JP3714493B2 - Spinner for melting glass fiber - Google Patents

Spinner for melting glass fiber Download PDF

Info

Publication number
JP3714493B2
JP3714493B2 JP13068496A JP13068496A JP3714493B2 JP 3714493 B2 JP3714493 B2 JP 3714493B2 JP 13068496 A JP13068496 A JP 13068496A JP 13068496 A JP13068496 A JP 13068496A JP 3714493 B2 JP3714493 B2 JP 3714493B2
Authority
JP
Japan
Prior art keywords
spinner
heat
molten glass
resistant material
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13068496A
Other languages
Japanese (ja)
Other versions
JPH09295824A (en
Inventor
省二 後藤
裕幸 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP13068496A priority Critical patent/JP3714493B2/en
Publication of JPH09295824A publication Critical patent/JPH09295824A/en
Application granted granted Critical
Publication of JP3714493B2 publication Critical patent/JP3714493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/045Construction of the spinner cups

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶融ガラスを遠心法によって繊維化する装置に使用するスピナーに関する。
【0002】
【従来の技術】
建築物の断熱吸音材等に使用されるグラスウールは、一般的に、溶融ガラスを遠心法によって繊維化して製造する。このような製法に用いる繊維化装置(ファイバライザともいう)の一例を図2に示す。この図2の装置では、図示せぬ溶融窯で溶融させた温度1000〜1200℃の溶融ガラス1を、耐熱レンガ製の樋(フォアハース)2によって繊維化装置3まで導き、白金合金製のノズル(ブッシング)4を通して流下させ、スピナー5へその上部の開口6から導入する。この際、ノズル4の温度を適宜調整することで、スピナー5へ導入する溶融ガラス1の量、即ち単位時間当たりのグラスウールの製造量を制御する。
【0003】
スピナー5はコバルト、ニッケル、クロムを主成分とする耐熱合金製で、その側壁7には直径0.5〜1.5mmの数万個のオリフィス8が5〜50段に分けて穿設してある。このスピナー5は、軸9によって図示せぬ駆動装置に連結してあり、駆動装置によって2000〜3000RPMで回転駆動すると、導入された溶融ガラス1はスピナー5の底部10上に流下した後、回転するスピナー5の遠心力によって底部10から側壁7の内面に沿って上昇し、オリフィス8から外部へ吐出される(図中1aで示す)。
【0004】
またスピナー5の上方には液化石油ガス(LPG)、液化天然ガス(LNG)等の燃料を燃焼させる燃焼装置11が設けてあり、その下部からは高温、高速のガス流12がスピナー5の側壁7に沿って下方へ吹き出すようにしてある。このため、オリフィス8から外部へ吐出された溶融ガラス1aは、吐出直後に燃焼装置11から吹き出すガス流12によって延伸されるのと同時に吹き飛ばされ、繊維化されてグラスウールとなる。
【0005】
続いて、繊維化装置3の下部に設置した図示せぬバインダー付与装置によって、繊維化されたグラスウールにフェノール樹脂等の熱硬化性樹脂を主成分とするバインダーを付与し、さらにその下部に設置した定速移動する図示せぬ雰囲気吸引孔を有するコンベア上に、雰囲気を吸引しつつグラスウールを堆積させてマット状にして、同じく図示せぬオーブン内で連続的に圧縮しつつ加熱することで、バインダーを硬化させ、繊維化されたグラスウールをマット状、板状等の形態とする。
【0006】
【発明が解決しようとする課題】
