JPH01160834A - Quartz glass and production thereof - Google Patents

Quartz glass and production thereof

Info

Publication number
JPH01160834A
JPH01160834A JP62317720A JP31772087A JPH01160834A JP H01160834 A JPH01160834 A JP H01160834A JP 62317720 A JP62317720 A JP 62317720A JP 31772087 A JP31772087 A JP 31772087A JP H01160834 A JPH01160834 A JP H01160834A
Authority
JP
Japan
Prior art keywords
glass
striae
quartz glass
gel
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317720A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62317720A priority Critical patent/JPH01160834A/en
Publication of JPH01160834A publication Critical patent/JPH01160834A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To produce quartz glass without striae in three directions, by dispersing silica fine particles in a hydrolyzate solution of an alkyl silicate, drying the resultant gel, heating the dried gel and vitrifying the formed glass (precursor) body. CONSTITUTION:An acidic catalyst is added to hydrolyze an alkyl silicate (e.g., ethyl silicate) and silica fine powder is then added to the resultant hydrolyzate solution obtained by the hydrolysis, sufficiently stirred and dispersed to form a sol. Aqueous ammonia is added to adjust the sol to pH3-6 and the resultant gel is dried to provide a dry gel, which is then heated in an atmosphere of O2/N2 and heated under reduced pressure of <=1Torr or in an He atmosphere at 1300-1500 deg.C to close pores and afford a glass (precursor) body. The obtained glass (precursor) body is subsequently heated at 1500-2200 deg.C and kept for a constant time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路用投影露光装置のレンズ、液晶デイス
プレィ用TPT基板や、プリズム、ビームスプリッタ−
1分光器等の光学部品に応用=r能な石英ガラス、及び
その製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to lenses of projection exposure apparatuses for integrated circuits, TPT substrates for liquid crystal displays, prisms, beam splitters, etc.
This invention relates to quartz glass that can be applied to optical components such as spectrometers, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

石英ガラスは溶融方法、使用される原料により表1に示
すようなI型、■型、■型、■型に区分されている。
Quartz glass is classified into type I, type ■, type ■, and type ■, as shown in Table 1, depending on the melting method and the raw materials used.

表   1 ■型、■型は半導体用炉芯管や治具等に使われている。Table 1 ■Type and ■type are used for semiconductor furnace core tubes and jigs.

■型はICマスク基板や、光学用プリズム、レンズ、セ
ル等に使われ、■型は一部の光学用途に使われている。
The ■ type is used for IC mask substrates, optical prisms, lenses, cells, etc., and the ■ type is used for some optical applications.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来の方法は、4種類とも基本的に溶融法であり
、本質的に脈理が発生する製造方法である。その為、光
学用途に用いる際には脈理のない局所的な部分を選別し
て使用していた。しかし大型のレンズ用途になると、一
方向脈理なしをいう条件の石英ガラスを、やむなく使用
しているのが現状である。
However, all four conventional methods are basically melting methods, and are manufacturing methods that essentially generate striae. Therefore, when used for optical purposes, local areas without striae have been selected and used. However, when it comes to large lens applications, it is currently unavoidable to use quartz glass, which requires no unidirectional striae.

石英ガラスはその高純度、耐熱性ゆえ、半導体用炉芯管
や治具等りこ使われてきた。また紫外域における吸収が
ないためICマスク基板に使われてきた。更には脱水処
理して通信用光ファイバー等へも応用されるようになっ
た。以上の用途に共通していることは、脈理があまり問
題とならない点にある。唯一光学部品にだけは脈理なし
が求められたが、量が少ない為前述したように選別した
石英ガラスを、通常の10倍近い価格で提供していた。
Due to its high purity and heat resistance, quartz glass has been used in semiconductor furnace core tubes and jigs. Also, since it has no absorption in the ultraviolet region, it has been used for IC mask substrates. Furthermore, it has been dehydrated and applied to optical fibers for communication, etc. What all of the above uses have in common is that striae do not pose much of a problem. The only optical parts that were required to be striae-free were small in quantity, so quartz glass, selected as mentioned above, was offered at nearly 10 times the normal price.

