JPH01201033A - Melting device and melting vessel using same - Google Patents

Melting device and melting vessel using same

Info

Publication number
JPH01201033A
JPH01201033A JP2287288A JP2287288A JPH01201033A JP H01201033 A JPH01201033 A JP H01201033A JP 2287288 A JP2287288 A JP 2287288A JP 2287288 A JP2287288 A JP 2287288A JP H01201033 A JPH01201033 A JP H01201033A
Authority
JP
Japan
Prior art keywords
container
melting
ceramic
reinforcing film
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2287288A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Sato
佐藤 文良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2287288A priority Critical patent/JPH01201033A/en
Publication of JPH01201033A publication Critical patent/JPH01201033A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/06Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in pot furnaces
    • C03B5/08Glass-melting pots

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To provide the title melting vessel so designed that a vessel made of noble metal (alloy) with its outer surface coated with a ceramic reinforcing film is supported by a supporting member having radiation heat-transmissible part, thereby enhancing heat-receiving efficiency and reducing the vaporization of the vessel material and foreign substance contamination into glass. CONSTITUTION:The outer surface of roughly cylindrical vessel base 22 open upward, made of such a noble metal (alloy) as Pt, Pt-Rh or Pt-Au is subjected to plasma spray coating with a powder mixture comprising forsterite with a mean particle size of 5-7mum and Al2O3 with a man particle size of 1-2mum to form the first layer 24a. Thence, the second layer 24b is formed on the first layer 24a by plasma spray coating with a second powder mixture comprising Al2O3 with a mean particle size of 1-2mum and TiO2 with a mean particle size of 1-2mum, thus obtaining a melting vessel 12 with its outer surface coated with the resultant ceramic reinforcing film 24, 0.1-5.0mm thick. This vessel 12 is then supported by a supporting member 14 with many penetrating holes 28 as the radiation heat-transmissible part so as to externally cover the lower half part of said vessel 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 未発Illは溶融装置及び該装置に用いられる溶融容器
ならびにこれらの製造方法に関する0本発明の溶融装を
及び溶融容器はたとえば光学ガラス製造のためのガラス
溶融に好適に利用される。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a melting device, a melting container used in the device, and a method for manufacturing the same. It is suitably used for glass melting.

[従来の技術及び発明が解決しようとする課題]光学素
子の材料として用いられる光学ガラスは、原料たる粉粒
状の各種酸化物を高温で溶融することにより製造される
。この光学ガラスは正確な光学的特性を必要とするので
、その製造に際しては原料の配合に厳密を期することは
もちろんのこと、不純物が混入しないように細心の注意
がはられれる。
[Prior Art and Problems to be Solved by the Invention] Optical glass used as a material for optical elements is manufactured by melting various powdered oxides as raw materials at high temperatures. This optical glass requires precise optical properties, so when manufacturing it, not only must the raw materials be strictly mixed, but great care must be taken to avoid contamination with impurities.

光学ガラス製造のためのガラス溶融は、炉内にルツボと
称されるガラス溶融容器を配置し、該容器内にガラス原
料を投入し炉により加熱することによりなされている。
Glass melting for producing optical glass is carried out by placing a glass melting container called a crucible in a furnace, putting glass raw materials into the container, and heating the glass in the furnace.

ガラス溶融容器としては、最近では高温耐熱性を有し溶
融ガラス原料との反応性が低く不純物混入及び組成変化
を生じにくいという利・、′、−の故に、白金の様な貴
金属や白金−ロシウ1.系合金の様な貴金属合金からな
るものが用いられている。
Recently, noble metals such as platinum and platinum-rosium are used as glass melting containers due to their high temperature resistance, low reactivity with molten glass raw materials, and resistance to impurity contamination and compositional changes. 1. Those made of noble metal alloys such as alloys are used.

しかして、これら貴金属または貴金属合金からなる容器
は高価であるためその厚さはせいぜい0.8〜1.5m
m程度である。このため、該容器のみでは機械的強度が
十分でなく、ガラス溶融11′Fの高温下での十分な耐
久性が得られないので、詠容器を他のml大物からなる
支持部材により下方及び外側から支持して炉内に配置す
ることが行なわれている。
However, since containers made of these precious metals or precious metal alloys are expensive, their thickness is at most 0.8 to 1.5 m.
It is about m. For this reason, the container alone does not have sufficient mechanical strength and cannot provide sufficient durability under the high temperature of 11'F for glass melting. The conventional method is to support it from the ground and place it inside the furnace.

第3図は以りの様な従来のガラス溶融のための装置の一
例を示す概略断m1図である。
FIG. 3 is a schematic cross-sectional view showing an example of a conventional glass melting apparatus as described above.

図において、lはほぼ円筒形状の白金容器であり、該容
器の1力端縁には補強のためのリブ2が形成されている
。3はサポータと称される耐火物製の部分な強度を有す
る支持部材であり、1:記容;ζ:2の外面全体を覆う
様に配置されている。該サポータの材質はガラス溶融条
件に適合したものが用いられ、たとえばアルミナ系、ム
ライト系、ジルコニア系、ジルコン系、シリカ系などの
セラミックを中独あるいはライニング手法で複層となし
たものを用いることができる。];記容器lとサポータ
3との間にはアルミナ粉末あるいはバブル状のアルミナ
やジルコニアからなる緩衝材4が充填されている。5は
該緩衝材部分に対する蓋材である。サポータ3は炉内床
部6上に台7を介して設置されている。Gは溶融ガラス
である。
In the figure, l is a platinum container having a substantially cylindrical shape, and a reinforcing rib 2 is formed at the edge of the container. Reference numeral 3 denotes a support member made of refractory material and having partial strength, which is called a supporter, and is arranged so as to cover the entire outer surface of 1: description; ζ: 2. The material of the supporter is one that is compatible with the glass melting conditions, for example, a ceramic such as alumina, mullite, zirconia, zircon, silica, etc., made of a multilayered material using a Chinese or German lining method. Can be done. ]; A buffer material 4 made of alumina powder or bubble-shaped alumina or zirconia is filled between the container l and the supporter 3. 5 is a cover material for the cushioning material portion. The supporter 3 is installed on the furnace floor 6 via a stand 7. G is molten glass.