このような溶融ガラスの繊維化に用いるスピナー5では、オリフィス8を通過する溶融ガラスによって、オリフィス8の内壁が徐々に腐食し、そのためオリフィス8の直径が大きくなってゆく。直径が大きくなったオリフィス8からの溶融ガラスの吐出量は腐食前よりも増加し、従って形成されるグラスウールの繊維径も太くなる。グラスウールの繊維径が一定の限度を超えると、これを用いて形成されるグラスウールマットの断熱吸音性、圧縮に対する復元性等の性能が劣化することがあり、これらの性能を所定の水準に確保するためにはスピナーを新しいものと交換することになる。
【0007】
またスピナー5の上部側に設置した燃焼装置11から高温、高速のガス流12が吹き出るため、燃焼装置11に近いスピナー5の側壁7の上部は比較的高温となり、逆に繊維化装置3周辺の空気に接する下部(底部10及びその周縁近傍)では放熱によって比較的低温となり、その温度差は80〜120℃となる。このため、比較的高温の上段のオリフィス8からは溶融ガラスが吐出しやすくなり、比較的低温の下段のオリフィス8からは溶融ガラスが吐出しにくくなる。従って、溶融ガラスによるオリフィス8の内壁の腐食は、上段側ほど速く進行してグラスウールの繊維径が太くなり、下段側のオリフィスで繊維化されたグラスウールの繊維径との差が大きくなり、繊維径分布の範囲が時間の経過と共に広くなっていく。例えば、繊維径分布の範囲が新しいスピナーの使用開始直後では3〜9μmであったものが、交換が必要な時期には1〜15μmにまでなる。すると、下段のオリフィスで繊維化されたグラスウールの繊維径が使用限度内であるにもかかわらず、上段のオリフィスで繊維化されたグラスウールの繊維径が使用限度を超えることになる。使用限度より太い径の繊維の比率が大きくなると、上記と同様にグラスウールマットの断熱吸音性、圧縮に対する復元性等の性能を所定の水準に確保するためにスピナーを新しいものと交換する必要が生じる。
【0008】
即ち、従来においてはスピナー交換の時期が上段のオリフィスの腐食の度合いによって決まるので、スピナーライフ(使用開始から交換が必要となるまでの時間、またはその間に繊維化できるガラスの量)が短く(または少なく)なるという問題がある。
【0009】
またスピナーの側壁の上部と下部に温度差を生じる場合には、比較的低温となる下部を溶融ガラスが繊維化するための温度まで加熱する必要があり、この加熱は上部に対しては過剰な加熱となるので、余分な燃料を燃焼装置で燃焼させることになり、エネルギーコストがその分余計に掛かることになる。しかも側壁の上部と下部との温度差が大きい場合には、繊維化が可能な温度範囲の狭いガラスを安定して繊維化することができないという問題もある。
【0010】
スピナーライフを延ばすために種々の提案がなされている。例えば、スピナーの耐腐食性を向上させるために、耐腐食性の高い合金組成が種々提案されているが、合金自体が高価となることと、側壁の上部と下部との温度差までは改善されないという問題がある。
【0011】
また、スピナーの腐食を抑えるために溶融ガラスの温度を出来る限り下げることも考えられるが、スピナーの側壁の上部と下部との温度差によって、比較的低温の下段のオリフィス付近で溶融ガラスが結晶化し、これによってオリフィス8が詰まってしまう危険性があり、そのような状態になるとグラスウールの生産性の低下につながるので採用することが困難である。
【0012】
さらに、スピナー側壁の上部と下部との温度差を軽減するために、スピナーの内部を燃焼装置によって補助的に加熱する方法や、スピナーの下部を誘電加熱装置によって加熱する方法(特公昭52−42886号公報参照)等が提案されているが、特別な加熱装置を必要とするので、設備及びエネルギーのコストが増大するという問題点を有する。
【0013】
本発明は上記従来の問題点に鑑みてなしたもので、スピナー側壁の上部と下部との温度差を特別な加熱装置を使用することなく軽減し、スピナーライフを延ばすことを目的とする。
【0014】
【課題を解決するための手段】
本発明の溶融ガラス繊維化用スピナーのうち請求項1に係るものは、溶融ガラスを遠心法によって繊維化する装置に使用するスピナーであって、上部の開口から流下させた上記溶融ガラスを底部で受け、該底部に連なる側壁部に設けたオリフィスから上記溶融ガラスを吐出するスピナー本体と、上記底部の外面に設ける断熱保温部とからなることを特徴とする。
【0015】
同請求項2に係るものは、上記断熱保温部が、皿状の耐熱材料製プレートと、該耐熱材料製プレートと上記底部との間に充填する無機質短繊維マットとからなることを特徴とする。
【0016】
同請求項3に係るものは、上記耐熱材料製プレートが金属製プレートであり、上記無機質短繊維マットがセラミックウールからなるマットであることを特徴とする。
【0017】
