JPH062595B2 - How to suppress glass coloring and fluorescence - Google Patents

How to suppress glass coloring and fluorescence

Info

Publication number
JPH062595B2
JPH062595B2 JP2305602A JP30560290A JPH062595B2 JP H062595 B2 JPH062595 B2 JP H062595B2 JP 2305602 A JP2305602 A JP 2305602A JP 30560290 A JP30560290 A JP 30560290A JP H062595 B2 JPH062595 B2 JP H062595B2
Authority
JP
Japan
Prior art keywords
glass
fluorescence
pressure
coloring
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2305602A
Other languages
Japanese (ja)
Other versions
JPH04175238A (en
Inventor
直之 北村
功 近藤
博志 山下
惇二 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2305602A priority Critical patent/JPH062595B2/en
Publication of JPH04175238A publication Critical patent/JPH04175238A/en
Publication of JPH062595B2 publication Critical patent/JPH062595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラスの着色・蛍光の抑制方法に関する。TECHNICAL FIELD The present invention relates to a method for suppressing coloring / fluorescence of glass.

〔従来の技術〕[Conventional technology]

従来、たとえば紫外光を利用する光学系に用いるシリカ
ガラスにおいては、ガラス中に存在する点欠陥によって
着色や蛍光が生じ問題になっていた。このため、水素や
フッ素などのガス中でガラスを熱処理したり、原料中に
フッ化物等を混入して欠陥によって誘起された吸収や蛍
光を低減させる方法がとられていた。
Conventionally, for example, in silica glass used in an optical system utilizing ultraviolet light, coloring and fluorescence have been a problem due to point defects existing in the glass. For this reason, there has been adopted a method of heat-treating glass in a gas such as hydrogen or fluorine, or mixing fluoride or the like into a raw material to reduce absorption or fluorescence induced by defects.

また、他のガラスにおいても、アンチモン、ヒ素、希土
類元素などをドープすることによって着色を低減してい
た。
Also, in other glasses, coloring was reduced by doping with antimony, arsenic, rare earth elements and the like.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

水素やフッ素などのガス中でガラスを熱処理したり、原
料にフッ化物等を混入する方法においては、熱処理過程
でガラス表面から添加物のガスが脱離し、添加物濃度に
不均一性が生じる。さらに、長期間の使用に対して着色
・蛍光の低減効果は持続せず、熱処理などの回復処理を
施さなければならなかった。また、アンチモン、ヒ素、
希土類等をドープする方法においては、ドーパントの持
つ固有の吸収・蛍光があるので、使用できる波長範囲が
限定される。
In the method of heat-treating glass in a gas such as hydrogen or fluorine or mixing a fluoride or the like into the raw material, the additive gas is desorbed from the glass surface during the heat treatment process, resulting in non-uniform additive concentration. Further, the effect of reducing the coloring and fluorescence did not last for long-term use, and a recovery treatment such as heat treatment had to be performed. Also, antimony, arsenic,
In the method of doping rare earth or the like, the wavelength range that can be used is limited because of the intrinsic absorption and fluorescence of the dopant.

本発明はこれら従来の技術の問題点を解消し、ガラスの
着色・蛍光の抑制方法を提供することを目的とする。
An object of the present invention is to solve the problems of these conventional techniques and to provide a method for suppressing glass coloring / fluorescence.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成する本発明の吸収・蛍光の抑制方法は、
ガラスを下記(I)式に示す条件下で加熱すると共に、
該ガラスの構造に歪みを生じさせるが該ガラスの結合を
切断しない圧力で該ガラスを加圧することからなる。
The method for suppressing absorption and fluorescence of the present invention which achieves the above object,
While heating the glass under the conditions shown in the following formula (I),
It consists of pressing the glass with a pressure that causes distortion in the structure of the glass but does not break the bonds of the glass.

0.9≦Tp/Tg≦1.3 (I) ただし(I)式において、Tpは該ガラスの加熱温度
(K)を、Tgは該ガラスのガラス転位温度(K)を表わ
す。
0.9 ≦ Tp / Tg ≦ 1.3 (I) However, in the formula (I), Tp represents the heating temperature (K) of the glass, and Tg represents the glass transition temperature (K) of the glass.

本発明においては、アンビルタイプやベルトタイプ等の
高圧装置もしくは熱間等方加圧(HIP)装置を用いて
ガラスを加圧処理する。
In the present invention, the glass is pressure-treated using a high-pressure apparatus such as an anvil type or a belt type or a hot isostatic pressing (HIP) apparatus.

