JPH0132174B2 - - Google Patents

Info

Publication number
JPH0132174B2
JPH0132174B2 JP3382581A JP3382581A JPH0132174B2 JP H0132174 B2 JPH0132174 B2 JP H0132174B2 JP 3382581 A JP3382581 A JP 3382581A JP 3382581 A JP3382581 A JP 3382581A JP H0132174 B2 JPH0132174 B2 JP H0132174B2
Authority
JP
Japan
Prior art keywords
glass
ion exchange
less
light
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3382581A
Other languages
Japanese (ja)
Other versions
JPS57149850A (en
Inventor
Keiji Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12397258&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0132174(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3382581A priority Critical patent/JPS57149850A/en
Publication of JPS57149850A publication Critical patent/JPS57149850A/en
Publication of JPH0132174B2 publication Critical patent/JPH0132174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガラスの表面処理方法に係り、特に表
面平滑度の高い、さらには高エネルギーの光照射
に対しても破損の少いガラスの表面処理方法に関
する。 例えば液晶テレビ用ガラス基板や電界効果トラ
ンジスタ用ガラス基板は基板上に形成されたポリ
シリコンの抵抗を下げたり、その半導体結晶の粒
径を大きくするレーザアニールを受ける。この場
合レーザー光による高エネルギーによつて格子振
動を与えられたり、ガラスの微細な欠陥に光照射
による応力が集中したり、部分的レーザー照射に
よる温度差によつてガラス基板が破壊する。 ガラスの強化手段としては従来からイオン交換
法が考えられている。しかし、イオン交換法によ
つて単にガラスの表面に圧縮応力を入れただけで
は機械的強度は上るが歩留りが劣るという欠点が
ある。 即ち素材ガラスを所定の形状や大きさに研磨加
工して得たガラスにイオン交換を施した場合、研
磨傷に熱応力が発生してクラツクが生じ製品の不
良化を招き、もつて歩留りの低下を来たすという
不都合さがある。この微細なクラツクの発生は
LSI用のマスクガラスや液晶テレビ用のガラスや
一般の光学ガラスの場合、高い平滑度を要求され
るために特に重要である。その理由は欠陥による
光散乱があると、像が正確にとらえられないから
である。 本発明者はこのような点に着目し、検討を進め
た結果前記クラツクの発生がガラス表面に残存す
る傷を起点としてイオン交換用の溶融塩の侵蝕に
よるものであり、この溶融塩の侵蝕はガラス表面
に残存する傷の大きさを10μ以下に抑え、さらに
イオン交換処理に先立つて一定の昇温速度で加熱
処理し、さらにイオン交換後光照射をしてイオン
を拡散、安定化させると解決されることを見出し
た。使用する光源としてはレーザ光、可視光或い
は紫外光のいずれを使用してもよい。 本発明は上記知見にもとずき、煩雑な操作を特
に要せず、表面平滑度の高いガラスを容易に得る
事を目的とする。 即ち本発明は加工されたガラスの残存傷の大き
さを10μ以下に研磨加工する工程と前記研磨した
ガラスを100℃/sec以下の速度で軟化点より低い
温度まで加熱する工程と前記処理したガラスをイ
オン交換する工程と、前記イオン交換処理面上に
光照射する工程とを具備して成ることを特徴とす
るガラスの表面処理法である。 本発明において、処理されるべきガラスは先ず
素材ガラスを所定の形状乃至大きさに加工され
る。しかして加工されたガラスを表面に残存する
傷の大きさが高々10μであるように適宜仕上げら
れる。このように残存傷が10μ以下とされるのは
この程度の仕上げにより後記加熱処理過程で容易
に表面の水和層や潜傷が除去され、且つ応力集中
も緩和され、イオン交換処理過程でのクラツクも
防止されるからである。一方上記研磨加工後の昇
温、加熱処理に於て昇温速度は常に100℃/sec以
下の範囲で選ばれる。その理由は昇温速度が100
℃/secをこえるとイオン交換処理に於てクラツ
クが発生し歩留りが低下するからである。また、
イオン交換面にレーザーなどの光照射を行うのは
拡散したイオンを内部へ侵入させ、安定化させる
ためである。例えば電界効果トランジスタ使用中
に内部のNa+イオンが表面へ出て来て素子の電気
特性が悪化することが防止される。 次に本発明に係る具体例を記載する。 SiO2、Al2O3、Na2O、K2O、PbO、CaO、
MgO、B2O3、ZnO、TiO2などを組成分とした表
1に示す如き組成比(重量%)からなるガラス板
(4×4×0.05インチ)をそれぞれ用意し、粒度
2000メツシユの研磨剤(A)、粒度1500メツシユの研
磨剤(B)、粒度2000メツシユ以上の超微粒研磨材(C)
でそれぞれ研磨加工し鏡面仕上げを行つた。
The present invention relates to a method for surface treatment of glass, and in particular to a method for surface treatment of glass that has a high surface smoothness and is less likely to be damaged by high-energy light irradiation. For example, glass substrates for liquid crystal televisions and glass substrates for field effect transistors are subjected to laser annealing to lower the resistance of polysilicon formed on the substrate and to increase the grain size of the semiconductor crystals. In this case, the glass substrate may be damaged due to lattice vibrations caused by the high energy of the laser beam, stress caused by light irradiation concentrated on minute defects in the glass, or temperature differences caused by partial laser irradiation. Ion exchange methods have been considered as a means of strengthening glass. However, simply applying compressive stress to the glass surface using the ion exchange method increases the mechanical strength, but has the disadvantage that the yield is poor. In other words, when ion exchange is performed on glass obtained by polishing raw glass into a predetermined shape and size, thermal stress occurs in the polishing scratches, causing cracks and resulting in defective products, resulting in a decrease in yield. This has the inconvenience of causing The occurrence of this minute crack is
This is particularly important for mask glass for LSIs, glass for LCD televisions, and general optical glass, which require high smoothness. The reason for this is that if there is light scattering due to defects, images cannot be accurately captured. The inventors of the present invention focused on these points, and as a result of further investigation, it was determined that the occurrence of the cracks was caused by the erosion of the molten salt for ion exchange, starting from the scratches remaining on the glass surface. The problem can be solved by reducing the size of the scratches remaining on the glass surface to 10μ or less, and then heat-treating at a constant temperature increase rate before ion-exchange treatment, and then irradiating with light after ion-exchange to diffuse and stabilize the ions. I found out that it can be done. The light source used may be laser light, visible light, or ultraviolet light. The present invention is based on the above knowledge and aims to easily obtain glass with high surface smoothness without particularly requiring complicated operations. That is, the present invention comprises a step of polishing the processed glass to reduce the size of residual scratches to 10μ or less, a step of heating the polished glass to a temperature lower than its softening point at a rate of 100° C./sec or less, and a step of heating the polished glass to a temperature lower than its softening point at a rate of 100° C./sec or less. This is a glass surface treatment method comprising the steps of ion-exchanging the ion-exchanged surface, and irradiating the ion-exchanged surface with light. In the present invention, the glass to be processed is first processed into a predetermined shape or size from raw glass. The processed glass is then appropriately finished so that the size of the scratch remaining on the surface is at most 10μ. The reason why the residual scratches are 10μ or less is that this level of finishing allows the hydration layer and latent scratches on the surface to be easily removed during the heat treatment process described later, and also relieves stress concentration, making it easier to remove during the ion exchange treatment process. This is because cracks are also prevented. On the other hand, the rate of temperature increase in the temperature increase and heat treatment after the polishing process is always selected within the range of 100° C./sec or less. The reason is that the heating rate is 100
This is because if the temperature exceeds .degree. C./sec, cracks occur in the ion exchange treatment and the yield decreases. Also,
The purpose of irradiating the ion exchange surface with light such as a laser is to allow the diffused ions to enter the interior and stabilize them. For example, during use of a field effect transistor, internal Na + ions are prevented from coming out to the surface and deteriorating the electrical characteristics of the device. Next, specific examples according to the present invention will be described. SiO2 , Al2O3 , Na2O , K2O , PbO, CaO ,
Glass plates (4 x 4 x 0.05 inches) were prepared, each having a composition ratio (wt%) of MgO, B 2 O 3 , ZnO, TiO 2, etc., as shown in Table 1.
2000 mesh abrasive (A), 1500 mesh particle size abrasive (B), ultra-fine abrasive particle size 2000 mesh or more (C)
Each was polished to a mirror finish.

