(例えば、特許文献1参照)を採用したり、ガラス内表面に硫酸アンモニウムを用いたサルファー処理を施す方法を採用したりしていた。
しかし、これらのガラス表面のコーティング処理、サルファー処理あるいは低温加熱によるガラス管の加工は工程が煩雑化したり、ガラス容器の製造原価が高くなる原因となっていた。
In order to solve these problems, a method of reducing the processing deterioration of the glass by suppressing the heating conditions during the molding process as low as possible, or a method of coating the inner surface of the glass after manufacturing the glass container ( For example, Patent Document 1) or a method of performing sulfur treatment using ammonium sulfate on the inner surface of the glass has been employed.
However, these glass surface coating treatments, sulfur treatments, or processing of glass tubes by low-temperature heating have caused the process to become complicated and the production costs of glass containers to be high.

特開平5−132065号公報JP-A-5-132065

医薬用ガラス容器の製造においては、製造されたガラス容器に例えば薬液等を充填した後の加熱滅菌工程や、保管中に、液との反応によりガラス表面からアルカリ成分等の溶離成分が溶出しないかあるいは極わずかにしか溶出しないガラス容器の提供が望まれる。しかも従来の方法のように、コーティング処理やサルファー処理等の特別な処理を行うことでガラス管からガラス容器を製造する工程が煩雑化しないことが望まれる。また、脱アルカリ過程で生じた硫酸ナトリウム等のブルームを製造後のガラス容器から除去するため、医薬品を充填する前のガラス容器を洗浄する工程が重厚にならないことも望まれる。
本発明は、特別な処理工程や処理設備等を導入することなく、簡単に製造でき、ガラス表面からアルカリ成分の溶出の少ない化学的耐久性に優れたガラス容器を提供することを目的とする。
In the manufacturing of glass containers for pharmaceuticals, elution components such as alkaline components are not eluted from the glass surface due to reaction with the liquid during the heat sterilization process after filling the manufactured glass containers, for example, with chemicals, etc. Alternatively, it is desired to provide a glass container that elutes very little. Moreover, it is desired that the process of manufacturing the glass container from the glass tube is not complicated by performing a special process such as a coating process or a sulfur process as in the conventional method. In addition, since the bloom such as sodium sulfate generated in the dealkalization process is removed from the glass container after the production, it is also desired that the step of washing the glass container before filling with the pharmaceutical agent does not become heavy.
An object of the present invention is to provide a glass container excellent in chemical durability that can be easily manufactured without introducing a special processing step, processing equipment, or the like, and in which elution of alkaline components from the glass surface is small.

本発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、垂直に立てたガラス管の下端をガスバーナー等で加熱して軟化させ、所望の形状に成形加工するときに加熱によってガラス質が変質してガラスの揮発成分(例えばNaO、KO)が発生し、ガラス管の開放された下端と上端の間の空間部を煙突効果によって上昇する際に、これらの揮発成分がガラス管内面に付着することでアルカリ成分を形成しガラス容器製造後にガラス表面から溶出するとの知見を得た。As a result of intensive studies in order to solve the above problems, the present inventors have heated the lower end of a vertically standing glass tube with a gas burner or the like to soften it and heat it when it is molded into a desired shape. When the glass quality is changed by the above, volatile components of glass (for example, Na 2 O, K 2 O) are generated, and when the space between the open lower end and the upper end of the glass tube is raised by the chimney effect, The knowledge that a volatile component adheres to the inner surface of the glass tube to form an alkali component and is eluted from the glass surface after the glass container was manufactured was obtained.

さらに本発明者等は、上記縦型成形法によりガラス管からガラス容器を得た後、熱履歴による歪みを除去するための除歪操作を行う前に、ガラス容器の内面を水で洗浄したところ、予想外かつ驚くべきことに、内面のガラス面からのアルカリ成分の溶出が極めて少ないガラス容器を製造しうることを見出した。本発明は、これらの知見に基づいて完成されたものである。   Furthermore, the present inventors obtained the glass container from the glass tube by the above vertical molding method, and then washed the inner surface of the glass container with water before performing the strain removing operation for removing the strain due to the thermal history. Unexpectedly and surprisingly, it has been found that a glass container in which elution of alkali components from the glass surface on the inner surface is extremely small can be produced. The present invention has been completed based on these findings.