被処理ガラスは光学ガラスやシリカガラスなどの様に熱
処理に対して結晶化しにくいものが好ましい。また、被
処理ガラスの形状は特に限定されず、加圧の方向も被処
理ガラスの形状に応じて被処理ガラスが破壊されないよ
う周囲から均等に加圧することが必要である。
The glass to be treated is preferably one that is hard to crystallize by heat treatment, such as optical glass and silica glass. Further, the shape of the glass to be treated is not particularly limited, and it is necessary to uniformly apply pressure from the surroundings so that the glass to be treated is not broken depending on the shape of the glass to be treated.

圧力範囲はガラスの結合が切断されるほど高い圧力は好
ましくなく、ガラス構造に歪みを生じさせる程度の圧力
でよい。たとえば、シリカガラスにおいては8GPa以上
の圧力で結合が切断されるので、これよりも低い圧力で
処理をすることが望ましい。
The pressure range is not so high that the glass bond is broken, and may be a pressure that causes strain in the glass structure. For example, in silica glass, the bond is broken at a pressure of 8 GPa or more, so it is desirable to perform the treatment at a pressure lower than this.

本発明において重要なことは、圧力処理時の被処理ガラ
スの温度がガラス転移点付近もしくはガラス転移点以上
の温度であることである。
What is important in the present invention is that the temperature of the glass to be treated at the time of pressure treatment is near or above the glass transition point.

ここでガラス転移点付近もしくはガラス転移点以上の温
度とは、処理温度をTp(K)、ガラス転移点をTg(K)とした
とき、 0.9≦Tp/Tg≦1.3 であることが好ましい。Tp/Tgが0.9よりも小さいと、
被処理ガラスの粘性が高く、内部と外部で圧力の差がで
きてしまい、均一な被処理ガラスを得るには非常に長い
保持時間が必要となる。さらに、安定して使用できる温
度範囲が狭くなってしまう。また、Tp/Tgが1.3よりも
大きいと、硝種にもよるが、圧力処理中に結晶析出が起
き、透明性が落ちる危険性がある。
The temperature near the glass transition point or above the glass transition point is 0.9 ≦ Tp / Tg ≦ 1.3 when the treatment temperature is Tp (K) and the glass transition point is Tg (K). Is preferred. If Tp / Tg is smaller than 0.9,
The glass to be treated has a high viscosity, and a pressure difference is generated between the inside and the outside, so that a very long holding time is required to obtain a uniform glass to be treated. Furthermore, the temperature range that can be used stably becomes narrow. Further, if Tp / Tg is larger than 1.3, crystal precipitation may occur during pressure treatment and transparency may decrease, depending on the type of glass.

すなわち、本発明においては、高圧装置により加圧され
たガラス試料をガラス転移点付近もしくはそれ以上に加
熱し、この温度範囲で一定時間保持する。
That is, in the present invention, the glass sample pressurized by the high-pressure device is heated to a temperature near or above the glass transition point and kept in this temperature range for a certain period of time.

被処理ガラスは圧力処理によって歪むが、着色や蛍光の
原因となるガラス構造の欠陥部分に圧力が効果的に作用
して着色や蛍光が抑制される。処理圧力は硝種・温度に
もよるが、処理圧力が高いほど点欠陥に及ぼす着色・吸
収の抑制効果が大きくなる。しかし、一方でガラス構造
の歪も大きくなり、光照射下におけるガラス構造の安定
性が低下するので、実際には結合が切断される圧力より
も小さくなければならない。たとえば、シリカガラスで
あれば、1〜2GPa以下が好ましい。
Although the glass to be treated is distorted by the pressure treatment, the pressure effectively acts on the defective portion of the glass structure that causes coloring and fluorescence, and the coloring and fluorescence are suppressed. Although the treatment pressure depends on the type and temperature of the glass, the higher the treatment pressure is, the greater the effect of suppressing the coloring / absorption on the point defects is. However, on the other hand, the strain of the glass structure also becomes large, and the stability of the glass structure under light irradiation is lowered. Therefore, the pressure must actually be lower than the pressure at which the bond is broken. For example, in the case of silica glass, 1 to 2 GPa or less is preferable.

また、大きなガラスほど長い熱処理時間が必要である。
たとえば、4cm角ブロックのシリカガラスでは100MPaの
圧力の下、1200℃中で2時間の処理で均一な被処理ガラ
スが得られる。処理温度が低くなれば、これ以上の保持
時間が必要となる。
Further, the larger the glass, the longer the heat treatment time is required.
For example, with a 4 cm square block of silica glass, a uniform glass to be treated can be obtained by treatment at 1200 ° C. for 2 hours under a pressure of 100 MPa. The lower the processing temperature, the longer the holding time is required.