今後、脈理のない石英ガラスの需要が増加していく状況
にある0例えば投影露光装置を用いIC1LSI等の集
積回路のパターンをシリコンウェハーに焼付ける為の投
影レンズは、波長150nn〜400r+nの光源を用
いるようになると、石英ガラスと一部の結晶しか使えな
い、非常に高い解像力が要求される投影レンズには、脈
理があってはならず、150市φX30nmtという大
型のサイズも同時に求められている。また、液晶デイス
プレィ用T P T基板も偏光板を通して表示する為、
脈理があってはならない。やはり3001WI×300
市といった大型基板が求められている。ビームスプリッ
タ−等の光学部品は、今後大きな市場になると予測され
ている。
In the future, the demand for striae-free quartz glass will increase.0For example, projection lenses used to print patterns of integrated circuits such as IC1LSI onto silicon wafers using projection exposure equipment are required to use a light source with a wavelength of 150nm to 400r+n. With the advent of the use of quartz glass, projection lenses that could only use quartz glass and some crystals and required extremely high resolution had to be free of striae and also required a large size of 150 mm x 30 nm. ing. In addition, since the TPT substrate for liquid crystal display is also displayed through a polarizing plate,
There should be no striae. As expected, 3001WI x 300
There is a demand for large substrates such as city boards. Optical components such as beam splitters are predicted to become a large market in the future.

今までは、大型で三方向脈理なしの石英ガラスは存在し
なかった。また、脈理の発生しない石英ガラスの製造方
法も確立されていなかった。
Until now, large quartz glass without three-way striae has not existed. Furthermore, a method for producing quartz glass that does not generate striae has not yet been established.

そこで本発明は集積回路用投影露光装置のレンズ、液晶
デイスプレィ用TPT基板や各種光学部品に応用可能な
、三方向脈理なしの石英ガラスを提供することを目的と
し、その石英ガラスの製造方法を提供することを目的と
するものである。
Therefore, an object of the present invention is to provide a quartz glass without three-way striae that can be applied to lenses of projection exposure devices for integrated circuits, TPT substrates for liquid crystal displays, and various optical components, and a method for producing the quartz glass. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

面一目的を達成するため、本発明の石英ガラスは、三方
向脈理がないことを特徴とする。
To achieve the flush objective, the quartz glass of the present invention is characterized by the absence of three-way striae.

また、本発明の石英ガラスの製造方法は少なくとも以下
に示す工程を一つ以上含むことを特徴とする。
Further, the method for manufacturing quartz glass of the present invention is characterized in that it includes at least one or more of the steps shown below.

a) アルキルシリケートを、酸性触媒を用いて加水分
解させる工程。
a) A step of hydrolyzing an alkyl silicate using an acidic catalyst.

b) 加水分解液にシリカ微粒子を゛分散させる工程。b) A step of dispersing silica fine particles in the hydrolysis solution.

C) シリカ分散液をpH3・−6の範囲に調整する工
程。
C) A step of adjusting the silica dispersion to a pH range of 3 to -6.

d) 該ゾルをゲル化、乾燥させドライゲルとする工程
d) A step of gelling and drying the sol to form a dry gel.

e) ドライゲルを加熱し、減圧またはヘリウム雰囲気
で閉孔化させガラス体あるいはガラス前駆体とする工程
e) A step of heating the dry gel to close the pores under reduced pressure or in a helium atmosphere to form a glass body or glass precursor.

f) 前記ガラス体あるいはガラス前駆体を、1500
℃〜2200℃に加熱して一定時間保持する工程。
f) The glass body or glass precursor is heated to 1500
A process of heating to a temperature between ℃ and 2200℃ and holding it for a certain period of time.

〔作 用〕[For production]

一般に脈理は原料の溶融性が悪い時、耐火物が侵食され
て融液に溶は込んだ時、成形時に温度の不均質状態が生
じた時などに生成する。上記の原因による脈理はそれぞ
れ溶解筋、耐火物筋、成形筋と呼ばれている。
Generally, striae are formed when the meltability of raw materials is poor, when refractories are eroded and dissolved into the melt, or when non-uniform temperatures occur during molding. The striae caused by the above causes are called soluble streaks, refractory streaks, and formed streaks, respectively.