すなわち、本発明は、
[1] (1)ガラス管を加熱下に成形加工してガラス容器を得るガラス容器の製造工程、(2)ガラス容器の製造工程で得たガラス容器の内表面を、水、酸の水溶液、界面活性剤水溶液、または界面活性剤を添加した酸の水溶液で洗浄する洗浄工程、および(3)洗浄工程で洗浄したガラス容器を加熱昇温した後に冷却して除歪する除歪工程を含むことを特徴とする低アルカリガラス容器の製造方法、
[2] 洗浄工程におけるガラス容器の温度が25〜350℃である前記[1]記載の低アルカリガラス容器の製造方法、
[3] 洗浄工程におけるガラス容器の温度が80〜150℃である前記[2]記載の低アルカリガラス容器の製造方法、
[4] 酸が、蟻酸、酢酸、シュウ酸、フタル酸、クエン酸、塩酸、硫酸および硝酸から選ばれる1種以上である前記[1]〜[3]のいずれかに記載の低アルカリガラス容器の製造方法、
[5] 酸が、蟻酸、酢酸、シュウ酸、フタル酸、およびクエン酸から選ばれる1種以上である前記[1]〜[4]のいずれかに記載の低アルカリガラス容器の製造方法、
[6] 除歪工程における雰囲気温度が550〜700℃である前記[1]〜[5]のいずれかに記載の低アルカリガラス容器の製造方法、
[7] 除歪工程における除歪時間が3〜40分である前記[1]〜[6]のいずれかに記載の低アルカリガラス容器の製造方法、および
[8] 除歪工程における雰囲気温度が600〜700℃であり、除歪時間が15〜35分である前記[1]〜[7]のいずれかに記載の低アルカリガラス容器の製造方法、
に関する。
That is, the present invention
[1] (1) A glass container manufacturing process for obtaining a glass container by forming a glass tube under heating, (2) an inner surface of the glass container obtained in the glass container manufacturing process, water, an aqueous solution of an acid, A washing step of washing with an aqueous surfactant solution or an aqueous solution of an acid to which a surfactant is added, and (3) a distortion removing step of removing distortion by heating and heating the glass container washed in the washing step. A method for producing a low alkali glass container,
[2] The method for producing a low alkali glass container according to [1] above, wherein the temperature of the glass container in the washing step is 25 to 350 ° C.
[3] The method for producing a low alkali glass container according to the above [2], wherein the temperature of the glass container in the washing step is 80 to 150 ° C.
[4] The low alkali glass container according to any one of [1] to [3], wherein the acid is at least one selected from formic acid, acetic acid, oxalic acid, phthalic acid, citric acid, hydrochloric acid, sulfuric acid, and nitric acid. Manufacturing method,
[5] The method for producing a low alkali glass container according to any one of [1] to [4], wherein the acid is at least one selected from formic acid, acetic acid, oxalic acid, phthalic acid, and citric acid,
[6] The method for producing a low alkali glass container according to any one of [1] to [5], wherein the atmospheric temperature in the strain removal step is 550 to 700 ° C.
[7] The method for producing a low alkali glass container according to any one of [1] to [6], wherein the strain removal time in the strain removal step is 3 to 40 minutes, and [8] the atmospheric temperature in the strain removal step. The method for producing a low alkali glass container according to any one of [1] to [7], wherein the temperature is 600 to 700 ° C and the strain removal time is 15 to 35 minutes.
About.

従来、アンプル、管瓶、シリンジ、バイアル、などの医薬品用、医療用ガラス容器においては、薬液等の充填後の加熱滅菌工程や、保管中などにガラス表面からガラスの組成成分が溶出し、内容液等のpH値を変化させたり、又は溶出成分が内溶液の組成成分と反応して沈殿物を発生させるなどの問題点があった。
本発明の低アルカリガラス容器の製造方法によれば、特別な処理工程を伴わずに、ガラス表面からのアルカリ成分の溶出が少なく、高度な清浄性が保持され、化学的耐久性に優れた低アルカリガラス容器を提供することができる。
Conventionally, in medical and medical glass containers such as ampoules, tube bottles, syringes, and vials, the glass composition components are eluted from the glass surface during the heat sterilization process after filling with chemicals and during storage. There have been problems such as changing the pH value of the liquid or the like, or the elution component reacts with the composition component of the inner solution to generate a precipitate.
According to the method for producing a low alkali glass container of the present invention, there is little elution of alkali components from the glass surface without a special treatment step, high cleanliness is maintained, and low chemical durability. An alkaline glass container can be provided.

本発明のガラス容器の製造方法の例を小工程毎に示す模式図である。It is a schematic diagram which shows the example of the manufacturing method of the glass container of this invention for every small process. 本発明のガラス容器の製造方法に好適に用いられる製造装置の1例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus used suitably for the manufacturing method of the glass container of this invention.

符号の説明Explanation of symbols

1・・・・ガラス管
2・・・・縦型成型機
3・・・・フィシュテールバーナー
4・・・・ローラー
5・・・・プランジャー
6・・・・ポイントバーナー
7・・・・全高板
8・・・・カットバーナー
9・・・・エアー
10・・・ガラス容器(バイアル)
11・・・ネットコンベアー
12・・・洗浄機
13・・・バーナーヒーター
14・・・除歪炉
1 .... Glass tube 2 .... Vertical molding machine 3 .... Fishtail burner 4 .... Roller 5 .... Plunger 6 .... Point burner 7 .... Overall height Plate 8 ... Cut burner 9 ... Air 10 ... Glass container (vial)
11 ... Net conveyor 12 ... Washing machine 13 ... Burner heater 14 ... Distortion furnace

本発明の材料として使用されるガラス管は、特に制限はないが、例えば硼硅酸ガラス、ソーダライムガラス等が好ましい。ガラス管の断面は通常は真円状であるが楕円形状等その他の形状でもよい。ガラス管の直径は特に制限はないが通常は10〜100mm程度である。ガラス管の長さも特に制限はないが通常1〜5m程度でよい。ガラス管は無色透明でもよいし、例えば褐色等に着色されていてもよい。   The glass tube used as the material of the present invention is not particularly limited, but for example, borosilicate glass and soda lime glass are preferable. The cross section of the glass tube is usually a perfect circle, but may be other shapes such as an ellipse. The diameter of the glass tube is not particularly limited, but is usually about 10 to 100 mm. Although the length of the glass tube is not particularly limited, it is usually about 1 to 5 m. The glass tube may be colorless and transparent, or may be colored brown, for example.

このようなガラス管を用いてガラス容器を製造する方法は従来充分に確立されているので、本発明における(1)ガラス容器の製造工程、もそれに従ってよい。
例えば、一定の径を有し両端が開放されたガラス管を垂直に立て、通常は加熱手段を備えた縦式成形機に下端部を挿入し、例えば、温度約1500〜1800℃のガスバーナーで加熱して、所望の管瓶の形状に成形しついで成形物と残部の上方に延びているガラス管とを加熱下に切り離すと共にガラス瓶と底部を形成する。ついで切り離されたガラス管の下端を断面がもとの真円となるよう成形する。成形加工後のガラス容器の温度は通常約300〜400℃となる。
Since the method of manufacturing a glass container using such a glass tube has been well established, (1) the manufacturing process of the glass container in the present invention may be followed.
For example, a glass tube having a constant diameter and open at both ends is vertically set up, and a lower end portion is usually inserted into a vertical molding machine equipped with a heating means. For example, a gas burner having a temperature of about 1500 to 1800 ° C. By heating, the glass tube is molded into the shape of a desired tube bottle, and then the molded product and the glass tube extending above the remainder are separated by heating, and the glass bottle and the bottom are formed. Next, the lower end of the cut glass tube is shaped so that the cross section becomes the original perfect circle. The temperature of the glass container after forming is usually about 300 to 400 ° C.

