JPH0317775B2 - - Google Patents

Info

Publication number
JPH0317775B2
JPH0317775B2 JP60298136A JP29813685A JPH0317775B2 JP H0317775 B2 JPH0317775 B2 JP H0317775B2 JP 60298136 A JP60298136 A JP 60298136A JP 29813685 A JP29813685 A JP 29813685A JP H0317775 B2 JPH0317775 B2 JP H0317775B2
Authority
JP
Japan
Prior art keywords
temperature
sublimation
pressure
quartz glass
striae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60298136A
Other languages
Japanese (ja)
Other versions
JPS62158121A (en
Inventor
Katsuhiko Kenmochi
Shigeru Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP29813685A priority Critical patent/JPS62158121A/en
Publication of JPS62158121A publication Critical patent/JPS62158121A/en
Publication of JPH0317775B2 publication Critical patent/JPH0317775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、光学的に不均一な石英ガラスを光学
的に均質化する方法に関し、いずれの方法にも均
一な光学的性質を有する光学用石英ガラスの製造
方法を提供するものである。 (従来の技術とその問題点) 光学用ガラスは、均一な屈折率をもつことが不
可欠である。石英ガラスにおける屈折率の不均一
分布の代表的なものは、原料(水晶等)粒子の不
完全溶融によつて生ずる粒状構造やガラスの成長
温度のゆらぎによつて導入される脈理と呼ばれる
成長縞である。 軟化点が比較的低い一般の光学用ガラスは、高
温に加熱して105ポイズ以下まで粘度を下げ、こ
れを機械的に撹拌して均質化されている。しかし
ながら、珪酸含有量が99.5重量%以上の石英ガラ
スを常圧下に高温に加熱すると、粘度の低下が機
械的撹拌を行なうに充分な程度になるより前に昇
華が著しくなるので、石英ガラスを撹拌によつて
均質化することは大変困難であつた。 (問題点を解決するための手段) 本発明者らは、石英ガラスの光学的均質性を高
める方法を種々研究検討した結果、従来は著しい
昇華現象のために全く検討されていなかつた高温
領域、例えば、その酸化珪素の沸点以上のような
高温領域に加熱した場合でも、アルゴンガス雰囲
気中で昇華や蒸発を抑制しながら行うと、機械的
撹拌なしに光学的均質化が行なわれることを知見
し、本発明を完成させた。 本発明の方法では、高温とアルゴンガス高圧を
同時に加えることが必要である。大気圧の下で石
英ガラスの昇華が問題にならない温度は1700℃以
下である。しかしこの温度では、1ケ月間静止状
態で加熱しても脈理や粒状構造はほとんど消失せ
ず、また粘度は108ポイズ以上であるために機械
的撹拌を行うことが非常に困難である。2300℃く
らいになつてはじめて105ポイズ程度の粘度とな
り、機械的撹拌が可能となるが、このような高温
での撹拌を可能にする耐火物容器が工業的に入手
できない。更に、もしも常圧でこのような高温に
加熱すれば、激しく昇華・蒸発が起こり、ガラス
は数分のうちになくなつてしまう。平衡論的に
は、昇華・蒸発成分である酸化珪素(SiO)ガス
が高圧で存在すれば、好ましくは平衡分圧で存在
すれば、昇華・蒸発は質量作用の法則に従つて防
止出来るはずであるが、SiOは炉内の低温部分に
沈着析出して害となるし、これを補充するために
更に昇華・蒸発が起こつて結局昇華・蒸発を抑止
することはできない。 我々はこれを抑止する方法を種々研究した結
果、二酸化珪素の昇華・蒸発速度が高圧アルゴン
ガス雰囲気の圧力に著しく依存することがわかつ
た。実験によれば、加熱温度における二酸化珪素
の飽和蒸気圧の5倍以上のアルゴン高圧ガス雰囲
気中では、30分間加熱した場合でもその昇華減量
は20%以下である。従つて、所要の温度、圧力お
よび加熱時間がそれぞれの関連の下で最適化され
ることが重要である。本発明の方法においては、
アルゴンガスが雰囲気ガスとして用いられる。他
の不活性ガスでは、酸化珪素の昇華・蒸発を抑制
する効果が充分でないので使用できない。本発明
方法に用いられる雰囲気ガスとしてのアルゴンガ
スは、可及的純粋なものが好ましいが、工業用ア
ルゴンガスが実用的に有利に用いられる。 不均一な石英ガラスの光学的均質化が達成され
る加熱時間は、その加熱温度条件によつて相異
し、例えば、1900℃で1ケ月、2400℃では5分以
下といつたように著しく温度に依存する。このよ
うな加熱温度と時間の関係について種々検討した
結果、工業的に実施可能で生産効率の高い均質化
条件を最適化した結果は、例えば、2200℃、5気
圧のアルゴンガス中で2時間加熱すると、すべて
の粒状構造や脈理は消滅し、また2200〜2400℃の
間の温度では、5〜25気圧2時間〜5分の間の範
囲での選択された組み合わせによつて同様の結果
が得られることが判つた。 本発明における加熱処理温度が、1800℃未満で
は脈理は消失し難く、また2400℃を超える温度
は、それ以上の高温をグラフアイトヒーターで得
ることが困難なため実用的でなく、更に25気圧以
上の圧力容器のコストが大きいこと及び加熱時間
が5分以下に短縮されても生産効率への寄与がわ
ずかであるため採用し難い。 (発明の効果) 以上述べたように、本発明の方法によれば、従
来、光学的均質化が困難であつた石英ガラスに対
し脈理等の不均一性を容易になくすことができ、
結果としてすぐれた光学用ガラスを提供すること
ができる。 (実施例) 実施例1〜6及び比較例1〜2 常圧及び5〜30気圧まで加圧可能なグラフアイ
トヒーターを設けた雰囲気加熱炉を用い、その中
に、直径98mm、高さ70mmの強い脈理と粒状構造を
有する天然石英ガラス柱(ヘラウス社、Herasil
)を入れた、内径100mm、高さ100mmのルツボを
セツトし、第1表に示した圧力、温度、時間条件
で加熱した。 雰囲気ガスには、工業用の純アルゴンガスを用
いた。30分間の加熱前後の重量を測定し、昇華減
量(%)を求めた。それら各例の測定結果を第1
図に示した。 30分間の加熱処理後の石英ガラス柱の上下2面
を平行に光学研摩し、各例の点光源投影法による
目視脈理観察結果と、レーザー干渉計を用いた精
密脈理検査結果を定性的に第1表にまとめて示し
た。