石英ガラスの素材は1700℃以上に融点を持つ二酸化
ゲイ素であり、溶融しにくく粘性が高いなめ溶解筋の発
生はさけられない。また高純度雰囲気の高温状態が得に
くいため、耐火物筋の発生もさけ難い。更に、石英ガラ
スは固相に溶融相を積み重ねていく製法で脱泡している
為、温度の不均質状態もさけられない。通常の製造方法
では、本質的に脈理が発生してしまう由縁である。
The material of quartz glass is silicon dioxide, which has a melting point of over 1,700°C, and is difficult to melt and has a high viscosity, so it is unavoidable that liquefied streaks will occur. Furthermore, since it is difficult to obtain a high-temperature state in a high-purity atmosphere, the occurrence of refractory streaks is also difficult to avoid. Furthermore, since quartz glass is degassed by a manufacturing method that stacks a molten phase on top of a solid phase, non-uniform temperatures cannot be avoided. This is the reason why striae essentially occur in normal manufacturing methods.

それに対し、ゾルゲル法は均質なゾル状態がゲル化によ
り固定化され、そのまま均一な加熱によりガラス化する
ため脈理が発生しない、ガラス化は通常1300℃以下
、最高でも1500℃で達成され、高純度の雰囲気が管
理可能である。このようにゾルゲル法は本質的に脈理が
発生しない製法であるが、大型のガラス体が得られない
と応用が極めて限られてしまうし、脈理の測定さえおぼ
つかない。数紙でも脈理標準試料の50X50X20閣
の大きさは必要である。
On the other hand, in the sol-gel method, a homogeneous sol state is fixed by gelation, and then it is vitrified by uniform heating, so striae does not occur. The purity of the atmosphere is manageable. As described above, the sol-gel method is a manufacturing method that essentially does not generate striae, but unless a large glass body can be obtained, its applications are extremely limited, and even the measurement of striae is difficult. Even if it is just a few papers, the size of the standard striae sample is 50x50x20.

アルキルシリケートを酸性触媒を用いて加水分解した溶
液にシリカ微粒子を分散させると、乾燥や焼結で割れな
い多孔質のドライゲルを作製することができる。ゾルを
pH3〜6の範囲に調整すると、加水分解生成物である
テトラヒドロキシシランの重合速度が促進されて網目構
造を強化し、更に割れにくい強固な構造をとる。
When fine silica particles are dispersed in a solution obtained by hydrolyzing an alkyl silicate using an acidic catalyst, a porous dry gel that does not crack during drying or sintering can be produced. When the pH of the sol is adjusted to a range of 3 to 6, the polymerization rate of tetrahydroxysilane, which is a hydrolysis product, is accelerated, the network structure is strengthened, and a strong structure that is difficult to crack is formed.

多孔質体であるドライゲルの閉孔化を、減圧またはヘリ
ウム雰囲気で行なうと、閉孔は焼結により消失し気泡が
残存しない、更に1500〜2200℃に加熱して一定
時間保持すると、粒界、結晶、気泡、異物が完全に除去
でき、光学的に極めて高品質なものとなる。
When dry gel, which is a porous material, is closed in pores under reduced pressure or in a helium atmosphere, the closed pores disappear by sintering and no bubbles remain.Furthermore, when heated to 1500-2200°C and held for a certain period of time, grain boundaries, Crystals, bubbles, and foreign matter can be completely removed, resulting in extremely high optical quality.

〔実 施 例〕〔Example〕

実施例 1゜ エチルシリケートに重量比で1:1になるように0.0
2規定の塩酸を加え、水冷しながら約2時間撹拌するこ
とにより加水分解溶液を調製した。
Example 1゜0.0 to ethyl silicate at a weight ratio of 1:1
A hydrolysis solution was prepared by adding 2N hydrochloric acid and stirring for about 2 hours while cooling with water.

そこに超微粉末シリカ(Aerosil  0X−50
)を、エチルシリケートに対しモル比で1:1になるよ
うに徐々に添加し、充分に撹拌した。
There, ultrafine powdered silica (Aerosil 0X-50
) was gradually added to the ethyl silicate in a molar ratio of 1:1, and the mixture was thoroughly stirred.

このゾルを20℃に保ちながら28kHzの超音波を2
時間照射し、更に1500Gの遠心力を10分間かけた
後1μmのフィルターを通過させた。
While keeping this sol at 20℃, 28kHz ultrasonic waves were applied for 2 hours.
After irradiation for a period of time, a centrifugal force of 1500 G was applied for 10 minutes, and the mixture was passed through a 1 μm filter.

このゾルのpH値を0.4規定のアンモニア水を用いて
4.5に調整し、約2時間かけてゲル化させた。
The pH value of this sol was adjusted to 4.5 using 0.4N aqueous ammonia, and gelatinized over about 2 hours.