この操作を繰り返すことによって、ガラス容器を量産することができるが、この際、通常、上記したように、加熱によってガラス質が変質してガラスの揮発成分(例えばNaO、KO)が、ガラス管の開放された下端と上端の間の空間部を煙突効果によって上昇してガラス管内面に付着し、アルカリ質の溶離性成分を形成すると考えられる。By repeating this operation, the glass container can be mass-produced. At this time, normally, as described above, the glass quality is changed by heating and the volatile components (for example, Na 2 O, K 2 O) of the glass are changed. It is considered that the space between the open lower end and the upper end of the glass tube rises due to the chimney effect and adheres to the inner surface of the glass tube to form an alkaline elution component.

本発明は、上記(1)ガラス容器の製造工程の後、次に詳述する(2)ガラス容器の洗浄工程を経ることによって、ガラス管内面に付着したアルカリ質の溶離性成分を除去又は低減し、さらに(3)このようにして得られるガラス容器を除歪工程に付することによって、表面が均質化された低アルカリガラス容器の提供を可能としたものである。   The present invention removes or reduces alkaline eluent components adhering to the inner surface of the glass tube by passing through the glass container washing step described in detail below after the above (1) glass container manufacturing step. Further, (3) by subjecting the glass container thus obtained to a strain removal step, it is possible to provide a low alkali glass container whose surface is homogenized.

本発明における、(2)ガラス容器の洗浄工程は、ガラス容器の製造工程で得たガラス容器の内表面を、水、酸の水溶液、界面活性剤水溶液、または界面活性剤を添加した酸の水溶液などを洗浄液に用いて洗浄する工程である。
成形加工後の上記約300〜400℃のガラス容器を、必要により、例えば大気温下に放冷し、約350℃以下、好ましくは約150℃以下のガラス容器を洗浄液で洗浄する。ガラス容器の温度が高い程、ガラス容器内面に付着した溶離性成分の除去又は低減効果は高いと考えられるが、350℃を超えたガラス容器に洗浄液を接触させるとガラス容器が破損するおそれがある。また、洗浄時のガラス容器の下限温度は特に定められないが、通常、大気温(例えば約25℃)以上、好ましくは約80℃以上とされる。
洗浄工程における洗浄液の温度は限定されないが、約30〜約100℃の洗浄液を用いることが好ましく、約40℃〜約70℃の洗浄液を用いることがより好ましい。この範囲内であれば本発明の目的とするアルカリ成分の溶出が少なく高度な清浄性が保持されたガラス容器が得られる。
In the present invention, (2) the glass container cleaning step is carried out by using water, an acid aqueous solution, a surfactant aqueous solution, or an acid aqueous solution to which a surfactant is added, on the inner surface of the glass container obtained in the glass container manufacturing process. This is a process of cleaning using a cleaning liquid.
The glass container having a temperature of about 300 to 400 ° C. after the forming process is allowed to cool to, for example, an atmospheric temperature as necessary, and the glass container having a temperature of about 350 ° C. or less, preferably about 150 ° C. or less is washed with a cleaning liquid. It is considered that the higher the temperature of the glass container, the higher the effect of removing or reducing the eluting components adhering to the inner surface of the glass container, but there is a possibility that the glass container may be damaged if the cleaning liquid is brought into contact with the glass container exceeding 350 ° C. . Further, the lower limit temperature of the glass container at the time of cleaning is not particularly defined, but is usually set to an atmospheric temperature (for example, about 25 ° C.) or higher, preferably about 80 ° C. or higher.
The temperature of the cleaning liquid in the cleaning step is not limited, but a cleaning liquid of about 30 to about 100 ° C. is preferably used, and a cleaning liquid of about 40 ° C. to about 70 ° C. is more preferable. Within this range, a glass container can be obtained in which the elution of the alkaline component of the present invention is small and high cleanliness is maintained.

洗浄液としては、水、酸の水溶液、界面活性剤水溶液、または界面活性剤を添加した酸の水溶液が好ましく用いられ、ガラス容器内表面に付着したアルカリ質の溶離性成分の溶解性が高い点で、酸の水溶液、または界面活性剤を添加した酸の水溶液がより好ましい。
酸の水溶液に用いられる酸は有機酸と無機酸に大別され、有機酸の例としては、蟻酸、酢酸、シュウ酸、フタル酸およびクエン酸等が、また無機酸の例としては、塩酸、硫酸および硝酸等が挙げられる。これらの酸は、1種または2種以上を併用して用いてもよい。洗浄効果および取扱い性の面からクエン酸、シュウ酸、塩酸および硫酸が好ましく用いられる。有機酸は、残滓が生じても徐冷工程で二酸化炭素と水に燃焼分解するためガラス表面が非常に清浄に保たれる点で好ましく、中でもクエン酸が好ましく用いられる。
酸の濃度が高い程、アルカリ成分の溶解性が高い傾向にあるが、廃液の生成を含めた取扱い性の点から、通常、酸の濃度は約0.005〜1.0モル/L、好ましくは約0.01〜0.1モル/Lとされる。
As the cleaning liquid, water, an aqueous solution of an acid, a surfactant aqueous solution, or an aqueous solution of an acid to which a surfactant is added are preferably used, and the solubility of an alkaline elution component adhering to the inner surface of the glass container is high. An aqueous solution of an acid or an aqueous solution of an acid to which a surfactant is added is more preferable.
Acids used in aqueous acid solutions are broadly classified into organic acids and inorganic acids. Examples of organic acids include formic acid, acetic acid, oxalic acid, phthalic acid, and citric acid, and examples of inorganic acids include hydrochloric acid, Examples include sulfuric acid and nitric acid. These acids may be used alone or in combination of two or more. Citric acid, oxalic acid, hydrochloric acid and sulfuric acid are preferably used from the viewpoints of cleaning effect and handleability. The organic acid is preferable in that it is decomposed into carbon dioxide and water in the slow cooling step even if a residue is generated, so that the glass surface is kept very clean, and citric acid is preferably used.
The higher the acid concentration, the higher the solubility of the alkali component, but from the viewpoint of handleability including the generation of waste liquid, the acid concentration is usually about 0.005 to 1.0 mol / L, preferably Is about 0.01 to 0.1 mol / L.