同請求項4に係るものは、上記側壁部に連なる上記底部の側縁部と、上記耐熱材料製プレートの外周側の上縁部との間に、隙間を設けてなることを特徴とする。
【0018】
【発明の実施の形態】
以下本発明の実施の形態及び実施例を図面を参照して説明する。なお以下では図2に示す従来の例と共通する部分には共通する符号を付すに止め、重複する説明は省略する。
【0019】
図1に示す本発明の実施形態に係るスピナー20は、スピナー本体21の底部22の下側に断熱保温部23を形成したものである。スピナー本体21自体は、従来から用いられてる形状、構造、材質のものでよく、新規に設計等する必要はなく、図2のスピナー5と同様のものである。断熱保温部23は、スピナー本体21の底部22に軸9を用いて耐熱材料製のプレート24を取り付け、スピナー本体21の底部22との間の空間に断熱保温材25を充填して構成してある。スピナー本体21の底部22を二重構造にして密閉した空間を形成し、この密閉空間を真空として真空断熱層を設けるようにしてもよいが、断熱保温部の作成の容易さとコストの面から図示の実施形態のような構成が好ましい。
【0020】
耐熱材料製のプレート24の形状は、図示の例のように皿状で、スピナー本体21の底部22との間に断熱保温材25を充填するための空間を形成できる形状とするのが好ましい。もちろん皿状の形状には種々のものがあり、また類似の形状も多くあるので、本発明では適宜これらのうちの好ましいものを採用すればよい。もっとも、スピナー本体21と共に高速回転させるので、平面形状としては円形のものが好ましい。さらに、高速回転させるのであるから、面方向の厚さのばらつきあるいは重量のばらつきは極力小さくするとよい。
【0021】
またプレート24の材質は、燃焼装置11から吹き出すガス流12によって加熱されるので、800℃以上というような高温でも変形しない様にするため厚さは2〜5mmが好ましく、軽量にするために厚さは2〜3mmがさらに好ましい。具体的な材質としては、ステンレス鋼(SUS310等)、コバルト系合金(スピナーと同じ合金)、ニッケル系合金(ハステロイ、インコネル等)等の耐熱合金や、アルミナ系等のセラミックが挙げられる。もちろん、加工性、耐衝撃性の面では金属製であることが好ましい。
【0022】
プレート24をスピナー本体21の底部22へ取り付ける構造の具体例を図3に示す。この取り付け構造例は、スピナー本体21の回転軸であるフランジ付きの芯棒(クイル)26に、スピナー本体21と共にボルト27及びナット28で取り付けるというものである。プレート24を金属製とする場合、スピナー本体21の底部22の側縁部と、金属製のプレート24の外周側の上縁部との間に、熱伝導を防いで金属製のプレート24からの放熱を抑えるために、1〜2mmの隙間Cを設けることが好ましい。
【0023】
断熱保温材25は、スピナー本体21の底部22とプレート24とで挟み込んで固定する。断熱保温材25の素材としては、800℃以上のような高温に耐える必要があるので、樹脂バインダーが付与されていない無機質短繊維マットが好ましい。特に、耐熱性の面でアルミナシリカ系ウール等のセラミックウールからなるマットが好ましい。このようなマットの密度としては10〜250kg/m3が好ましい。密度が10kg/m3未満の場合に図3に示すような断熱構造を採用すると、隙間Cからマットの素材である短繊維が遠心力で外部へ飛散する可能性がある。また250kg/m3を超えると断熱保温部が重くなる。さらに厚さは5〜50mmのものが好ましい。5mm未満の場合は断熱保温性が不充分であり、50mmを超えると断熱保温部23が重くなるためである。
【0024】
上述のような構成とすると、断熱保温部23によってスピナー本体21の底部22からの放熱が抑制され、側壁7の上部と下部との温度差が低減し、溶融ガラスの吐出量の差が極めて小さくなる。従って、吐出する溶融ガラスによるオリフィス8の内壁の腐食の進行度合いが側壁7の上部と下部とで均一にあるいはほぼ均一になるため、グラスウールの繊維径分布の範囲が広くならず、得られるグラスウールの繊維径分布範囲を狭くできる。さらにスピナーライフも延びる。また、側壁7の下部の温度を保つために、燃焼装置9で過剰に燃料を燃焼させなくてよい。さらに、スピナー側壁の上部と下部との温度差が軽減されたことにより、繊維化温度範囲が狭いガラスの繊維化を安定して行える。
【0025】
【実施例及び比較例】
以下本発明に係る溶融ガラス繊維化用スピナーの実施例に対して、従来と同様のスピナーを比較例としてそれぞれ以下のように作製し、使用結果を比較した。
実施例