しかして、この様な従来のガラス溶融装置あるいはガラ
ス溶融容器には次の様な問題点があった。
However, such conventional glass melting apparatuses or glass melting containers have the following problems.

即ち、溶融装置の組立に際しては容器lをサポータ3内
に収容して、これらの間に緩神1材4の層を均一な厚さ
に配とせねばならず、この様な操作は煩雑であり、かな
りの熟練を特徴とする特に、1−記容器lとして形状の
複雑なものを用いる場合には、この問題が顕著である。
That is, when assembling the melting device, it is necessary to house the container l in the supporter 3, and to distribute the layer of the melting material 1 and material 4 to a uniform thickness between them, and such an operation is complicated. This problem is particularly noticeable when using a container with a complicated shape, which requires considerable skill.

次に、該装置は炉内で加熱されるのであるが、炉内熱源
からの熱輻射によりサポータ3を加熱し更に該サポータ
から緩衝材4を介して容器lへと熱伝達を行なわねばな
らない、このため容器1の受熱効率がかなり低く、yX
料投入からガラス溶融までにかなりの時間を要している
Next, the device is heated in the furnace, and the supporter 3 must be heated by heat radiation from the furnace heat source, and heat must be transferred from the supporter to the container l via the buffer material 4. Therefore, the heat receiving efficiency of container 1 is quite low, and yX
It takes a considerable amount of time from adding the materials to melting the glass.

更に、容器lを構成する白金の揮発による該容器の損J
Lの問題がある。白金はガラス溶融温度程瓜の高温にな
ると揮発する。大気中または酸素雰囲気ドではより低温
でも酸化して揮発性のPtO2どなる。このため、溶融
装置の長時間の稼動の後には容器lには大きなffl量
減が発生する。たとえば、1400〜1500℃で2〜
3年間稼動した場合、上記型S、を減は30〜40%に
も達することが知られている。その大半は揮発によるも
のである。揮発した白金は炉外の比較的温度の低い部分
に析出する。この様な揮発を抑制するために窒素ガス雰
囲気中で稼動することもあるが、清澄作用に悪影響を与
えたり、密閉のための手段が大がかりになりガスのラン
ニングコストが高くなる等経済的ではない。
Furthermore, damage to the container J due to volatilization of platinum constituting the container L
There is a problem with L. Platinum evaporates when the temperature of the melon reaches the melting temperature of the glass. In the air or in an oxygen atmosphere, it oxidizes even at lower temperatures and becomes volatile PtO2. Therefore, after a long period of operation of the melting device, a large amount of ffl decreases in the container l. For example, at 1400-1500℃
It is known that after three years of operation, the reduction in Type S can reach 30 to 40%. Most of this is due to volatilization. The volatilized platinum is deposited outside the furnace at a relatively low temperature. In order to suppress such volatilization, it may be operated in a nitrogen gas atmosphere, but this is not economical as it has a negative effect on the clarification effect, requires extensive sealing, and increases gas running costs. .

また、白金インクルージヨンの1汽1題もある。即ち、
1ユ記の様にして揮発した白金の一部は溶融ガラス中に
異物として混入する。該異物は数ミクロンから数百ミク
ロンの大きさの不定形の異物であり、高粘度のガラスか
ら除去することは困難であり、ガラスの品質を劣化させ
る。
In addition, there is also one 1st Steam title from Platinum Inclusion. That is,
A part of the platinum volatilized as described in 1U is mixed into the molten glass as a foreign substance. The foreign matter is an amorphous foreign matter with a size of several microns to several hundred microns, and is difficult to remove from high-viscosity glass, deteriorating the quality of the glass.

更に、容器lの強度の問題がある。温度上昇と温度降下
とを頻繁に繰返すと、容器1は微少変形を繰返し、この
際の圧縮及び引張の内部応力に基づき白金Mt織の++
T結晶化(結晶粒成長)が生じやすくなり、これが進行
するとクラックが発生し容器が破損することがある。特
に、容器形状が複雑な場合には上記再結晶化が1liI
譜である。
Furthermore, there is the problem of the strength of the container l. When the temperature rise and fall are repeated frequently, the container 1 repeatedly undergoes slight deformation, and due to the compressive and tensile internal stresses at this time, the platinum Mt weave ++
T-crystallization (crystal grain growth) is likely to occur, and as this progresses, cracks may occur and the container may be damaged. In particular, when the container shape is complicated, the above recrystallization is 1liI
It is a sheet music.

そこで、本発明は、上記の様な従来技術に鑑み、炉内設
置に熟練を要することがなく、受熱効率が高く、容器材
料の揮発が少なく、更にガラス中への異物混入が少なく
、良好な生産性が得られ、1−分な強Iffをもつガラ
ス溶融装置またはガラス溶融容器を提供することを目的
とする。
Therefore, in view of the above-mentioned conventional technology, the present invention does not require skill for installation in the furnace, has high heat receiving efficiency, has low volatilization of the container material, and has low foreign matter contamination into the glass. It is an object of the present invention to provide a glass melting device or a glass melting container that is highly productive and has a strong Iff of 1 minute.

[課題を解決するための手段] 本発明によれば、以上の如き目的を達成するものとして
[Means for Solving the Problems] According to the present invention, the above objects are achieved.

貴金属または貴金属合金からなる容器基材の外表面にセ
ラミックからなる補強膜が付されて溶融容器が形成され
ており、該容器が輻射熱透過部を41する支持部材によ
り支持されていることを特徴とする、溶融装置。
A reinforcing film made of ceramic is attached to the outer surface of a container base material made of a noble metal or a noble metal alloy to form a melting container, and the container is supported by a support member having a radiant heat transmitting portion 41. , melting equipment.

及び 貴金属または貴金属合金からなる容器基材の外表面にセ
ラミックからなる補強膜が付されており、該補強膜が複
数の層からなり、容器基材側の層が該基材の熱膨張係数
に近い熱膨張係数をもつ層であり[つ外側の層が受熱効
率の良好な層であることを特徴とする、溶融容器、 が提供される。
A reinforcing film made of ceramic is attached to the outer surface of a container base material made of a noble metal or a noble metal alloy, and the reinforcing film is made up of multiple layers, and the layer on the container base material side has a coefficient of thermal expansion that corresponds to the coefficient of thermal expansion of the base material. A melting vessel is provided, the layers having similar coefficients of thermal expansion [and the outer layer being a layer with good heat receiving efficiency].