上記洗浄液の中で界面活性剤水溶液、または界面活性剤を添加した酸の水溶液に用いられる界面活性剤は、特に限定されるものではないが、好ましい界面活性剤としては、ノニオン系界面活性剤が挙げられる。ノニオン系界面活性剤は、ポリエチレングリコール型と多価アルコール型に大別され、ポリエチレングリコール型としては、高級アルコール、脂肪酸、油脂、ポリプロピレングリコールもしくはアルキルフェノールのエチレンオキサイド付加物や、多価アルコール脂肪酸エステル、高級アルキルアミンもしくは脂肪酸アミドのエチレンオキサイド付加物等が挙げられ、多価アルコール型としては、グリセロール、ペンタエリスリトール、ソルビトールもしくはショ糖の脂肪酸エステルや多価アルコールのアルキルエーテル等が挙げられる。
界面活性剤の濃度は本発明の目的と効果を妨げない範囲で適宜選択すればよい。
The surfactant used for the surfactant aqueous solution or the acid aqueous solution to which the surfactant is added in the cleaning solution is not particularly limited, but a preferred surfactant is a nonionic surfactant. Can be mentioned. Nonionic surfactants are broadly classified into polyethylene glycol type and polyhydric alcohol type. As polyethylene glycol type, higher alcohol, fatty acid, fat, polypropylene glycol or alkylphenol ethylene oxide adduct, polyhydric alcohol fatty acid ester, Examples thereof include ethylene oxide adducts of higher alkylamines or fatty acid amides, and examples of polyhydric alcohol types include glycerol, pentaerythritol, sorbitol, fatty acid esters of sucrose, and alkyl ethers of polyhydric alcohols.
What is necessary is just to select the density | concentration of surfactant suitably in the range which does not prevent the objective and effect of this invention.

上記洗浄液を用いてガラス容器の内表面を洗浄液で洗浄するには、通常、ガラス容器を適宜の治具に挿入又は吊り下げなどした状態で、ガラス容器の口部から底部に向けて、例えばノズルから洗浄液を、通常、圧力をかけ吹き上げ噴霧することにより行う。ノズルの洗浄液噴霧口を、例えば洗浄液と同時に圧搾空気を吐出し得る様にして、洗浄液の噴霧圧を高めてもよい(ジェット噴霧洗浄とも称される)。
洗浄液として水以外の洗浄液を用いた場合は、洗浄液による洗浄後、清浄な水によるすすぎの工程、及び、例えば空気の吹き込みによる十分な水切りの工程を経て、(2)の洗浄工程が終了する。
また、上記(1)ガラス容器の製造工程では、微量ではあるがガラス容器の外表面に上記ガラスの揮発成分が付着することもあり得るので、洗浄液による洗浄をガラス容器の内表面の他に、ガラス容器の外表面に行ってもよい。
In order to clean the inner surface of the glass container with the cleaning liquid using the above-mentioned cleaning liquid, the glass container is usually inserted into an appropriate jig or suspended, and the glass container is directed from the mouth to the bottom, for example, a nozzle. The cleaning liquid is usually sprayed by spraying under pressure. The spray pressure of the cleaning liquid may be increased by allowing the cleaning liquid spray port of the nozzle to discharge compressed air simultaneously with the cleaning liquid, for example (also referred to as jet spray cleaning).
When a cleaning liquid other than water is used as the cleaning liquid, after the cleaning with the cleaning liquid, the cleaning process (2) is completed through a rinsing process with clean water and a sufficient draining process by blowing air, for example.
Moreover, in the manufacturing process of the above (1) glass container, since the volatile component of the glass may adhere to the outer surface of the glass container although it is a trace amount, the cleaning with the cleaning liquid is performed in addition to the inner surface of the glass container. You may go to the outer surface of the glass container.

尚、上記洗浄液によるガラス容器の内表面の洗浄は、超音波洗浄によってもよい。超音波洗浄の場合、通常、上記の洗浄液を用いて、内表面だけでなくガラス容器全体を洗浄し、すすぎ洗浄を行う。超音波洗浄を採用するか否かは、後述する縦型成型機、洗浄機および除歪炉などの生産ライン全体のレイアウトを考慮して決定される。   The cleaning of the inner surface of the glass container with the cleaning liquid may be performed by ultrasonic cleaning. In the case of ultrasonic cleaning, the above cleaning liquid is usually used to clean not only the inner surface but also the entire glass container, and then rinse. Whether or not to employ ultrasonic cleaning is determined in consideration of the layout of the entire production line such as a vertical molding machine, a cleaning machine, and a strain relief furnace, which will be described later.

本発明における(3)ガラス容器の除歪工程は、洗浄工程で洗浄したガラス容器を、通常、雰囲気温度が約550〜700℃、好ましくは約600〜700℃の除歪炉内で、加熱昇温して熱処理した後に冷却することにより行われる。除歪時間、すなわち熱処理(その後の冷却含む)時間は、特に限定されるものではないが、通常、約3〜40分、好ましくは約15〜35分、より好ましくは約25〜35分とされる。このような除歪工程により、ガラス管からガラス容器に成形加工した際の熱履歴に基づくガラス容器に残存する歪みが除去されると同時に、ガラス表面が均質化される。   (3) In the present invention, the glass container is subjected to a distortion removing step by heating the glass container washed in the washing step in a distortion eliminating furnace having an atmospheric temperature of about 550 to 700 ° C., preferably about 600 to 700 ° C. It is performed by cooling after heating and heat treatment. The strain removal time, that is, the heat treatment (including subsequent cooling) time is not particularly limited, but is usually about 3 to 40 minutes, preferably about 15 to 35 minutes, more preferably about 25 to 35 minutes. The By such a distortion removing step, distortion remaining in the glass container based on the thermal history when the glass tube is molded into the glass container is removed, and at the same time, the glass surface is homogenized.