本発明に係る溶融ガラス繊維化用スピナーの実施例として、直径300mm、オリフィス数17820個、オリフィス径0.7mmのコバルト合金製スピナー本体の底部に、厚さ4mmのSUS310製の金属板を皿状に加工した直径300mmのプレートに、密度130kg/m3、厚さ6mmのセラミックウール(カオウール、商品名)を載せて固定し、厚さ10mmの断熱保温部を設けたスピナーを形成した。なおこのスピナーの、スピナー本体の底部の側縁とプレートの上縁との間には、約2mmの隙間を設けた。
比較例
上記実施例と同一のスピナー本体を、そのまま断熱保温部を設けずにスピナーとした。
比較結果
上記実施例及び比較例のスピナーを、従来の繊維化装置にそれぞれ取り付けて、溶融ガラスの繊維化を行い、繊維径分布の経時変化、スピナーの表面温度分布、スピナーライフ及び燃料(LNG)使用量を評価した。その結果を表1に示す。
【表1】

Figure 0003714493
なお、表中の繊維径分布には、グラスウール200本を採取し、その直径を顕微鏡を用いて一本一本測定し、測定値の最大値と最小値を記載した。またスピナーの表面温度は放射温度計によって測定した。スピナーライフは新しいスピナーの使用を開始してから、スピナーの交換が必要となるまでの時間、及びその間に繊維化されたガラスの量をいう。
【0026】
表1からわかるように、本発明の実施例に係るスピナーは比較例のスピナーに比べて、側壁の最上段付近と最下段付近との温度差が小さく、繊維径分布が経時的に広がることがなく、均一なグラスウールが得られることがわかる。また温度差が小さいので、溶融ガラス温度を下げた場合でも最下段付近の温度が高いので問題なく繊維化が可能である。さらに、本発明の実施例に係るスピナーは、スピナーライフが長く、より多くのガラスを繊維化でき、燃料の使用量も少ないのでエネルギーコストを削減できることもわかる。
【0027】
【発明の効果】
本発明に係る溶融ガラス繊維化用スピナーは、以上説明してきたように、上部の開口から流下させた溶融ガラスを底部で受け、この底部に連なる側壁部に設けたオリフィスから溶融ガラスを吐出するスピナー本体と、スピナー本体の底部の外面に設ける断熱保温部とからなる構成としたので、側壁部の上部と下部との温度差を小さくでき、これによって繊維径分布が経時的に広がらずに均一なグラスウールが得られるようにすることが可能になるという効果がある。また側壁部の上部と下部との温度差を小さくできるので、溶融ガラスの温度を下げても側壁部の下部の温度が高いので、側壁のオリフィスがすべて問題なく繊維化に使用できるという効果がある。さらに、スピナーライフを長くすることができ、より多くのガラスを繊維化でき、燃料の使用量も少なくて済み、エネルギーコストを削減できるという効果もある。
【0028】
請求項2に係る溶融ガラス繊維化用スピナーは、断熱保温部を皿状の耐熱材料製プレートと無機質短繊維マットととから構成したので、上記共通の効果に加え、断熱保温部を容易かつ安価に構成できるという効果がある。
【0029】
請求項3に係る溶融ガラス繊維化用スピナーは、耐熱材料製プレートを金属製とし、無機質短繊維マットをセラミックウールからなるものとしたので、上記請求項2のスピナーと共通の効果に加え、加工性や耐衝撃性の面で優れたものにすることができるという効果がある。
【0030】
請求項4に係る溶融ガラス繊維化用スピナーは、スピナー本体の側壁部に連なる底部の側縁部と耐熱材料製プレートの外周側の上縁部との間に隙間を設けたので、上記請求項2及び3のスピナーと共通の効果に加え、スピナー本体の底部と耐熱材料製プレートとの間の熱伝導を防いで耐熱材料製プレートからの放熱を抑え、スピナー本体の側壁部の上部と下部との温度差が大きくなることをより抑えられるようになるという効果がある。
【図面の簡単な説明】
【図1】本発明に係るスピナーを使用した繊維化装置の模式的断面図である。
【図2】従来のスピナーを使用した繊維化装置の模式的断面図である。
【図3】本発明のスピナーの一実施形態において耐熱材料製プレートをスピナー本体の底部へ取り付ける構造の具体例を示す断面図である。
【符号の説明】
1 溶融ガラス
1a 吐出される溶融ガラス
2 樋(フォアハース)
3 繊維化装置
4 ノズル(ブッシング)
5 スピナー
6 スピナーの上部開口
7 側壁
8 オリフィス
9 軸
10 スピナーの底部
11 燃焼装置
12 ガス流
20 スピナー
21 スピナー本体
22 スピナー本体の底部
23 断熱保温部
24 耐熱材料製のプレート
25 断熱保温材
26 フランジ付きの芯棒(クイル)
27 ボルト
28 ナット
C 隙間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spinner for use in an apparatus for fiberizing molten glass by a centrifugal method.