本5111において、容器)^材として白金を用いるこ
とができる。
In Book 5111, platinum can be used as the container material.

また、上記溶融装置または溶融容器の製造において、セ
ラミックからなる補強膜をプラズマ溶射を用いて形成す
ることができ、この際プラズマ溶射により形成されたセ
ラミック層の表面を研削してセラミックからなる補強膜
を形成することができる。
In addition, in manufacturing the above-mentioned melting device or melting container, a reinforcing film made of ceramic can be formed using plasma spraying, and in this case, the surface of the ceramic layer formed by plasma spraying is ground to form the reinforcing film made of ceramic. can be formed.

[実施例] 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Example] Hereinafter, specific examples of the present invention will be described with reference to the drawings.

第1図は未発I貝による溶融装置の第1の実施例を示す
一部断面概略側面図である。
FIG. 1 is a partially cross-sectional schematic side view showing a first embodiment of a melting device using unexploited I shellfish.

図において、12は溶融容器であり、14は該溶融容器
を支持するための支持部材(サポータ)であり、16は
電気炉の床である。
In the figure, 12 is a melting container, 14 is a support member (supporter) for supporting the melting container, and 16 is a floor of the electric furnace.

容器12は上方が開放されたほぼ円筒状の容器基材22
の外表面にセラミック補強1模24を形成したものから
なる。
The container 12 has a substantially cylindrical container base 22 that is open at the top.
A ceramic reinforcement pattern 24 is formed on the outer surface.

容器基材22は白金製であり、厚さ0.8mm、直径1
40mm、深さ150mm、内容植約2文である。尚、
該容器ノ↓材22のに刃端縁の一部には溶融ガラス浣出
のためのツバ26が一体的に付設されている。該ツバは
長さ50 m m、輻80mmである。
The container base material 22 is made of platinum, has a thickness of 0.8 mm, and a diameter of 1
It is 40mm long, 150mm deep, and contains 2 sentences. still,
A collar 26 for scooping out molten glass is integrally attached to a part of the edge of the blade of the container material 22. The brim has a length of 50 mm and a radius of 80 mm.

該容器基材22としては、白金−ロジウム、白金−金、
白金−ロジウムー金等の白金含有合金やロジウム、金、
イリジウム、パラジウム等の他の貴金属を用いることも
できる。
As the container base material 22, platinum-rhodium, platinum-gold,
Platinum-containing alloys such as platinum-rhodium-gold, rhodium, gold,
Other noble metals such as iridium and palladium can also be used.

セラミック補強膜24は2層からなり、容器基材側の第
1層24aはモ均粒径5〜7pmの7オルステライト(
2MgO・5i02)70屯lよ部とモ均粒径l〜2壓
mのアルミナ(A 1203 )30屯埴部とからなる
粉体混合物をプラズマ溶射により厚さ0.4〜0.5m
mに形成してなるものである。また、外側の第2層24
bは上記モ均粒pf、 1〜24 mのアルミナ(A1
203)50ffij一部とモ均粒径l〜2鉢mのチタ
ニア(Ti02 ) 50 %に部とからなる粉体混合
物をプラズマ溶射してなるものであり、L記第1層24
aと第2層24bとの合計の厚さは4.5mmである。
The ceramic reinforcing film 24 consists of two layers, and the first layer 24a on the side of the container base material is made of 7 orsterite (7 orsterite) with an average grain size of 5 to 7 pm.
A powder mixture consisting of 70 tons of 2MgO・5i02) and 30 tons of alumina (A 1203) with an average particle size of 1 to 2 μm is sprayed to a thickness of 0.4 to 0.5 m by plasma spraying.
It is formed in the shape of m. In addition, the outer second layer 24
b is the uniform grain pf of the above, 1 to 24 m of alumina (A1
203) It is made by plasma spraying a powder mixture consisting of 50% titania (Ti02) and 50% titania (Ti02) with an average particle size of l to 2 m, and the first layer 24
The total thickness of layer a and second layer 24b is 4.5 mm.

14記セラミック補強膜24を構成するセラミックとし
ては、アルミナ(A1203)、チタニア(T i 0
2 ) 、安定ジルコニア(ZrO2)、フォルステラ
イト ・′2MgolISi02)、ステアタイト(M
gO−Si02)、  ムライト(3Al2O3・2S
i02)、石英(Si02)等を単独または混合して溶
射を行なって得られる酸化物系セラミックを用いること
ができる。この酸化物系セラミックは大気雰囲気Fで溶
融を行なう場合も使用できる。また、上記セラミック補
強1団24を構成するセラミックとしては、窒化ケイ素
(Si3N+)、’:ぜ化チタン(T i N)等の窒
化物や炭化ケイ素(SiC)、JZ化チタン(TiC)
、IR化タングステン(we)等の炭化物を単独または
適宜混合して溶射を行なって得られるものを用いること
ができる。これら窒化物系や炭化物系のセラミックは白
金容器ノS材に直接波1’N した場合には高温で白金
との合金化を生ずるので、1000℃以下の比較的低温
の溶融条件ドで使用するか、あるいは第2層またはそれ
より外側の層として用いるのかk(ましく、更に高温で
は酸化し分解反応が進みやすくなるために窒素ガス等の
非酸化性雰囲気下や真空rでの使用に適している。
14. Ceramics constituting the ceramic reinforcing film 24 include alumina (A1203) and titania (T i 0
2), stable zirconia (ZrO2), forsterite ・'2MgolISi02), steatite (M
gO-Si02), Mullite (3Al2O3・2S
An oxide ceramic obtained by thermal spraying quartz (Si02), quartz (Si02), etc. alone or in combination can be used. This oxide ceramic can also be used when melting is carried out in the atmospheric atmosphere F. Furthermore, the ceramics constituting the ceramic reinforcement group 24 include nitrides such as silicon nitride (Si3N+), titanium oxide (T i N), silicon carbide (SiC), and titanium oxide (TiC).
A carbide such as IR-treated tungsten (WE) may be used alone or by thermal spraying the mixture as appropriate. These nitride-based and carbide-based ceramics will alloy with platinum at high temperatures if they are exposed to direct waves of 1'N on the S material of a platinum container, so they should be used under relatively low melting conditions of 1000°C or less. Or, should it be used as the second layer or an outer layer? ing.