本発明によって、アルカリ成分の溶出が減少した高度に清浄なガラス容器が提供されるが、所望によっては本発明においても、従来技術の例えばコーティング処理、サルファー処理等を行ってもよい。この場合本発明のガラス容器にあっては、このような処理は従来技術に比して、より簡単なものとなり得る。   According to the present invention, a highly clean glass container with reduced elution of alkaline components is provided. However, in the present invention, for example, a coating process, a sulfur process, and the like may be performed according to the present invention. In this case, in the glass container of the present invention, such treatment can be simpler than the prior art.

製造された管瓶、バイアル、アンプル、シリンジ等のガラス容器に収納される医薬品、食品、化粧品はどのような形状でもよい。例えば、固状、液状、気体状のいずれでもよく、医薬品を例にとると、錠剤、液剤、顆状剤、散剤、粉剤、軟膏剤、スプレー剤、パウダー剤、ジェル剤等どのような形状、性状でもよい。食品や化粧品についても同様にどのような形状、性状でもよい。   The pharmaceuticals, foods, and cosmetics stored in glass containers such as manufactured tube bottles, vials, ampoules, and syringes may have any shape. For example, it may be solid, liquid, or gaseous. Taking medicine as an example, tablets, liquids, condyles, powders, powders, ointments, sprays, powders, gels, etc. It may be a property. Any shape and property may be applied to food and cosmetics as well.

[実施例1]
直径21mm、長さ1m80cmのガラス管を使用し、以下の方法によりガラス容器、バイアルを得た。まず、図1の(1)に示すようにガラス管1の端部を上にして管瓶の縦型成型機2に挿入し、下端部をガスバーナーで加熱してガラスを軟化させ、瓶の開口部分の形状となるように成形加工した。以下、より詳しく図1にもとづいて工程順に説明する。
(1)第1加熱工程:ガラス管1の下端部を1200〜2000℃のフィッシュテールバーナー3で加熱する。
(2)肩部成形工程:ローラー4とプランジャー5とを用いて肩部成形する。
(3)第2加熱工程:1200〜2000℃のポイントバーナー6で加熱する。
(4)口部成形工程:ローラー4とプランジャー5とで口部成形する。
(5)瓶高さ決定工程:全高板7を用いて瓶高を決定する。
(6)カット工程:例えば温度1200〜2000℃のカットバーナー8を用いてカットする。
(7)第1底部成形工程:ポイントバーナー6を用いて底部を均質化する。
(8)第2底部成形工程:エアー9を吹き込み、1200〜2000℃のポイントバーナー6を用いて底部成形を完成する。
[Example 1]
Using a glass tube having a diameter of 21 mm and a length of 1 m80 cm, a glass container and a vial were obtained by the following method. First, as shown in FIG. 1 (1), the glass tube 1 is inserted into a vertical molding machine 2 with the end of the glass tube facing up, and the lower end is heated with a gas burner to soften the glass. Molding was performed so as to obtain the shape of the opening. Hereinafter, it demonstrates in order of a process in detail based on FIG.
(1) 1st heating process: The lower end part of the glass tube 1 is heated with the fish tail burner 3 of 1200-2000 degreeC.
(2) Shoulder molding step: shoulder molding using the roller 4 and the plunger 5.
(3) 2nd heating process: It heats with the point burner 6 of 1200-2000 degreeC.
(4) Mouth forming step: Mouth forming is performed with the roller 4 and the plunger 5.
(5) Bottle height determining step: The bottle height is determined using the total height plate 7.
(6) Cutting step: For example, cutting is performed using a cut burner 8 at a temperature of 1200 to 2000 ° C.
(7) 1st bottom part formation process: The bottom part is homogenized using the point burner 6. FIG.
(8) 2nd bottom part formation process: Air 9 is blown in and bottom part shaping | molding is completed using the point burner 6 of 1200-2000 degreeC.

このようにして得られたバイアル10を、ネットコンベアー11上に載置された治具に挿入した状態(図2)で洗浄機12に搬送し、大気温下に放冷し(図1における(9)冷却工程)、常温になったバイアルの内表面をシリンジを使用して10mLの洗浄液(純水)で吹き上げ洗浄を行い(図1における(10)洗浄工程)、エアー9を吹き込んで十分に水を切った(図1における(11)水切り工程)。尚、図2では細部を省略しているが、バイアル10は、ネットコンベアー11によって洗浄機12および除歪炉14に搬送可能とされている。
洗浄が終了したバイアル10を、バーナーヒーター13を備えた加熱炉有効長5mの除歪炉14に搬送し(図1における(12)除歪工程)、1)通常の除歪条件、すなわち除歪炉内の雰囲気温度650℃×25分で熱処理を行ったガラス容器(実施例1−1とする)と、2)熱処理条件を本製品の生産ラインで最適化し除歪炉内の雰囲気温度650℃×33分で熱処理を行ったガラス容器(実施例1−2とする)を得た。
The vial 10 thus obtained is transported to the washing machine 12 in a state of being inserted into a jig placed on the net conveyor 11 (FIG. 2) and allowed to cool to atmospheric temperature (( 9) Cooling step) The inside surface of the vial at room temperature is washed with 10 mL of cleaning liquid (pure water) using a syringe ((10) cleaning step in FIG. 1), and air 9 is blown in sufficiently. Water was drained ((11) draining step in FIG. 1). Although details are omitted in FIG. 2, the vial 10 can be transported to the washing machine 12 and the strain relief furnace 14 by the net conveyor 11.
The cleaned vial 10 is conveyed to a strainer 14 having an effective length of 5 m equipped with a burner heater 13 ((12) straining step in FIG. 1). 1) Normal straining conditions, that is, strain removal. A glass container (referred to as Example 1-1) that was heat-treated at an atmosphere temperature of 650 ° C. for 25 minutes in the furnace, and 2) an atmosphere temperature of 650 ° C. in the strain relief furnace by optimizing the heat treatment conditions in the production line of this product The glass container (it is set as Example 1-2) which heat-processed in * 33 minutes was obtained.