[0002]
[Prior art]
Glass wool used as a heat insulating sound absorbing material for buildings is generally manufactured by fiberizing molten glass by a centrifugal method. An example of a fiberizing apparatus (also referred to as a fiber riser) used in such a manufacturing method is shown in FIG. In the apparatus of FIG. 2, a molten glass 1 having a temperature of 1000 to 1200 ° C. melted in a melting furnace (not shown) is guided to a fiberizing apparatus 3 by a heat-resistant brick fence 2 and a platinum alloy nozzle ( Bushing) 4 is allowed to flow down and is introduced into spinner 5 through its upper opening 6. At this time, by appropriately adjusting the temperature of the nozzle 4, the amount of the molten glass 1 introduced into the spinner 5, that is, the production amount of glass wool per unit time is controlled.
[0003]
The spinner 5 is made of a heat-resistant alloy mainly composed of cobalt, nickel, and chromium. The side wall 7 has tens of thousands of orifices 8 having a diameter of 0.5 to 1.5 mm divided into 5 to 50 stages. is there. The spinner 5 is connected to a drive device (not shown) by a shaft 9. When the spinner 5 is driven to rotate at 2000 to 3000 RPM by the drive device, the introduced molten glass 1 rotates after flowing down on the bottom 10 of the spinner 5. Ascending along the inner surface of the side wall 7 from the bottom 10 by the centrifugal force of the spinner 5 is discharged from the orifice 8 to the outside (indicated by 1a in the figure).
[0004]
A combustion device 11 for burning fuel such as liquefied petroleum gas (LPG) and liquefied natural gas (LNG) is provided above the spinner 5, and a high-temperature, high-speed gas flow 12 is provided on the side wall of the spinner 5 from below. 7 is blown downward along the line 7. For this reason, the molten glass 1a discharged to the outside from the orifice 8 is blown off at the same time as being drawn by the gas flow 12 blown out from the combustion device 11 immediately after the discharge, and is converted into fiber to become glass wool.