上記の様に、セラミック補強膜を2層以りから構成する
場合には、容器基材に近い層はど該基材との熱膨張係数
の近いことを基準に材料を選定し、外側に近いほど受熱
効率の高いことを基準に材料を選定することができる。
As mentioned above, when the ceramic reinforcing membrane is composed of two or more layers, the material for the layer closest to the container base material is selected based on its coefficient of thermal expansion being close to that of the base material, and the material for the layer closest to the outside Materials can be selected based on the higher the heat receiving efficiency.

セラミック補強膜の厚さはたとえば0.1〜5.0mm
である。0.1mm未満であると得られる効果が小さく
、また5、0mmを越えると効果がそれ程増加しない割
に厚肉となりすぎii(IJ増及びコスト■:昇を来す
The thickness of the ceramic reinforcing film is, for example, 0.1 to 5.0 mm.
It is. If it is less than 0.1 mm, the effect obtained will be small, and if it exceeds 5.0 mm, the effect will not increase much but the wall will become too thick ii (increase in IJ and cost (2): increase).

溶射によりセラミック補強膜を比較的厚く形成する場合
には外表面に凹凸が生ずることがあり、該凹凸のために
温度上51及び温度降下が不均一となることがあり、従
って該凹凸が大きい場合には溶射後に表面を研削してモ
坦化するのが好ましい。
When forming a relatively thick ceramic reinforcing film by thermal spraying, unevenness may occur on the outer surface, and these unevenness may cause uneven temperature rise and temperature drop. Therefore, if the unevenness is large, It is preferable to flatten the surface by grinding it after thermal spraying.

さて、L記すポータ14は、図示される様に、容器基材
12のドl’fflを外側から覆う様に支持している。
Now, as shown in the figure, the porter 14 indicated by L supports the container base material 12 so as to cover it from the outside.

該サポータは側面に輻射熱′rhi部たる多数の貫通孔
28が形成されている。また、該サポータは脚部30を
有する。該サポータ14はF2第3図に示される従来の
溶融装置のサポータと同様の耐火物製である。
The supporter has a large number of through holes 28 formed on its side surfaces as radiant heat sections. The supporter also has legs 30. The supporter 14 is made of refractory material similar to the supporter of the conventional melting apparatus shown in FIG.

尚、Gは溶融ガラスである。Note that G is molten glass.

本実施例溶融装こを用いてガラス溶融を行なった実例を
以下に示す。
An example of glass melting using the melting equipment of this embodiment is shown below.

溶融したガラスはタングステン封着用ガラスであり、そ
の組成は5i02ニア4屯4部、B2Q3:16.2重
社部、Al2O3:2重量部、Na2O:4.5重量部
、K2O:2重量部、CaO:1lri部、A S20
3  : 0 、3 屯f部からなる。溶融原料は60
kgをロフトとして秤礒混合されたバッチを1回6kg
づつ用いて平均10回/il!の頻度で溶融を行なった
。各回の溶融において、1350℃で原料を炉上部の投
入口から水冷ホッパーを用いて容器内に投入し、バッチ
が全て溶けた後に炉内温度を1500℃に昇温し、4時
間維持した。尚、ガラスが溶けた後に炉上部からクラン
ク形の白金撹拌棒を容器内に挿入して15rpmで回転
させ、ガラスの均質化を行なった0次に、炉内温度を1
250℃に低下させ、20分++n i持した。炉の側
壁部を一部開放し、ここからステンレス製の把持具を用
いてサポータ下部を把み、該サポータを炉内において傾
けることで、炉外に配置した内容積68文の水入り水槽
内に溶融ガラスを流し込み、水砕カレット約1.8文を
得た。
The molten glass is tungsten sealing glass, and its composition is 4 parts of 5i02Nia 4 tons, B2Q3: 16.2 parts by weight, Al2O3: 2 parts by weight, Na2O: 4.5 parts by weight, K2O: 2 parts by weight, CaO: 1lri part, A S20
3:0, consists of 3 ton f part. The molten raw material is 60
One batch of 6 kg is mixed on a scale with kg as the loft.
Average of 10 times/il! Melting was performed at a frequency of In each melting process, the raw material was charged at 1350° C. into the container from the inlet at the top of the furnace using a water-cooled hopper, and after the batch was completely melted, the temperature inside the furnace was raised to 1500° C. and maintained for 4 hours. After the glass was melted, a crank-shaped platinum stirring rod was inserted into the container from the top of the furnace and rotated at 15 rpm to homogenize the glass.
The temperature was lowered to 250° C. and held for 20 minutes. By partially opening the side wall of the furnace, grasping the lower part of the supporter using a stainless steel gripping tool, and tilting the supporter inside the furnace, it is possible to remove the inside of the water tank with an internal volume of 68 cm placed outside the furnace. Molten glass was poured into the container to obtain approximately 1.8 grams of crushed cullet.

この様なガラス溶融を6ケ月間行なった。尚、同時に、
比較のために−1−2第3図に示される様な従来の溶融
装置を用いたガラス溶融をも類似の条ヂ1で91なった
。その結果を以ドに示す。
Such glass melting was carried out for 6 months. Furthermore, at the same time,
For comparison, glass melting using a conventional melting apparatus as shown in FIG. The results are shown below.

(1)本実施例の装置は溶融容器を巾にサポータ内に入
れるのみでよく、そしてそのまま容易に炉内に設置する
ことかでさる。従って、従来の装置の様に組☆二作業が
煩雑で熟練を要することかない。
(1) The apparatus of this embodiment requires only that the melting container be placed inside the supporter, and can be easily installed in the furnace as it is. Therefore, unlike conventional devices, the assembly work is not complicated and requires skill.