一方、比較のために、吹き上げ洗浄を全く行わなかった以外は、実施例1−1と同様にしてガラス容器(比較例1とする)を得た。
この3種類のガラス容器について、容器の全満容量の90%に相当する水を充填し、ゴム栓で密封した後オートクレーブを使用して121℃で60分加熱し、常温になるまで放冷した。その後、それぞれの内溶液を原子吸光分光光度計を用いて溶出ナトリウムの量を測定した。結果は表1に示すとおりである。
本発明により製造されたガラス容器は、従来品と比較すると、洗浄を行った実施例1−1では約30%、洗浄に加え徐冷条件を最適化した実施例1−2では約80%のナトリウム溶出量の低減効果が認められた。ナトリウム溶出量が低減したという意味で、本発明によって、表面処理剤を用いずに低アルカリガラス容器を製造し得ることが明らかとされた。
On the other hand, for comparison, a glass container (referred to as Comparative Example 1) was obtained in the same manner as in Example 1-1 except that no blow-up cleaning was performed.
These three types of glass containers were filled with water corresponding to 90% of the total capacity of the container, sealed with a rubber stopper, heated at 121 ° C. for 60 minutes using an autoclave, and allowed to cool to room temperature. . Thereafter, the amount of sodium eluted from each inner solution was measured using an atomic absorption spectrophotometer. The results are as shown in Table 1.
Compared with the conventional product, the glass container produced according to the present invention was about 30% in Example 1-1 where cleaning was performed, and about 80% in Example 1-2 where the slow cooling conditions were optimized in addition to cleaning. A reduction effect of sodium elution amount was observed. In the sense that the amount of sodium elution was reduced, it was clarified by the present invention that a low alkali glass container can be produced without using a surface treatment agent.

Figure 2009116300
Figure 2009116300

[実施例2]
直径21mm長さ1m80cmのガラス管を使用し、実施例1と同様に成形加工して得られたバイアル10を、実施例1と同様に洗浄機12に搬送した。大気温下に放冷し常温になったバイアルの内表面を、各種酸の水溶液である洗浄液で吹き上げ洗浄を行い、純水ですすいだ後、エアー9を吹き込んで十分に水を切った。
洗浄が終了したバイアルを実施例1で用いた除歪炉14にて、除歪温度650℃、除歪時間25分(ラインスピード20cm/分)の条件で熱処理を行い、酸の種類、濃度により区分し、表2に示すとおりこれらを実施例2−1〜2−4とした。
一方、比較のために、各種酸の水溶液による吹き上げ洗浄を全く行わなかった以外は、実施例2と同様にしてガラス容器を得た(比較例2)。
処理の終了したガラス容器に容器の全満容量の90%に相当する水を充填し、ゴム栓で密封した後オートクレーブを使用して121℃で60分加熱し常温になるまで放冷した。その後、それぞれの内溶液の溶出ナトリウムの量を原子吸光分光光度計を用いて測定した。測定の結果を表2に示す。
本発明により製造されたガラス容器は、従来品と比較すると、酸の種類や濃度に拘わらず90%以上のナトリウム溶出量の低減効果が認められた。傾向として酸の濃度が高い程、ナトリウム成分の洗浄効果が向上する傾向が認められた。ナトリウム溶出量が低減したという意味で、本発明によって、表面処理剤を用いずに低アルカリガラス容器を製造し得ることが明らかとされた。
[Example 2]
Using a glass tube having a diameter of 21 mm and a length of 1 m80 cm, the vial 10 obtained by molding in the same manner as in Example 1 was conveyed to the washing machine 12 in the same manner as in Example 1. The inner surface of the vial that was allowed to cool to ambient temperature and washed at room temperature was blown up with a cleaning solution that is an aqueous solution of various acids, rinsed with pure water, and then air 9 was blown to sufficiently drain the water.
The vial after washing was heat-treated in the strain removal furnace 14 used in Example 1 under the conditions of a strain removal temperature of 650 ° C. and a strain removal time of 25 minutes (line speed 20 cm / minute). These were classified into Examples 2-1 to 2-4 as shown in Table 2.
On the other hand, for comparison, a glass container was obtained in the same manner as in Example 2 except that none of the spray cleaning with various acid aqueous solutions was performed (Comparative Example 2).
A glass container after the treatment was filled with water corresponding to 90% of the full capacity of the container, sealed with a rubber stopper, heated at 121 ° C. for 60 minutes using an autoclave, and allowed to cool to room temperature. Thereafter, the amount of sodium eluted from each inner solution was measured using an atomic absorption spectrophotometer. Table 2 shows the measurement results.
Compared with the conventional product, the glass container produced according to the present invention was found to have a sodium elution amount reduction effect of 90% or more regardless of the type and concentration of the acid. As a tendency, the higher the acid concentration, the higher the cleaning effect of the sodium component was observed. In the sense that the amount of sodium elution was reduced, it was clarified by the present invention that a low alkali glass container can be produced without using a surface treatment agent.