[0005]
Subsequently, a binder mainly composed of a thermosetting resin such as a phenol resin was applied to the fiberized glass wool by a binder applying device (not shown) installed at the lower part of the fiberizing apparatus 3, and further installed at the lower part thereof. On a conveyor having an atmosphere suction hole (not shown) that moves at a constant speed, glass wool is deposited while sucking the atmosphere to form a mat, and then heated while being continuously compressed in an oven (not shown), Is made into a form such as a mat or plate.
[0006]
[Problems to be solved by the invention]
In the spinner 5 used for fiberizing such molten glass, the inner wall of the orifice 8 is gradually corroded by the molten glass passing through the orifice 8, so that the diameter of the orifice 8 increases. The discharge amount of the molten glass from the orifice 8 whose diameter has been increased is greater than that before the corrosion, so that the fiber diameter of the glass wool formed is also increased. When the fiber diameter of the glass wool exceeds a certain limit, the performance of the glass wool mat formed using the glass wool mat may deteriorate, such as heat insulation and sound absorption, resilience against compression, and the performance is ensured to a predetermined level. In order to do this, the spinner will be replaced with a new one.
[0007]
Further, since the high-temperature and high-speed gas flow 12 blows out from the combustion device 11 installed on the upper side of the spinner 5, the upper portion of the side wall 7 of the spinner 5 close to the combustion device 11 becomes relatively high, and conversely, the periphery of the fiberizing device 3 The lower part in contact with air (in the vicinity of the bottom 10 and its peripheral edge) becomes relatively low temperature due to heat radiation, and the temperature difference is 80 to 120 ° C. For this reason, it becomes easy to discharge the molten glass from the relatively high temperature upper orifice 8, and it becomes difficult to discharge the molten glass from the relatively low temperature lower orifice 8. Accordingly, the corrosion of the inner wall of the orifice 8 due to the molten glass progresses faster toward the upper side, the fiber diameter of the glass wool increases, and the difference from the fiber diameter of the glass wool fiberized by the lower side orifice increases. The range of distribution becomes wider with time. For example, the fiber diameter distribution range was 3 to 9 μm immediately after the start of use of a new spinner, but it becomes 1 to 15 μm at the time when replacement is necessary. Then, although the fiber diameter of the glass wool fiberized by the lower orifice is within the use limit, the fiber diameter of the glass wool fiberized by the upper orifice exceeds the use limit. If the ratio of fibers with a diameter larger than the limit of use becomes large, it will be necessary to replace the spinner with a new one in order to ensure the performance of the glass wool mat, such as heat insulation sound absorption and compression resilience, to a predetermined level as described above. .
[0008]
That is, in the past, since the timing of spinner replacement is determined by the degree of corrosion of the upper orifice, the spinner life (the time from the start of use to the time when replacement is required, or the amount of glass that can be fiberized during that period) is short (or There is a problem of becoming less.
[0009]
When a temperature difference occurs between the upper and lower portions of the spinner side wall, it is necessary to heat the lower portion, which has a relatively low temperature, to a temperature at which the molten glass becomes fiberized. Since it becomes heating, excess fuel will be burned with a combustion apparatus, and an energy cost will be added to that much. In addition, when the temperature difference between the upper part and the lower part of the side wall is large, there is a problem that glass having a narrow temperature range in which fiberization is possible cannot be stably fiberized.
[0010]
Various proposals have been made to extend the spinner life. For example, various alloy compositions with high corrosion resistance have been proposed in order to improve the corrosion resistance of the spinner, but the alloy itself is expensive, and the temperature difference between the upper part and the lower part of the side wall is not improved. There is a problem.
[0011]
It is also possible to reduce the temperature of the molten glass as much as possible to suppress spinner corrosion, but the molten glass crystallizes near the lower orifice at a relatively low temperature due to the temperature difference between the upper and lower portions of the spinner side wall. There is a risk of clogging the orifice 8, which leads to a decrease in the productivity of glass wool and is difficult to employ.