【表】 しかる後これらの鏡面仕上げした各ガラス板に
ついて所定の温度で400〜470℃まで昇温し、その
昇温温度に10分〜1時間保持して加熱処理した。
この加熱処理後所定温度のKNO3塩(a)、または80
%KNO3−20%AgNO3溶融塩(b)中にそれぞれ一
定時間浸漬し、イオン交換を行なつた後イオン交
換処理したガラス面上に10〜14WattのCW−Ar
レーザーを照射した。照射時の温度500℃、照射
時間は約1秒であつた。 研磨、加熱、イオン交換レーザー照射後のガラ
スの歩留り、平滑度、加傷強度をまとめた結果を
比較例を含め表2に併せて示す。レーザー照射後
の歩留りは低下せず、平滑度、加傷強度いずれも
照射しないものに比べてすぐれた結果を示した。
[Table] After that, each of these mirror-finished glass plates was heated to a predetermined temperature of 400 to 470°C, and maintained at the elevated temperature for 10 minutes to 1 hour for heat treatment.
KNO 3 salt (a) at the specified temperature after this heat treatment, or 80
%KNO 3 -20%AgNO 3 Immersed in molten salt (b) for a certain period of time to perform ion exchange, then 10 to 14 Watt of CW-Ar was placed on the ion exchange treated glass surface.
irradiated with laser. The temperature during irradiation was 500°C, and the irradiation time was about 1 second. Table 2 summarizes the results of the glass yield, smoothness, and scratch strength after polishing, heating, and ion exchange laser irradiation, including comparative examples. The yield after laser irradiation did not decrease, and both the smoothness and scratch strength showed superior results compared to those without irradiation.