(2)従来の装置では原料投入に1.5〜20時間を黄
していたが、本実施例の装置では15〜20分間の間隔
で4回の投入で合、it 70分間でよかった。これは
、7(実例装置ではサポータに貫通fL28が形成され
ており更に容器の下半分しかサポータで覆われていない
ので、容器の受熱効率が1゛分に高いからである。また
、従来の装置ではサポータの熱容嵯が大きいため只温時
及び降温時に炉内温風と容器温度との間に時間的ずれが
生じていたが、本実施例装置では熱伝達が良好であるの
で、この様な時間的遅れは比較的少なく、このため温風
制御が容易であった。
(2) In the conventional apparatus, it took 1.5 to 20 hours to input the raw materials, but in the apparatus of this embodiment, the raw materials were input four times at intervals of 15 to 20 minutes, and it took only 70 minutes. This is because 7 (in the example device, the supporter is formed with the through hole fL28, and only the lower half of the container is covered with the supporter, so the heat receiving efficiency of the container is as high as 1%. Also, compared to the conventional device) However, due to the large heat capacity of the supporter, there was a time lag between the warm air inside the furnace and the container temperature when the temperature was just heating up and when the temperature was falling. The time delay was relatively small, and therefore hot air control was easy.

(3)従来の装置では、容器l一部円周縁全周にわたっ
てツバを付しであるにもかかわらず容器変形が生じたが
5本実施例装置では容器にセラミック補強膜が形成され
ているので変形が生ずることはなく1本実施例容泰の機
械的強風が部分に高いことか分った。また、木−(施例
では容器ツ(材の厚さを従来の容器(厚さ1.2mm)
の厚さよりもン;1くすることができた。
(3) In the conventional device, the container was deformed even though a part of the container l was provided with a collar over the entire circumference, but in the device of this embodiment, a ceramic reinforcing film is formed on the container. It was found that no deformation occurred in this example, even though the mechanical strength of the wind was high in some parts. In addition, the thickness of the wood (container wood in the example) was changed from that of a conventional container (thickness 1.2 mm).
It was possible to reduce the thickness by 1 mm.

(4)従来の装置では、溶融ガラス表面近くで白金の結
晶粒成長が激しく、モ均3ケ月でクラックが発生しガラ
スが漏れるトラブルがあった。そのたびに、炉の稼動を
停止し、白金6塁の修理を行ない、更にサポータを新規
なものに取換えた。これに対し、本実施例装置では6ケ
月の稼動の後にも合本内面の結晶粒成長はわずかであり
、クラックの発生は全く認められなかった。また、セラ
ミック補強膜にも欠落やクラックは生じておらず、L(
)i命であった。
(4) In conventional equipment, platinum crystal grains grow violently near the surface of the molten glass, causing cracks to occur within three months of molten glass and causing the glass to leak. Each time, the furnace was shut down, the platinum 6th base was repaired, and the supports were replaced with new ones. In contrast, in the apparatus of this example, even after 6 months of operation, there was only slight growth of crystal grains on the inner surface of the joint, and no cracks were observed at all. In addition, there were no chips or cracks in the ceramic reinforcing film, and L(
) It was my life.

(5)6ケ月の稼動の後に、本実施例の容器基材及び従
来装置の容器の白金を精製しなおしたところ、従来装置
の場合の白金損耗量が約3%であり、本実施例装この場
合はその約173の約l。
(5) After 6 months of operation, we re-refined the platinum in the container base material of this example and the container of the conventional device, and found that the amount of platinum wasted was about 3% in the case of the conventional device; In this case, about 173 liters.

1%であった。従って、本実施例の容器では揮発その他
の原因による白金の損耗41は極めて少なく、長寿命で
あることが分った。
It was 1%. Therefore, it was found that in the container of this example, platinum loss 41 due to volatilization and other causes was extremely small, and the container had a long life.

第2図は本発明による溶融装置の第2の実施例を示す断
面図である0本図において、E記:51図におけると同
様の部材には同一の符号が付されている。
FIG. 2 is a sectional view showing a second embodiment of the melting apparatus according to the present invention. In this figure, the same members as in FIG. 51 are given the same reference numerals.

本実施例においては、容器12の形状が上記第1実施例
のものと異なる。即ち、該容器は上方が次第に絞られて
径が次第に小さくなる部分12aと該部分に続く小径の
部分12bとを有する。また、該小径部分には原料導入
用の受部12cが形成されている。そして、容器12の
底部は一方向に向かって傾斜しており、その最下位tに
おいて容器側壁部に溶融ガラス流出用パイプ32がvc
続されている。該容器12は容器基材22の外表面にセ
ラミック補強膜24を形成したものからなり、該セラミ
ック補強膜は2つの層24a、24bからなり、この構
成は上記第1実施例のものと回−・である、該容器12
の内容積は15文である。
In this embodiment, the shape of the container 12 is different from that of the first embodiment. That is, the container has a portion 12a which is gradually constricted at the top and has a smaller diameter, and a portion 12b which is smaller in diameter and continues from the portion 12a. Further, a receiving portion 12c for introducing raw materials is formed in the small diameter portion. The bottom of the container 12 is inclined in one direction, and a molten glass outflow pipe 32 is installed on the side wall of the container at the lowest point t.
It is continued. The container 12 is made of a container base material 22 with a ceramic reinforcing film 24 formed on the outer surface, and the ceramic reinforcing film consists of two layers 24a and 24b, and this structure is similar to that of the first embodiment.・The container 12 is
The internal volume of is 15 sentences.

本実施例において、容器12はサポータ14内に収容さ
れているが、容器12の底部が傾斜をもっているので、
サポータ14内にはクサビ型部材34が配とされている
。サポータ14には脚部が付1没されておらず、1偵サ
ポータは台36上に載せられて炉内床部りに配訝されて
いる。
In this embodiment, the container 12 is housed in the supporter 14, and since the bottom of the container 12 has a slope,
A wedge-shaped member 34 is arranged within the supporter 14. The legs of the supporter 14 are not sunk, and the supporter 14 is placed on a stand 36 and placed on the floor of the furnace.