開口率0.3%程度の乾燥容器に、このゲル体を移し入
れ、約60℃に保たれた恒温乾燥機を用いて約2週間で
乾燥し、空気中に放置しても割れない多孔質なドライゲ
ルを得た。
This gel body is transferred to a drying container with an open area ratio of approximately 0.3%, and dried in a constant temperature dryer kept at approximately 60°C in approximately 2 weeks, resulting in a porous structure that does not crack even when left in the air. A dry gel was obtained.

この多孔質体を酸素/窒素雰囲気中で一旦1000℃ま
で加熱し、縮合反応の促進、脱水、脱有機物等の各種処
理を行なった。真空炉を用いて減圧度をITorr以下
に保ちながら、最高1400℃まで加熱してガラス化さ
せた。
This porous body was once heated to 1000° C. in an oxygen/nitrogen atmosphere, and various treatments such as promotion of condensation reaction, dehydration, and removal of organic matter were performed. Vitrification was performed by heating to a maximum of 1400° C. while maintaining the degree of vacuum at ITorr or less using a vacuum furnace.

こうして得られたガラス体は透明性の高い無色の魂状体
であり、大型化については300X30OX 50 +
n+程度のインゴットが作製可能であった。
The glass body obtained in this way is a highly transparent colorless soul-like body, and the size can be increased to 300 x 30 OX 50 +
It was possible to produce an ingot of about n+.

脈理測定のため、50 X 50 X 20 +mの試
料を切り出し平行に研磨した0日本光学硝子工業会規格
に定められた方法で、三方向について脈理を測定したが
全く認められず、すべての方向について1級であった。
To measure striae, a sample of 50 x 50 x 20 + m was cut out and polished parallel to each other, and striae were measured in three directions using the method specified in the Japan Optical Glass Industry Association standards, but no striae were observed. It was grade 1 in terms of direction.

また、300X300X5+m+のサイズに研磨加工し
、バックライトを当てながら平行にはさんだ偏光板を回
転させてみたが、筋状あるいは層状の不均質な部分は検
出できなかった。
I also tried polishing it to a size of 300x300x5+m+ and rotating the polarizing plates sandwiched in parallel while shining a backlight, but no streak-like or layer-like non-uniform parts could be detected.

実施例 2゜ エチルシリゲート、エタノール、水、アンモニア水(2
9%)を1モル比で1ニア、6:4:0゜08の割合に
なるように混合し約5時間撹拌した後、室温で数日間熟
成し、減圧濃縮することにより、分散性の良いシリカ微
粒子溶液を調製した。
Example 2゜Ethyl silicate, ethanol, water, ammonia water (2
9%) at a molar ratio of 6:4:0°08, stirred for about 5 hours, aged at room temperature for several days, and concentrated under reduced pressure to obtain a mixture with good dispersibility. A silica fine particle solution was prepared.

次に先のエチルシリゲートの2倍量のエチルシリケート
を用意し、重量比で1:1になるように0.02規定の
塩酸を加え、水冷しながら約2時間撹拌することにより
加水分解液を調製した。
Next, prepare twice the amount of ethyl silicate as the previous ethyl silicate, add 0.02 N hydrochloric acid so that the weight ratio is 1:1, and stir for about 2 hours while cooling with water to form a hydrolyzed solution. was prepared.

シリカ微粒子溶液のPH値を2規定の塩酸を用いて4.
5に調整した後、加水分解液を混合し、均質な溶液とな
るまで十分撹拌した。その後、この溶液のpH値を0.
4規定のアンモニア水を用いて5.0に調整し、約50
分かけてゲル化させた。
The pH value of the silica fine particle solution was adjusted to 4.0 using 2N hydrochloric acid.
5, the hydrolyzate was mixed and sufficiently stirred until a homogeneous solution was obtained. Then, the pH value of this solution was adjusted to 0.
Adjust to 5.0 using 4-normal ammonia water, about 50
It took several minutes to gel.

このゲル体をポリプロピレン製の乾燥容器(開口率0.
3%程度)に移し入れ、約60℃に保たれた恒温乾燥機
を用いて約2週間で乾燥し、空気中に放置しても割れな
い多孔質ゲル体を得た。
This gel body is dried in a polypropylene drying container (with an opening ratio of 0.
3%) and dried in a constant temperature dryer kept at about 60°C for about 2 weeks to obtain a porous gel body that does not crack even when left in the air.