(Industrial Application Field) The present invention relates to a method for optically homogenizing optically non-uniform quartz glass, and provides a method for producing optical quartz glass having uniform optical properties in any method. It is something to do. (Prior art and its problems) It is essential for optical glass to have a uniform refractive index. Typical examples of non-uniform refractive index distribution in quartz glass include a granular structure caused by incomplete melting of raw material (quartz, etc.) particles and growth called striae introduced by fluctuations in the glass growth temperature. It's striped. General optical glass, which has a relatively low softening point, is heated to high temperatures to lower its viscosity to below 10 5 poise, and then mechanically stirred to homogenize it. However, when silica glass containing 99.5% by weight or more of silicic acid is heated to high temperatures under normal pressure, sublimation becomes significant before the viscosity decreases enough to require mechanical stirring. It was very difficult to homogenize by using (Means for Solving the Problems) As a result of researching and considering various ways to improve the optical homogeneity of quartz glass, the present inventors found that the high-temperature region, which had not been studied at all due to the remarkable sublimation phenomenon, For example, it was discovered that even when heated to a high temperature range above the boiling point of silicon oxide, optical homogenization can be achieved without mechanical stirring if it is carried out in an argon gas atmosphere while suppressing sublimation and evaporation. , completed the invention. The method of the invention requires simultaneous application of high temperature and high pressure of argon gas. The temperature at which sublimation of silica glass does not become a problem under atmospheric pressure is 1700°C or lower. However, at this temperature, the striae and granular structure hardly disappear even when heated in a stationary state for one month, and the viscosity is more than 10 8 poise, so it is extremely difficult to perform mechanical stirring. Only when the temperature reaches about 2300°C does it reach a viscosity of about 10 5 poise, making mechanical stirring possible, but refractory containers that allow stirring at such high temperatures are not commercially available. Furthermore, if heated to such high temperatures under normal pressure, violent sublimation and evaporation would occur, and the glass would disappear within minutes. In terms of equilibrium, if silicon oxide (SiO) gas, which is a sublimation/evaporation component, exists at high pressure, preferably at an equilibrium partial pressure, sublimation/evaporation should be prevented according to the law of mass action. However, SiO precipitates in the low-temperature parts of the furnace and becomes harmful, and further sublimation and evaporation occur to replenish it, so sublimation and evaporation cannot be suppressed. As a result of researching various methods to suppress this, we found that the sublimation and evaporation rates of silicon dioxide are significantly dependent on the pressure of the high-pressure argon gas atmosphere. According to experiments, in an argon high-pressure gas atmosphere at a heating temperature of five times or more the saturated vapor pressure of silicon dioxide, the sublimation loss is less than 20% even when heated for 30 minutes. It is therefore important that the required temperature, pressure and heating time are optimized in each context. In the method of the present invention,