38は攪拌質であり、上方から炉内に延びている駆動回
転軸40のド端に付設されている。該攪拌χ38は容器
12内に位置している。また、42は炉内熱源たるヒー
タであり、44は炉内温度測定のための熱電対である。
Reference numeral 38 is a stirrer, and is attached to the end of a drive rotating shaft 40 extending into the furnace from above. The stirring χ 38 is located within the container 12 . Further, 42 is a heater serving as an in-furnace heat source, and 44 is a thermocouple for measuring the in-furnace temperature.

尚、Gは溶融ガラスである。Note that G is molten glass.

!、記溶融ガラス流出用パイプ32は炉16の側1(t
ド部を貫通して炉外へと延びており、その先端がガラス
流出ノズルとされている0、該パイプも上記容器12と
同様に白金からなる)^材の外表面にセラミック補強膜
を形成したものであるが、該補強j!!2は第1層とし
てモ均粒径l〜2μmのアルミナ(A 1203 )を
プラズマ溶射により厚さ0.2mmに形成し、第2層と
して該アルミナ(A 1203 )50重州都と平均粒
径5μmの炭化ケイ素(SiC)50重壁部とからなる
粉体混合物をプラズマ溶射により厚さ0.3mmに形成
してなるものである。この様に流出パイプの構成を容器
の構成と変えたのは、該パイプの加熱を均一に行ないI
Lつ外側層にSiCを含有させることにより低温での輻
射率を向l−させるためである。
! , the molten glass outflow pipe 32 is connected to the side 1 (t) of the furnace 16.
The pipe extends to the outside of the furnace through the container 12, and its tip is used as a glass outflow nozzle (this pipe is also made of platinum, similar to the container 12). A ceramic reinforcing film is formed on the outer surface of the material. However, the reinforcement j! ! 2 is a first layer in which alumina (A 1203 ) with an average particle size of 1 to 2 μm is formed to a thickness of 0.2 mm by plasma spraying, and a second layer is made of alumina (A 1203 ) with an average particle size of 5 μm. A powder mixture consisting of 50 silicon carbide (SiC) heavy walls is formed into a thickness of 0.3 mm by plasma spraying. The reason why the structure of the outflow pipe was changed from the structure of the container in this way was to uniformly heat the pipe.
This is to improve the emissivity at low temperatures by including SiC in the outer layer.

該パイプは内1110mmであり、外径12mmであり
、長さ1.6mである。46は上記パイプ32の温度を
制御するための管状炉であり、48はそのMiたるヒー
タである。尚、50は炉46内の温度測定のための熱電
対である。
The pipe has an inner diameter of 1110 mm, an outer diameter of 12 mm, and a length of 1.6 m. 46 is a tube furnace for controlling the temperature of the pipe 32, and 48 is a heater. Note that 50 is a thermocouple for measuring the temperature inside the furnace 46.

本実施例装置を用いてSF系光学ガラスを溶融し流出さ
せたところ、白金揮発が最大の原因である溶融ガラス中
への異物混入が十分に少なかった。即ち、ガラス単位体
積中の異物個数を係数すると、従来装置を用いた場合に
比べ約1710程度であり、歩留まりが十分に高いもの
であった。
When SF optical glass was melted and flowed out using the device of this example, the amount of foreign matter mixed into the molten glass, the main cause of which was volatilization of platinum, was sufficiently small. That is, the coefficient of the number of foreign particles in a unit volume of glass was about 1710 compared to the case using the conventional apparatus, and the yield was sufficiently high.

本実施例装置においては流出用パイプ32には補強膜が
形成されているので、流出時に高温にさらされても変形
することなく、十分に形状をM+、?した。また、本実
施例装置ではセラミックで補強されているので、該セラ
ミック補強膜が炉からの熱t−1和して均等に溶融ガラ
スに対し熱伝達を行ない且つ受熱効率が高いので、ガラ
ス流出の削御を容易且つ確実に行なうことができた。
In the device of this embodiment, the reinforcing film is formed on the outflow pipe 32, so that it does not deform even when exposed to high temperatures during outflow, and can be sufficiently shaped into M+, ? did. In addition, since the device of this embodiment is reinforced with ceramic, the ceramic reinforcing film evenly transfers heat to the molten glass by adding the heat t-1 from the furnace, and has high heat receiving efficiency, so that the glass outflow is prevented. Reduction could be carried out easily and reliably.

上記実施例はガラス溶融に関するものであったが、本発
明はその他各種結晶の溶融にも同様に適用できる。更に
、上記実施例ではセラミック補強膜は2層からなるとさ
れているが、本発明では3層以上からなる様にしてもよ
い、その際には、容器基材に近い層はど該基材との熱膨
張係数の近いことを基僧に材料を選定し、外側に近いほ
ど受熱効率の高いことをノ^半に材料を選定するのが好
ましい。
Although the above embodiments relate to glass melting, the present invention is equally applicable to melting of various other crystals. Furthermore, in the above embodiment, the ceramic reinforcing membrane is made up of two layers, but in the present invention it may be made up of three or more layers. In that case, which layer is closer to the container base material? It is preferable to select materials based on the fact that they have similar thermal expansion coefficients, and to select materials based on the fact that the closer they are to the outside, the higher the heat receiving efficiency.

[発明の効果] 以1: 、iT細に説IJ1シた様に、本Qljlによ
れば、溶融容器は貴金属または貴金属合金の外表面にセ
ラミック補強膜を形成したものであるので、強度が向1
−シ、炉内1没置に熟練を要することがなく、受熟効イ
〈が高く、容器材料の揮発が少なく、長ノj命で、更に
ガラス中への異物混入が少なく、良好な生産性が得られ
る。
[Effects of the Invention] 1: As explained in detail in IJ1, according to this Qljl, the melting vessel has a ceramic reinforcing film formed on the outer surface of the noble metal or noble metal alloy, so the strength is improved. 1
-No skill required for placing the glass in the furnace, high aging efficiency, less volatilization of the container material, long life, less contamination of foreign matter into the glass, and good production. You can get sex.

また、未発1j1によれば、溶融容器を輻射熱透過部を
有する支持部材により支持して溶融装置を構成している
ので、1−分に高い受熱効率を得ることができる。
Furthermore, according to the unheated melting device 1j1, since the melting device is configured by supporting the melting container by a support member having a radiant heat transmitting portion, a high heat receiving efficiency can be obtained in 1 minute.