Figure 2009116300
Figure 2009116300

[実施例3]
実施例2と同様にしてバイアル10を成形加工し、酸の水溶液を下記の各種洗浄液に置き換えて洗浄液で吹き上げ洗浄を行い、純水ですすいだ後、エアー9を吹き込んで十分に水を切った。
洗浄液1:純水1Lに界面活性剤を20ml添加した水溶液
洗浄液2:クエン酸(0.01mol/L)1Lに界面活性剤を20ml添加した水溶液
(界面活性剤はレオドールTW−O120V(25質量%希釈、ノニオン系界面活性剤、成分:ポリオキシエチレンソルビタンモノオレエート、花王株式会社製)を使用した。)
洗浄が終了したバイアルを実施例1で用いた除歪炉14にて、除歪温度650℃、除歪時間25分(ラインスピード20cm/分)の条件で熱処理を行い、表3に示すとおりこれらを実施例3−1、実施例3−2とした。
一方、比較のために、洗浄液による吹き上げ洗浄を全く行わなかった以外は同様にしてガラス容器を得た(比較例3)。
処理の終了したガラス容器を実施例2と同様にして、それぞれの内溶液の溶出ナトリウムの量を測定した。
測定の結果を表3に示す。
[Example 3]
The vial 10 was formed and processed in the same manner as in Example 2, and the aqueous solution of acid was replaced with the following various cleaning liquids to perform cleaning by blowing up with cleaning liquids. After rinsing with pure water, air 9 was blown to sufficiently drain the water. .
Cleaning solution 1: Aqueous solution of 20 ml of surfactant added to 1 L of pure water Cleaning solution 2: Aqueous solution of 20 ml of surfactant added to 1 L of citric acid (0.01 mol / L) (Surfactant is Rheodor TW-O120V (25% by mass) Dilution, nonionic surfactant, component: polyoxyethylene sorbitan monooleate, manufactured by Kao Corporation) was used.)
The vials that had been washed were heat-treated in the strain removal furnace 14 used in Example 1 under the conditions of a strain removal temperature of 650 ° C. and a strain removal time of 25 minutes (line speed 20 cm / minute). Were taken as Example 3-1 and Example 3-2.
On the other hand, for comparison, a glass container was obtained in the same manner except that no blow-up cleaning with a cleaning liquid was performed (Comparative Example 3).
In the same manner as in Example 2, the amount of elution sodium in each inner solution was measured for the glass containers that had been treated.
Table 3 shows the measurement results.

Figure 2009116300
Figure 2009116300

表3より、界面活性剤を添加した水や界面活性剤を添加した酸の水溶液で洗浄することでナトリウム成分の除去効果が向上し、ナトリウム溶出量が極めて低減されたガラス容器が得られることが認められた。   From Table 3, the effect of removing the sodium component is improved by washing with a surfactant-added water or an acid aqueous solution to which a surfactant is added, and a glass container with an extremely reduced sodium elution amount can be obtained. Admitted.

Claims (8)

(1)ガラス管を加熱下に成形加工してガラス容器を得るガラス容器の製造工程、
(2)ガラス容器の製造工程で得たガラス容器の内表面を、水、酸の水溶液、界面活性剤水溶液、または界面活性剤を添加した酸の水溶液で洗浄する洗浄工程、および
(3)洗浄工程で洗浄したガラス容器を加熱昇温した後に冷却して除歪する除歪工程
を含むことを特徴とする低アルカリガラス容器の製造方法。
(1) A glass container manufacturing process in which a glass tube is obtained by forming a glass tube under heating,
(2) A cleaning process for cleaning the inner surface of the glass container obtained in the manufacturing process of the glass container with water, an aqueous acid solution, an aqueous surfactant solution, or an aqueous acid solution to which a surfactant is added, and (3) cleaning A method for producing a low alkali glass container, comprising a distortion removing step of cooling and removing distortion after heating and heating the glass container washed in the step.
洗浄工程におけるガラス容器の温度が25〜350℃である請求項1記載の低アルカリガラス容器の製造方法。   The manufacturing method of the low alkali glass container of Claim 1 whose temperature of the glass container in a washing | cleaning process is 25-350 degreeC. 洗浄工程におけるガラス容器の温度が80〜150℃である請求項2記載の低アルカリガラス容器の製造方法。   The manufacturing method of the low alkali glass container of Claim 2 whose temperature of the glass container in a washing | cleaning process is 80-150 degreeC. 酸が、蟻酸、酢酸、シュウ酸、フタル酸、クエン酸、塩酸、硫酸および硝酸から選ばれる1種以上である請求項1〜3のいずれか1項に記載の低アルカリガラス容器の製造方法。   The method for producing a low alkali glass container according to any one of claims 1 to 3, wherein the acid is at least one selected from formic acid, acetic acid, oxalic acid, phthalic acid, citric acid, hydrochloric acid, sulfuric acid and nitric acid. 酸が、蟻酸、酢酸、シュウ酸、フタル酸、およびクエン酸から選ばれる1種以上である請求項1〜4のいずれか1項に記載の低アルカリガラス容器の製造方法。   The method for producing a low alkali glass container according to any one of claims 1 to 4, wherein the acid is at least one selected from formic acid, acetic acid, oxalic acid, phthalic acid, and citric acid. 除歪工程における雰囲気温度が550〜700℃である請求項1〜5のいずれか1項に記載の低アルカリガラス容器の製造方法。   The manufacturing method of the low alkali glass container of any one of Claims 1-5 whose atmospheric temperature in a distortion removal process is 550-700 degreeC. 除歪工程における除歪時間が3〜40分である請求項1〜6のいずれか1項に記載の低アルカリガラス容器の製造方法。   The method for producing a low alkali glass container according to any one of claims 1 to 6, wherein the strain removal time in the strain removal step is 3 to 40 minutes. 除歪工程における雰囲気温度が600〜700℃であり、除歪時間が15〜35分である請求項1〜7のいずれか1項に記載の低アルカリガラス容器の製造方法。   The manufacturing method of the low alkali glass container of any one of Claims 1-7 whose atmospheric temperature in a distortion removal process is 600-700 degreeC, and whose distortion removal time is 15-35 minutes.
JP2010503788A 2008-03-21 2009-03-19 Method for producing low alkali glass container Pending JPWO2009116300A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008074583 2008-03-21
JP2008074583 2008-03-21
PCT/JP2009/001243 WO2009116300A1 (en) 2008-03-21 2009-03-19 Process for producing low alkali glass containers

Publications (1)