Argon gas is used as the atmospheric gas. Other inert gases cannot be used because they do not have a sufficient effect of suppressing sublimation and evaporation of silicon oxide. The argon gas used as the atmospheric gas in the method of the present invention is preferably as pure as possible, but industrial argon gas is practically advantageously used. The heating time required to achieve optical homogenization of non-uniform silica glass varies depending on the heating temperature conditions. Depends on. As a result of various studies on the relationship between heating temperature and time, we found that we optimized the homogenization conditions, which are industrially viable and have high production efficiency. Then, all grain structures and striae disappeared, and at temperatures between 2200 and 2400°C, similar results were obtained by selected combinations of temperatures between 5 and 25 atm and between 2 hours and 5 minutes. I found out that I can get it. If the heat treatment temperature in the present invention is less than 1800°C, the striae will not disappear easily, and if the temperature exceeds 2400°C, it is difficult to obtain a higher temperature with a graphite heater, making it impractical, and furthermore, 25 atm. It is difficult to adopt the above pressure vessel because the cost is high and even if the heating time is shortened to 5 minutes or less, the contribution to production efficiency is small. (Effects of the Invention) As described above, according to the method of the present invention, it is possible to easily eliminate non-uniformity such as striae in quartz glass, which has conventionally been difficult to optically homogenize.
As a result, excellent optical glass can be provided. (Example) Examples 1 to 6 and Comparative Examples 1 to 2 An atmosphere heating furnace equipped with a graphite heater capable of pressurizing to normal pressure and 5 to 30 atmospheres was used. Natural quartz glass columns with strong striae and granular structure (Heraus, Herasil)
) was placed in a crucible with an inner diameter of 100 mm and a height of 100 mm, and heated under the pressure, temperature, and time conditions shown in Table 1. Industrial pure argon gas was used as the atmospheric gas. The weight before and after heating for 30 minutes was measured to determine the sublimation loss (%). The measurement results of each example are
Shown in the figure. After 30 minutes of heat treatment, the upper and lower surfaces of the quartz glass column were optically polished in parallel, and the results of visual striae observation using the point light source projection method and precision striae inspection using a laser interferometer were qualitatively analyzed for each example. are summarized in Table 1.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、石英ガラス柱の各実施例及び比較例
における処理温度と、30分後の昇華減量の関係を
示す図である。
FIG. 1 is a diagram showing the relationship between treatment temperature and sublimation loss after 30 minutes in each example and comparative example of a quartz glass column.