更に、本発明によれば、プラズマ溶射でセラミック補強
膜を形成することにより容易に性能良々fな補強膜を形
成することができる。
Further, according to the present invention, by forming the ceramic reinforcing film by plasma spraying, it is possible to easily form a reinforcing film with good performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による溶融装置を示す一部断面概略側面
図である。 第2図は本発明による溶融装置を示す断面図である。 第3図は従来のガラス溶融装置の一例を示す概略断面図
である。 12:溶融容器、  14;サポータ、16:炉、  
   22:容器基材、24:セラミック補強膜、 28二貫通孔、   32:流出用パイプ、46:管状
炉。 代理人 弁理士  山 下 積 モ 第1図 第3図
FIG. 1 is a schematic side view, partially in section, showing a melting device according to the present invention. FIG. 2 is a cross-sectional view of a melting device according to the invention. FIG. 3 is a schematic cross-sectional view showing an example of a conventional glass melting apparatus. 12: Melting container, 14; Supporter, 16: Furnace,
22: Container base material, 24: Ceramic reinforcement membrane, 28 Two through holes, 32: Outflow pipe, 46: Tubular furnace. Agent Patent Attorney Seki Yamashita Figure 1 Figure 3

Claims (8)

【特許請求の範囲】[Claims] (1)貴金属または貴金属合金からなる容器基材の外表
面にセラミックからなる補強膜が付されて溶融容器が形
成されており、該容器が輻射熱透過部を有する支持部材
により支持されていることを特徴とする、溶融装置。
(1) A reinforcing film made of ceramic is attached to the outer surface of a container base material made of a noble metal or a noble metal alloy to form a melting container, and the container is supported by a support member having a radiant heat transmitting section. Features: Melting equipment.
(2)容器基材が白金からなる、請求項1の溶融装置。(2) The melting device according to claim 1, wherein the container base material is made of platinum. (3)請求項1または2の溶融装置の製造において、セ
ラミックからなる補強膜をプラズマ溶射を用いて形成す
ることを特徴とする、溶融装置の製造方法。
(3) A method for manufacturing a melting device according to claim 1 or 2, characterized in that the reinforcing film made of ceramic is formed using plasma spraying.
(4)プラズマ溶射により形成されたセラミック層の表
面を研削してセラミックからなる補強膜を形成する、請
求項3の溶融装置の製造方法。
(4) The method for manufacturing a melting device according to claim 3, wherein the reinforcing film made of ceramic is formed by grinding the surface of the ceramic layer formed by plasma spraying.
(5)貴金属または貴金属合金からなる容器基材の外表
面にセラミックからなる補強膜が付されており、該補強
膜が複数の層からなり、容器基材側の層が該基材の熱膨
張係数に近い熱膨張係数をもつ層であり且つ外側の層が
受熱効率の良好な層であることを特徴とする、溶融容器
(5) A reinforcing film made of ceramic is attached to the outer surface of the container base material made of a noble metal or a noble metal alloy, and the reinforcing film is made up of multiple layers, and the layer on the container base material side expands due to the thermal expansion of the base material. 1. A melting container characterized by having a layer having a coefficient of thermal expansion close to the coefficient and an outer layer having a good heat receiving efficiency.
(6)容器基材が白金からなる、請求項5の溶融容器。(6) The melting container according to claim 5, wherein the container base material is made of platinum. (7)請求項5または6の溶融容器の製造において、セ
ラミックからなる補強膜をプラズマ溶射を用いて形成す
ることを特徴とする、溶融容器の製造方法。
(7) A method for manufacturing a melting container according to claim 5 or 6, characterized in that the reinforcing film made of ceramic is formed using plasma spraying.
(8)プラズマ溶射により形成されたセラミック層の表
面を研削してセラミックからなる補強膜を形成する、請
求項7の溶融容器の製造方法。
(8) The method for manufacturing a melting container according to claim 7, wherein a reinforcing film made of ceramic is formed by grinding the surface of the ceramic layer formed by plasma spraying.
JP2287288A 1988-02-04 1988-02-04 Melting device and melting vessel using same Pending JPH01201033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287288A JPH01201033A (en) 1988-02-04 1988-02-04 Melting device and melting vessel using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287288A JPH01201033A (en) 1988-02-04 1988-02-04 Melting device and melting vessel using same

Publications (1)

Publication Number Publication Date
JPH01201033A true JPH01201033A (en) 1989-08-14

Family

ID=12094785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287288A Pending JPH01201033A (en) 1988-02-04 1988-02-04 Melting device and melting vessel using same

Country Status (1)