Publication Number Publication Date
JPWO2009116300A1 true JPWO2009116300A1 (en) 2011-07-21

Family

ID=41090711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010503788A Pending JPWO2009116300A1 (en) 2008-03-21 2009-03-19 Method for producing low alkali glass container

Country Status (2)

Country Link
JP (1) JPWO2009116300A1 (en)
WO (1) WO2009116300A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038776A1 (en) * 2008-10-01 2010-04-08 大和特殊硝子株式会社 Apparatus for manufacturing glass products
JP5853520B2 (en) * 2011-09-14 2016-02-09 ニプロ株式会社 Glass bottle manufacturing method
US9034442B2 (en) * 2012-11-30 2015-05-19 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance
FR3017613B1 (en) * 2014-02-18 2020-03-13 Glass Surface Technology METHOD AND DEVICE FOR PASSIVATING THE INTERNAL SURFACE OF A GLASS BOTTLE AND BOTTLE OBTAINED WITH SUCH A METHOD.
DE102014214083C5 (en) 2014-07-18 2021-04-08 Schott Ag Device and method for the thermal treatment of an annular region of an inner surface of a glass container made from a borosilicate tubular glass
JP6159304B2 (en) * 2014-09-19 2017-07-05 大和特殊硝子株式会社 Manufacturing method of glass container
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter
FR3028778B1 (en) * 2014-11-26 2019-04-12 Glass Surface Technology PROCESS FOR PRODUCING A COATING LAYER OF THE INTERNAL SIDE OF A CONTAINER AND CONTAINER OBTAINED WITH SUCH A METHOD
CN107531544B (en) * 2015-04-24 2020-12-22 尼普洛株式会社 Method for producing glass medical container and flame spraying device with rotating device
CN106396354A (en) * 2016-08-30 2017-02-15 江苏潮华玻璃制品有限公司 Technology for preventing glass bottle bottom from being broken caused by freeze-drying
CN106380061A (en) * 2016-08-30 2017-02-08 江苏潮华玻璃制品有限公司 Glass bottle pressure control technology
DE102016124833A1 (en) * 2016-12-19 2018-06-21 Schott Ag Method for producing a hollow glass product from a glass tube semifinished product with markings, as well as uses thereof
DE102016125129A1 (en) 2016-12-21 2018-06-21 Schott Ag A method for producing a glass tube semi-finished product or a hollow glass product produced therefrom with markings, as well as uses thereof
DE102017128413A1 (en) * 2017-11-30 2019-06-06 Schott Ag Process for producing a glass article
WO2019225568A1 (en) 2018-05-21 2019-11-28 中外製薬株式会社 Lyophilized formulation sealed in glass vial
JP6768179B1 (en) * 2019-05-17 2020-10-14 大和特殊硝子株式会社 Glass container
WO2020235496A1 (en) * 2019-05-17 2020-11-26 大和特殊硝子株式会社 Glass container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153846A (en) * 1988-12-07 1990-06-13 Murase Glass Kk Production of low-alkali glass container
JPH04164839A (en) * 1990-10-30 1992-06-10 Nippon Electric Glass Co Ltd Treatment of inner surface of glass tube bottle
JPH04187545A (en) * 1990-11-20 1992-07-06 Nippon Electric Glass Co Ltd Method for treating inner surface of glass tube bottle
JPH11171599A (en) * 1997-12-17 1999-06-29 Asahi Glass Co Ltd De-alkalization treatment of glass surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL237954A1 (en) * 1981-08-21 1983-03-14 Schott Ruhrglas Method of manufacturing tubular vials and ampoules of glass tubes
JPS63170233A (en) * 1987-01-06 1988-07-14 Nichiden Rika Glass Kk Production of tubular glass bottle and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153846A (en) * 1988-12-07 1990-06-13 Murase Glass Kk Production of low-alkali glass container
JPH04164839A (en) * 1990-10-30 1992-06-10 Nippon Electric Glass Co Ltd Treatment of inner surface of glass tube bottle
JPH04187545A (en) * 1990-11-20 1992-07-06 Nippon Electric Glass Co Ltd Method for treating inner surface of glass tube bottle
JPH11171599A (en) * 1997-12-17 1999-06-29 Asahi Glass Co Ltd De-alkalization treatment of glass surface

Also Published As

Publication number Publication date
WO2009116300A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
WO2009116300A1 (en) Process for producing low alkali glass containers
JP6159304B2 (en) Manufacturing method of glass container
EP3006411B1 (en) Method for manufacturing tubular glass containers for pharmaceutical use
JP2007111886A (en) Preform sterilizing method
JP2023002560A (en) Aseptic filling machine and aseptic filling method
WO2010038776A1 (en) Apparatus for manufacturing glass products
US3249246A (en) Treatment of newly formed glass articles
JP6627767B2 (en) Carbonated beverage filling method and apparatus
JPH02153846A (en) Production of low-alkali glass container
JP2021120304A (en) Sterilizing filling machine and method of cooling filling valve of sterilizing filling machine
JP6548091B2 (en) Method of verifying content filling system and content filling system
JP2023024515A (en) Aseptic filling method and aseptic filling machine
JP2019064682A (en) Sterilization method of aseptic filling machine
WO2020235496A1 (en) Glass container
WO2021182241A1 (en) Aseptic filling method and aseptic filling machine
JP6768179B1 (en) Glass container
JP2019089691A (en) Glass container
US20210078055A1 (en) Method of preventing lamellar silica formation in glass container
CN207754476U (en) A kind of pasteurization machine for vacuum-packed food
CN108969776A (en) A kind of method for cleaning and disinfecting of condensed milk vial
JP2834649B2 (en) Bottle sterilization method
JP7428169B2 (en) Method for cleaning containers sealed by aseptic filling machine and aseptic filling machine
JP6859746B2 (en) Aseptic filling method and equipment
WO2023032754A1 (en) Method for washing sealed container outer surface washing device, and aseptic filler
JP6330884B2 (en) Aseptic filling machine and aseptic filling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204