【表】【table】

【表】 尚他の比較例として研磨加工後の昇温加熱処理
を施さずにイオン交換を行つた場合の歩留りは各
実施例の場合における歩留りよりもいずれも10%
前後劣つていた。また上記良好な平滑度を併せて
有することはフオトマスクとして用いた場合ガラ
スの消耗を20〜40%も低減できるとともに破損率
も数%低減できる。本処理法は液晶テレビ用ガラ
ス電界効果トランジスタ用ガラスその他光学ガラ
スにも適用できコストも安価で工業的にすぐれた
処理法である。
[Table] As another comparative example, when ion exchange was performed without temperature raising heat treatment after polishing, the yield was 10% higher than the yield in each example.
The front and back were inferior. Furthermore, by having the above-mentioned good smoothness, when used as a photomask, the wear of the glass can be reduced by as much as 20 to 40%, and the breakage rate can also be reduced by several percentage points. This treatment method can be applied to glass for liquid crystal televisions, glass for field effect transistors, and other optical glasses, and is a low-cost and industrially excellent treatment method.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス表面の傷の大きさを10μ以下に加工す
る工程とこのガラスを100℃/sec以下の昇温速度
かつ軟化点より低い温度で加熱する工程と、加熱
したガラスをイオン交換する工程と、イオン交換
処理面を光照射する工程とを具備して成るガラス
の表面処理方法。
1. Processing the size of scratches on the glass surface to 10μ or less, heating this glass at a heating rate of 100°C/sec or less and at a temperature lower than its softening point, and ion-exchanging the heated glass, A glass surface treatment method comprising the step of irradiating an ion exchange treated surface with light.
JP3382581A 1981-03-11 1981-03-11 Surface treatment of glass Granted JPS57149850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3382581A JPS57149850A (en) 1981-03-11 1981-03-11 Surface treatment of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3382581A JPS57149850A (en) 1981-03-11 1981-03-11 Surface treatment of glass

Publications (2)

Publication Number Publication Date
JPS57149850A JPS57149850A (en) 1982-09-16
JPH0132174B2 true JPH0132174B2 (en) 1989-06-29

Family

ID=12397258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3382581A Granted JPS57149850A (en) 1981-03-11 1981-03-11 Surface treatment of glass

Country Status (1)

Country Link
JP (1) JPS57149850A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744440B1 (en) * 1996-02-07 1998-03-20 Saint Gobain Vitrage PROCESS FOR TREATING GLASS SUBSTRATES
US7415841B2 (en) * 2002-03-27 2008-08-26 Hoya Corporation Method for producing chemically strengthened glass substrate for information recording medium
JP2004091291A (en) * 2002-09-03 2004-03-25 Seiko Epson Corp Glass plate, glass substrate for electrooptical panel, electrooptical panel, method for producing glass plate, method for producing glass substrate for electrooptical panel, method for producing electrooptical panel, and electronic equipment
JP5270810B1 (en) * 2011-12-13 2013-08-21 Hoya株式会社 Cover glass for electronic equipment, manufacturing method thereof, and manufacturing method of touch sensor module

Also Published As

Publication number Publication date
JPS57149850A (en) 1982-09-16

Similar Documents

Publication Publication Date Title
US3464880A (en) Surface crystallized glass and method of producing
US3161528A (en) Semicrystalline ceramic body and method of making it
US3419370A (en) Method of producing a photochromic glass and resulting article
US3282770A (en) Transparent divitrified strengthened glass article and method of making it
US3524737A (en) Method for thermochemical strengthening of glass articles
US3637453A (en) Glass-ceramic articles having an integral compressive stress surface layer
US3498803A (en) Glass or glass-ceramic steam treatment method and article
GB2171990A (en) Method of strengthening glass article formed of float glass by ion exchange and strengthened glass article
JP2002174810A (en) Glass substrate for display, manufacturing method for the same and display using the same
US3663193A (en) Strengthened photosensitive opal glass
JP2628014B2 (en) Polarized glass
US3317297A (en) Method of chemically strengthening glass
JPH0249263B2 (en)
JPH0151458B2 (en)
US4339256A (en) Method of making polarized ophthalmic glass
JPH0132174B2 (en)
US4341543A (en) Method of making strengthened transparent glass-ceramic, partially body-crystallized, and surface-crystallized glass articles
US3306833A (en) Method of making a phototropic glass article
US3524748A (en) High strength alpha- and beta-quartz glass-ceramic products and method
JPS5842139B2 (en) Strengthening treatment method for sealing glass
US3926602A (en) Glass-ceramic articles with reflective surfaces
US3301649A (en) Method of making high strength glass articles
JPS6351986B2 (en)
JPS6158416B2 (en)
JP2731911B2 (en) Heat treatment method for flat photochromic glass sheet