このゲル体を酸素/窒素雰囲気中で一旦800℃まで加
熱し、縮合反応の促進、脱水、親有機物等の各種処理を
行なった後、炉内をヘリウム雰囲気に変え、最高135
0℃まで加熱してガラス化させた。更に窒素雰囲気中で
1750℃まで昇温し、10分間保持して急冷した後、
アニール炉で除歪を行なった。
This gel body is heated to 800°C in an oxygen/nitrogen atmosphere, and after various treatments such as promotion of condensation reaction, dehydration, and removal of organophilic substances, the inside of the furnace is changed to a helium atmosphere,
It was heated to 0°C to vitrify it. Further, the temperature was raised to 1750°C in a nitrogen atmosphere, held for 10 minutes, and then rapidly cooled.
Strain removal was performed in an annealing furnace.

こうして得られたガラス体は透明性の高い無色の塊状体
であり、大型化については300X300X50m程度
のインゴットが作製可能であった。
The glass body thus obtained was a colorless block with high transparency, and it was possible to produce an ingot of about 300 x 300 x 50 m in size.

実施例1と同様の方法で脈理の測定を行なったが、三方
向とも脈理が検出されなかった。
Striae were measured in the same manner as in Example 1, but no striae were detected in all three directions.

実施例 3゜ まず実施例2と同様の方法により、シリカ微粒子溶液を
調整した。次に4倍量のエチルシリゲートから同様に加
水分解液を調整した。
Example 3 First, a silica fine particle solution was prepared in the same manner as in Example 2. Next, a hydrolyzed solution was prepared in the same manner from 4 times the amount of ethyl silicate.

以下実施例2と全く同様の方法でゾルの混合、pH値調
整、ゲル化、乾燥を行ない、空気中に放置しても割れな
い多孔質ゲル体を得た。
Thereafter, the sol was mixed, pH value adjusted, gelled, and dried in exactly the same manner as in Example 2 to obtain a porous gel body that would not break even when left in the air.

このゲル体を酸素/窒素雰囲気中で一旦800℃まで加
熱した後、石英ガラス治具で炉からの汚染が防げるよう
になっている真空炉内にセットシた。減圧度を0.IT
orr以下に保ちながら最高1300℃まで加熱したと
ころ、完全には透明化していないものの、閉孔化の終了
している乳白色のガラス前駆体が得られた。次に窒素雰
囲気中で1720℃まで昇温し、30分間保持して急冷
し透明度の高いガラス体を得た。更にアニール炉で十分
な除歪を行なった。
This gel body was once heated to 800° C. in an oxygen/nitrogen atmosphere, and then set in a vacuum furnace equipped with a quartz glass jig to prevent contamination from the furnace. Reduce the degree of pressure reduction to 0. IT
When heated up to a maximum of 1300° C. while maintaining the temperature below orr, a milky white glass precursor was obtained which was not completely transparent but had completed pore closure. Next, the temperature was raised to 1720° C. in a nitrogen atmosphere, held for 30 minutes, and rapidly cooled to obtain a highly transparent glass body. Furthermore, sufficient strain was removed in an annealing furnace.

こうして得られたガラス体を、実施例1に示した脈理測
定法で調べてみたが、三方向とも脈理は検出されなかっ
た。
The glass body thus obtained was examined using the striae measurement method shown in Example 1, but striae were not detected in all three directions.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、三方向脈理のないこ
とにより、石英ガラスが集積回路用投影露光装置のレン
ズ、液晶デイスプレィ用TPT基板や各種光学部品に応
用可能となった。
As described above, according to the present invention, quartz glass can be applied to lenses of projection exposure apparatuses for integrated circuits, TPT substrates for liquid crystal displays, and various optical components due to the absence of three-way striae.

また少なくとも以下に示す工程を一つ以上含むことによ
り、前記の条件を満足する三方向脈理がない石英ガラス
の製造方法を提供できた。
Furthermore, by including at least one or more of the steps shown below, it was possible to provide a method for producing quartz glass free of three-way striae that satisfies the above conditions.

a) アルキルシリケートを、酸性触媒を用いて加水分
解させる工程。
a) A step of hydrolyzing an alkyl silicate using an acidic catalyst.

b) 加水分解液にシリカ微粒子を分散させる工程。b) A step of dispersing silica fine particles in the hydrolysis liquid.