上記本発明によって処理されたガラスは、着色や蛍光が
抑制される。さらに処理温度が高いので、室温で長時間
の利用に対して圧力処理の緩和による効果の減衰は生じ
ない。
Coloring and fluorescence are suppressed in the glass treated according to the present invention. Furthermore, since the treatment temperature is high, the effect of the pressure treatment is not attenuated for long-term use at room temperature.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

2×2×0.4cmの石英ガラス板に150MPa、1200℃で2時
間の熱間等方加圧(HIP)処理を施し、均質な処理ガ
ラスを得た。また、本発明の効果を示すために同一サイ
ズの未処理の石英ガラスも用意した。光学研磨された未
処理ガラス、被処理ガラスに同一条件で高エネルギーの
光を一定時間照射した。未処理のガラスにおいて、第1
図の1に示す着色が測定された。しかし、同図の2に示
す本発明により得られたガラスにおいては、本発明の効
果により4から5eV付近の着色が抑制されている。
A 2 × 2 × 0.4 cm quartz glass plate was subjected to hot isostatic pressing (HIP) treatment at 150 MPa and 1200 ° C. for 2 hours to obtain a homogeneous treated glass. Moreover, in order to show the effect of the present invention, untreated quartz glass of the same size was also prepared. Optically polished untreated glass and treated glass were irradiated with high-energy light for a certain period of time under the same conditions. First in untreated glass
The coloration shown in Figure 1 was measured. However, in the glass obtained by the present invention shown in FIG. 2B, coloring near 4 to 5 eV is suppressed by the effect of the present invention.

さらに、未処理ガラスと本発明により得られたガラスに
ついて5.0eVの光励起による発光スペクトルにより蛍光
の測定を行なった。結果を第2図に示す。第2図の1に
示す未処理の石英ガラスでは、1.9eV付近に蛍光が観測
された。しかし、本発明の処理を施した石英ガラスは1.
9eVの蛍光が半分以上抑えられている。
Further, the untreated glass and the glass obtained by the present invention were measured for fluorescence by the emission spectrum by photoexcitation of 5.0 eV. Results are shown in FIG. In the untreated quartz glass shown in 1 of FIG. 2, fluorescence was observed near 1.9 eV. However, the quartz glass treated with the present invention is 1.
The fluorescence of 9 eV is suppressed by more than half.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、ガラスの着色や蛍光
を抑制することができる。
As described above, according to the present invention, coloring of glass and fluorescence can be suppressed.

すなわち、処理ガラスの粘性が高いために、ガラス内部
と外部で圧力の差ができて、均一な被処理ガラスを得る
のに非常に長時間を必要とすること、また安定して使用
できる温度範囲が狭まることをTp/Tgを0.9以上とする
ことによって回避することができる。
That is, because the viscosity of the treated glass is high, there is a difference in pressure between the inside and the outside of the glass, which requires a very long time to obtain a uniform glass to be treated, and a temperature range in which it can be used stably. It is possible to avoid the narrowing by setting Tp / Tg to 0.9 or more.

また、Tp/Tgを1.3以下とすることによって、ガラスの
種類にもよるが、加圧処理中に結晶が析出したり、透明
性が低下することを避けることができる。
Also, by setting Tp / Tg to be 1.3 or less, it is possible to avoid precipitation of crystals or deterioration of transparency during the pressure treatment, depending on the type of glass.

更に、圧力範囲を加圧条件をガラスの構造に歪みを生じ
させるがガラスの結合を切断しない範囲とすることによ
って、着色、蛍光の抑制効果を増大させながらガラス構
造の安定性の低下を阻止することができる。
Further, the pressure range is set so that the pressurization condition causes distortion in the glass structure but does not break the glass bond, thereby preventing the deterioration of the stability of the glass structure while increasing the effect of suppressing coloring and fluorescence. be able to.

従って本発明によれば、着色や蛍光が抑制された均質な
ガラス処理体を得ることができ、従来のフッ素ドープ法
では不可能であった抑制効果の場所による差を解消する
ことができる。
Therefore, according to the present invention, it is possible to obtain a homogeneous glass-treated product in which the coloring and fluorescence are suppressed, and it is possible to eliminate the difference in the suppression effect depending on the location, which is impossible by the conventional fluorine doping method.