Claims (1)

【特許請求の範囲】[Claims] 1 光学的性質が不均一な二酸化珪素99.5重量%
以上を含有する高純度石英ガラスを、2気圧以
上、好ましくは5〜25気圧の圧力のアルゴンガス
雰囲気中で、1800℃以上、好ましくは2200〜2400
℃の温度に加熱することを特徴とする石英ガラス
の均質化方法。
1 99.5% by weight of silicon dioxide with non-uniform optical properties
The high-purity quartz glass containing
A method for homogenizing quartz glass, characterized by heating it to a temperature of °C.
JP29813685A 1985-12-27 1985-12-27 Method for homogenizing glass Granted JPS62158121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29813685A JPS62158121A (en) 1985-12-27 1985-12-27 Method for homogenizing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29813685A JPS62158121A (en) 1985-12-27 1985-12-27 Method for homogenizing glass

Publications (2)

Publication Number Publication Date
JPS62158121A JPS62158121A (en) 1987-07-14
JPH0317775B2 true JPH0317775B2 (en) 1991-03-08

Family

ID=17855647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29813685A Granted JPS62158121A (en) 1985-12-27 1985-12-27 Method for homogenizing glass

Country Status (1)

Country Link
JP (1) JPS62158121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526062A (en) * 2020-09-22 2022-05-23 中天科技精密材料有限公司 Low hydroxy group high purity quartz glass and its preparation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160834A (en) * 1987-12-16 1989-06-23 Seiko Epson Corp Quartz glass and production thereof
JPH062595B2 (en) * 1990-11-08 1994-01-12 工業技術院長 How to suppress glass coloring and fluorescence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852928A (en) * 1981-09-26 1983-03-29 Matsushita Electric Ind Co Ltd Hot water storing type hot water supplier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852928A (en) * 1981-09-26 1983-03-29 Matsushita Electric Ind Co Ltd Hot water storing type hot water supplier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526062A (en) * 2020-09-22 2022-05-23 中天科技精密材料有限公司 Low hydroxy group high purity quartz glass and its preparation method
US11981594B2 (en) 2020-09-22 2024-05-14 Zhongtian Technology Advanced Materials Co., Ltd. Quartz glass with low content of hydroxyl and high purity and method for preparing the same

Also Published As

Publication number Publication date
JPS62158121A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US5547482A (en) Method of making fused silica articles
RU94046037A (en) Induction furnace, apparatus with usage of the furnace, method of synthetic silicone dioxide masses thermal treatment and methods of silicon dioxide glass production
CN101426740A (en) Manufacture of large articles in synthetic vitreous silica
JPH0317775B2 (en)
JP3988211B2 (en) Method for producing high purity transparent silica glass
JPH01201048A (en) Method for modifying surface of glass container
Guillevic et al. Fabrication of highly homogeneous As2Se3 glass under argon flow
JP2814795B2 (en) Manufacturing method of quartz glass
JP5359044B2 (en) Synthetic quartz glass and method for producing synthetic quartz glass
JP3199275B2 (en) Manufacturing method of quartz glass
Tsvetkov et al. General approaches to design of a reproducible technique for the growth of large crystals of barium metaborate (BBO) for industrial application
US7111477B2 (en) Production method of optical synthetic quartz glass, optical synthetic quartz glass, and annealing furnace
JPS60122741A (en) Manufacture of parent material for optical fiber
JP4839204B2 (en) Fluorite
JP2008156165A (en) Method for producing fluorite
KR101642327B1 (en) Apparatus for manufacturing high purity quartz glass
JPH0891857A (en) Annealing method of silica glass
US3228761A (en) Method of fine annealing transparent vitreous silica
JPS6238291B2 (en)
RU2784119C1 (en) Method for producing large-sized workpieces of volume-homogeneous quartz glass
JPH09295826A (en) Production of high-purity transparent silica glass
JP5208677B2 (en) Method for producing synthetic quartz glass member for ArF excimer laser lithography
US4842631A (en) Method of making carbon dioxide and chlorine free fluoride-based glass
JPS6040566Y2 (en) Heating furnace for manufacturing optical fiber base material
JPH0776093B2 (en) Quartz glass manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term