C) シリカ分散液をpH3〜6の範囲に調整する工程
C) A step of adjusting the pH of the silica dispersion to a range of 3 to 6.

d) 該ゾルをゲル化、乾燥させドライゲルとする工程
d) A step of gelling and drying the sol to form a dry gel.

e) ドライゲルを加熱し、減圧またはヘリウム雰囲気
で閉孔化させガラス体あるいはガラス前駆体とする工程
e) A step of heating the dry gel to close the pores under reduced pressure or a helium atmosphere to form a glass body or glass precursor.

f) 前記ガラス体あるいはガラス前駆体を、1500
℃〜2200℃に加熱して一定時間保持する工程。
f) The glass body or glass precursor is heated to 1500
A process of heating to a temperature between ℃ and 2200℃ and holding it for a certain period of time.

以  上 出願人 セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)三方向脈理がないことを特徴とする石英ガラス。(1) Quartz glass characterized by the absence of three-way striae. (2)少なくとも以下に示す工程を一つ以上含むことを
特徴とする石英ガラスの製造方法。 a)アルキルシリケートを、酸性触媒を用いて加水分解
させる工程。 b)加水分解液にシリカ微粒子を分散させる工程。 c)シリカ分散液をpH3〜6の範囲に調整する工程。 d)該ゾルをゲル化、乾燥させドライゲルとする工程。 e)ドライゲルを加熱し、減圧またはヘリウム雰囲気で
閉孔化させガラス体あるいはガ ラス前駆体とする工程。 f)前記ガラス体あるいはガラス前駆体を、1500℃
〜2200℃に加熱して一定時 間保持する工程。
(2) A method for producing quartz glass, which includes at least one or more of the following steps. a) A step of hydrolyzing an alkyl silicate using an acidic catalyst. b) A step of dispersing silica fine particles in the hydrolysis liquid. c) A step of adjusting the pH of the silica dispersion to a range of 3 to 6. d) A step of gelling and drying the sol to form a dry gel. e) A step of heating the dry gel to close the pores under reduced pressure or a helium atmosphere to form a glass body or a glass precursor. f) The glass body or glass precursor is heated to 1500°C.
A process of heating to ~2200°C and holding for a certain period of time.
JP62317720A 1987-12-16 1987-12-16 Quartz glass and production thereof Pending JPH01160834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317720A JPH01160834A (en) 1987-12-16 1987-12-16 Quartz glass and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317720A JPH01160834A (en) 1987-12-16 1987-12-16 Quartz glass and production thereof

Publications (1)

Publication Number Publication Date
JPH01160834A true JPH01160834A (en) 1989-06-23

Family

ID=18091286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317720A Pending JPH01160834A (en) 1987-12-16 1987-12-16 Quartz glass and production thereof

Country Status (1)

Country Link
JP (1) JPH01160834A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296333A (en) * 1985-10-22 1987-05-02 Seiko Epson Corp Method of producing quartz glass
JPS62158121A (en) * 1985-12-27 1987-07-14 Shinetsu Sekiei Kk Method for homogenizing glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296333A (en) * 1985-10-22 1987-05-02 Seiko Epson Corp Method of producing quartz glass
JPS62158121A (en) * 1985-12-27 1987-07-14 Shinetsu Sekiei Kk Method for homogenizing glass

Similar Documents

Publication Publication Date Title
US4681615A (en) Silica glass formation process
EP1258456A1 (en) Silica glass formation process
JPH01160834A (en) Quartz glass and production thereof
JP3199275B2 (en) Manufacturing method of quartz glass
JPS59131538A (en) Production of quartz glass
JPS62265130A (en) Production of silica glass
JP3582093B2 (en) Method for producing silica glass
JPH02145446A (en) Production of lump glass
JPS60215532A (en) Production of quartz glass
JPH04130022A (en) Production of glass
CA2398876A1 (en) Sol-gel process for producing synthetic silica glass
JPS6126525A (en) Production of quartz glass
EP3995460A1 (en) Method for preparing micro-optical glass device
JPH03174330A (en) Production of glass
JPH01278428A (en) Production of glass
WO2021135881A1 (en) Method for preparing micro optical glass device
JPH05147950A (en) Production of glass
JPH01278429A (en) Production of glass
JPH02167830A (en) Production of glass
JPS63107821A (en) Production of glass
JPH0264033A (en) Production of lumpy glass
JPH01179731A (en) Production of glass
JPH02271928A (en) Production of glass
JPH0393636A (en) Production of glass
JPH02145447A (en) Production of lump glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A02