Country Link
JP (1) JPH01201033A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044115A3 (en) * 2000-11-30 2002-12-27 Schott Glas Coated metal element used for producing glass
WO2007020887A1 (en) * 2005-08-19 2007-02-22 Nippon Electric Glass Co., Ltd. Heat resistant material for glass melting, glass article producing apparatus, and process for producing glass article
WO2008027482A2 (en) * 2006-08-31 2008-03-06 Corning Incorporated Method and apparatus for minimizing oxidation pitting of refractory metal vessels
JP2008100879A (en) * 2006-10-20 2008-05-01 Nippon Electric Glass Co Ltd Heat resistant metal reinforcement tube, manufacturing apparatus of glass article and manufacturing process of glass article
JP2008266092A (en) * 2007-04-24 2008-11-06 Asahi Glass Co Ltd Glass manufacturing apparatus and method
JP2009084697A (en) * 2004-09-13 2009-04-23 Tanaka Kikinzoku Kogyo Kk Coating material for platinum material, platinum material coated with such coating material, and glass manufacturing apparatus
US7527832B2 (en) * 2005-04-27 2009-05-05 Ferro Corporation Process for structuring self-cleaning glass surfaces
JP2009249215A (en) * 2008-04-03 2009-10-29 Asahi Glass Co Ltd Platinum structure, and method for producing the same
JP2010059022A (en) * 2008-09-04 2010-03-18 Hoya Corp Cullet raw material, fluorophosphate glass, glass base material for press forming, optical element blank, optical element and method of producing them
JP2010202444A (en) * 2009-03-03 2010-09-16 Asahi Glass Co Ltd Glass melting furnace and glass melting method
JP2011002199A (en) * 2009-06-22 2011-01-06 Nippon Crucible Co Ltd Movable type tilting crucible furnace
CN102171151A (en) * 2008-10-06 2011-08-31 旭硝子株式会社 Apparatus and process for glassmaking
JP2012184147A (en) * 2011-03-08 2012-09-27 Nippon Electric Glass Co Ltd Vessel for glass manufacture
JPWO2015060398A1 (en) * 2013-10-23 2017-03-09 旭硝子株式会社 Glass melt conduit, glass melt container, manufacturing method thereof, glass article manufacturing apparatus, and glass article manufacturing method
JP2020056091A (en) * 2018-10-04 2020-04-09 株式会社フルヤ金属 Volatilization suppression component and method for manufacturing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338714B2 (en) 2000-11-30 2008-03-04 Schott Ag Coated metal element used for producing glass
WO2002044115A3 (en) * 2000-11-30 2002-12-27 Schott Glas Coated metal element used for producing glass
JP2009084697A (en) * 2004-09-13 2009-04-23 Tanaka Kikinzoku Kogyo Kk Coating material for platinum material, platinum material coated with such coating material, and glass manufacturing apparatus
US7527832B2 (en) * 2005-04-27 2009-05-05 Ferro Corporation Process for structuring self-cleaning glass surfaces
WO2007020887A1 (en) * 2005-08-19 2007-02-22 Nippon Electric Glass Co., Ltd. Heat resistant material for glass melting, glass article producing apparatus, and process for producing glass article
JP2010502549A (en) * 2006-08-31 2010-01-28 コーニング インコーポレイテッド Thermal spray refractory oxide coating for precious metal glass supply systems
WO2008027482A2 (en) * 2006-08-31 2008-03-06 Corning Incorporated Method and apparatus for minimizing oxidation pitting of refractory metal vessels
WO2008027482A3 (en) * 2006-08-31 2008-05-08 Corning Inc Method and apparatus for minimizing oxidation pitting of refractory metal vessels
JP2008100879A (en) * 2006-10-20 2008-05-01 Nippon Electric Glass Co Ltd Heat resistant metal reinforcement tube, manufacturing apparatus of glass article and manufacturing process of glass article
JP4720777B2 (en) * 2007-04-24 2011-07-13 旭硝子株式会社 Glass manufacturing apparatus and manufacturing method
JP2008266092A (en) * 2007-04-24 2008-11-06 Asahi Glass Co Ltd Glass manufacturing apparatus and method
JP2009249215A (en) * 2008-04-03 2009-10-29 Asahi Glass Co Ltd Platinum structure, and method for producing the same
JP2010059022A (en) * 2008-09-04 2010-03-18 Hoya Corp Cullet raw material, fluorophosphate glass, glass base material for press forming, optical element blank, optical element and method of producing them
CN102171151A (en) * 2008-10-06 2011-08-31 旭硝子株式会社 Apparatus and process for glassmaking
JP2010202444A (en) * 2009-03-03 2010-09-16 Asahi Glass Co Ltd Glass melting furnace and glass melting method
JP2011002199A (en) * 2009-06-22 2011-01-06 Nippon Crucible Co Ltd Movable type tilting crucible furnace
JP2012184147A (en) * 2011-03-08 2012-09-27 Nippon Electric Glass Co Ltd Vessel for glass manufacture
JPWO2015060398A1 (en) * 2013-10-23 2017-03-09 旭硝子株式会社 Glass melt conduit, glass melt container, manufacturing method thereof, glass article manufacturing apparatus, and glass article manufacturing method
JP2020056091A (en) * 2018-10-04 2020-04-09 株式会社フルヤ金属 Volatilization suppression component and method for manufacturing the same
WO2020071260A1 (en) * 2018-10-04 2020-04-09 株式会社フルヤ金属 Volatilization suppressing component, and method for manufacturing same
CN112805407A (en) * 2018-10-04 2021-05-14 株式会社古屋金属 Volatilization suppressing member and method for producing same
CN112805407B (en) * 2018-10-04 2023-05-02 株式会社古屋金属 Volatilization suppressing member and method for manufacturing the same
US11993534B2 (en) 2018-10-04 2024-05-28 Furuya Metal Co., Ltd. Volatilization suppressing component, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH01201033A (en) Melting device and melting vessel using same
SI9200160A (en) Method and apparatus for manufacturing mineral wool and mineral wool produced thereby
EP0583791A1 (en) Method for producing mineral wool, and mineral wool produced thereby
US20100251774A1 (en) Creep resistant multiple layer refractory used in a glass manufacturing system
US20100126407A1 (en) Silica glass crucible and method for pulling single-crystal silicon
TW476816B (en) Method and apparatus for producing a single crystal
JPH0729871B2 (en) Quartz crucible for pulling single crystals
US20190322563A1 (en) Apparatus and methods for producing glass comprising crystal zirconia
CN101277799A (en) Method of forming refractory shaped item for mounting on plate glass forming apparatus, refractory shaped item, method of forming plate glass and plate glass
WO2007000864A1 (en) Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
CN102531349A (en) Method of manufacturing vitreous silica crucible
JP3121192B2 (en) Method for producing oxide single crystal
US11535546B2 (en) Silica glass crucible
JP2020520875A (en) Refractory articles, compositions for coating refractory articles, and methods of making refractory articles
US20210175219A1 (en) Display area having tiles with improved edge strength and methods of making the same
CN102531347A (en) Method of manufacturing vitreous silica crucible
JP5012042B2 (en) Manufacturing method of glass base material
US11230795B2 (en) Silica-glass crucible and production method thereof
JPH1179754A (en) Glass melting device
JPH0597571A (en) Crucible for pulling up silicon single crystal
WO2020041058A1 (en) Batch pile distributor for improved melt uniformity
JP3714493B2 (en) Spinner for melting glass fiber
JP2003300739A (en) Apparatus for supplying molten glass through spout lip in manufacturing float glass
JP7319412B2 (en) GLASS SUBSTRATE MANUFACTURING DEVICE AND GLASS SUBSTRATE MANUFACTURING METHOD
JPH10338593A (en) Noble metal crucible for signal crystal growth by pulling up method