また、本発明の効果は室温で安定であり、従来のように
着色・蛍光抑制効果を回復させるための熱処理などを必
要としない。
Further, the effect of the present invention is stable at room temperature and does not require heat treatment or the like for recovering the coloring / fluorescence suppressing effect as in the prior art.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明によって得られた石英ガラスと未処理
のガラスの吸収スペクトルを示す図であり、第2図は、
本発明によって得られたガラスおよび未処理ガラスの5.
0eVの光励起による発光スペクトルを示す図である。 1…未処理ガラス、2…本発明によって得られたガラ
ス。
FIG. 1 is a diagram showing absorption spectra of quartz glass and untreated glass obtained by the present invention, and FIG.
5.Glass obtained by the present invention and untreated glass
It is a figure which shows the emission spectrum by optical excitation of 0 eV. 1 ... Untreated glass, 2 ... Glass obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラスを下記(I)式に示す条件下で加熱
すると共に、該ガラスの構造に歪みを生じさせるが該ガ
ラスの結合を切断しない圧力で該ガラスを加圧すること
を特徴とするガラスの着色・蛍光の抑制方法。 0.9≦Tp/Tg≦1.3 (I) ただし(I)式において、Tpは該ガラスの加熱温度
(K)を、Tgは該ガラスのガラス転位温度(K)を表わ
す。
1. The glass is heated under the condition represented by the following formula (I), and the glass is pressed with a pressure that causes distortion in the structure of the glass but does not break the bond of the glass. A method for suppressing glass coloring and fluorescence. 0.9 ≦ Tp / Tg ≦ 1.3 (I) However, in the formula (I), Tp represents the heating temperature (K) of the glass, and Tg represents the glass transition temperature (K) of the glass.
JP2305602A 1990-11-08 1990-11-08 How to suppress glass coloring and fluorescence Expired - Lifetime JPH062595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305602A JPH062595B2 (en) 1990-11-08 1990-11-08 How to suppress glass coloring and fluorescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305602A JPH062595B2 (en) 1990-11-08 1990-11-08 How to suppress glass coloring and fluorescence

Publications (2)

Publication Number Publication Date
JPH04175238A JPH04175238A (en) 1992-06-23
JPH062595B2 true JPH062595B2 (en) 1994-01-12

Family

ID=17947125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305602A Expired - Lifetime JPH062595B2 (en) 1990-11-08 1990-11-08 How to suppress glass coloring and fluorescence

Country Status (1)

Country Link
JP (1) JPH062595B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158121A (en) * 1985-12-27 1987-07-14 Shinetsu Sekiei Kk Method for homogenizing glass
JPS63297234A (en) * 1987-05-28 1988-12-05 Seiko Epson Corp Production of quartz glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158121A (en) * 1985-12-27 1987-07-14 Shinetsu Sekiei Kk Method for homogenizing glass
JPS63297234A (en) * 1987-05-28 1988-12-05 Seiko Epson Corp Production of quartz glass

Also Published As

Publication number Publication date
JPH04175238A (en) 1992-06-23

Similar Documents

Publication Publication Date Title
US3920463A (en) Process for changing the tint of a photochromic material and material formed thereby
JP2001511105A (en) Fused silica with high resistance to light damage
EP0879799A2 (en) Silica glass article and manufacturing process therefor
US6333283B1 (en) Silica glass article and manufacturing process therefor
US10370281B2 (en) Low scattering silica glass and method for heat-treating silica glass
Nagli et al. Optical properties of mixed silver halide crystals and fibers
US3935302A (en) Preparation of alkaline earth metal halide crystals for laser windows
Subramaniam et al. Radiation effects in crystalline SiO2: infrared absorption from OH--related defects
JPH03266424A (en) Annealing process of semiconductor substrate
JPH062595B2 (en) How to suppress glass coloring and fluorescence
JP2003517634A (en) Infrared broadband dichroic glass polarizer
US3131026A (en) Purification of zinc sulfide powder
Thomas et al. Correlation of optical absorption and thermoluminescence curves for single crystals of magnesium oxide
Pareja et al. Study of thermochemically reduced and electron? irradiated LiNbO3 single crystals by positron annihilation and optical absorption measurements
JP4022678B2 (en) Method for producing high purity transparent silica glass
JPH05186235A (en) Production of silica glass
Guretskii et al. Growth of lithium triborate single crystals from molten salt solution under various temperature gradients
US3836632A (en) Method for improving transparency of gadolinium molybdate single crystal
Brichard et al. On the use of photobleaching and thermal annealing to recover the optical transmission in irradiated pure silica fibres
DE102011118229A1 (en) Producing fluorite crystal, comprises performing melting-solidification step by melting mixture of calcium fluoride powder having scavenger, and solidifying melted mixture by cooling to obtain melt-solidified body A
US7014703B2 (en) Method for annealing group IIA metal fluoride crystals
CN115448576B (en) Preparation method of optical quartz material based on combination of vibration environment and vibration isolation environment
JP2915598B2 (en) Method for producing silica glass for optical use
RU2046164C1 (en) Method of producing semi-insulating gallium arsenide
JPH0132174B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term