[0012]
Further, in order to reduce the temperature difference between the upper part and the lower part of the spinner side wall, a method of supplementarily heating the inside of the spinner with a combustion apparatus, or a method of heating the lower part of the spinner with a dielectric heating apparatus (Japanese Patent Publication No. 52-42886). However, since a special heating device is required, the cost of facilities and energy increases.
[0013]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to reduce the temperature difference between the upper part and the lower part of the spinner side wall without using a special heating device, and to extend the spinner life.
[0014]
[Means for Solving the Problems]
Among the spinners for melting glass fiber of the present invention, the spinner according to claim 1 is a spinner used in an apparatus for fiberizing molten glass by a centrifugal method, and the molten glass flowed down from the upper opening is formed at the bottom. The spinner main body which discharges the said molten glass from the orifice provided in the side wall part connected to this and the bottom part, and the heat insulation heat retention part provided in the outer surface of the said bottom part is characterized by the above-mentioned.
[0015]
According to the second aspect of the present invention, the heat insulating and warming portion includes a dish-shaped heat resistant material plate, and an inorganic short fiber mat filled between the heat resistant material plate and the bottom portion. .
[0016]
According to a third aspect of the present invention, the heat-resistant material plate is a metal plate, and the inorganic short fiber mat is a mat made of ceramic wool.
[0017]
According to the fourth aspect of the present invention, a gap is provided between the side edge portion of the bottom portion connected to the side wall portion and the upper edge portion of the outer peripheral side of the plate made of heat-resistant material.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments and examples of the present invention will be described below with reference to the drawings. In the following description, common parts to those in the conventional example shown in FIG.
[0019]
The spinner 20 according to the embodiment of the present invention shown in FIG. 1 is formed by forming a heat insulation and heat retaining portion 23 below the bottom portion 22 of the spinner body 21. The spinner main body 21 itself may be of the shape, structure, and material used conventionally, and does not need to be newly designed, and is the same as the spinner 5 of FIG. The heat insulating and keeping part 23 is configured by attaching a plate 24 made of a heat-resistant material to the bottom 22 of the spinner body 21 using the shaft 9 and filling the space between the bottom 22 of the spinner body 21 with the heat insulating and keeping material 25. is there. The bottom portion 22 of the spinner body 21 may be formed in a double structure to form a sealed space, and this sealed space may be used as a vacuum to provide a vacuum heat insulating layer. The configuration as in the embodiment is preferable.
[0020]
The shape of the plate 24 made of the heat resistant material is preferably a dish shape as in the illustrated example, and a shape capable of forming a space for filling the heat insulating heat insulating material 25 between the bottom portion 22 of the spinner main body 21 is preferable. Of course, there are various dish-like shapes, and there are many similar shapes, and in the present invention, a preferable one of them may be adopted as appropriate. However, since it is rotated at a high speed together with the spinner body 21, a circular shape is preferable. Further, since the rotation is performed at a high speed, it is preferable to minimize the variation in the thickness in the surface direction or the variation in the weight.
[0021]
Further, since the material of the plate 24 is heated by the gas flow 12 blown out from the combustion device 11, the thickness is preferably 2 to 5 mm so as not to be deformed even at a high temperature of 800 ° C. or higher, and the thickness is preferably set to be light. The thickness is more preferably 2 to 3 mm. Specific materials include heat-resistant alloys such as stainless steel (SUS310, etc.), cobalt-based alloys (same alloys as spinners), nickel-based alloys (Hastelloy, Inconel, etc.), and alumina-based ceramics. Of course, it is preferable that it is made of metal in terms of workability and impact resistance.
[0022]
A specific example of a structure for attaching the plate 24 to the bottom 22 of the spinner body 21 is shown in FIG. This example of attachment structure is to attach to a flanged core rod (quill) 26 which is a rotating shaft of the spinner body 21 with bolts 27 and nuts 28 together with the spinner body 21. When the plate 24 is made of metal, heat conduction is prevented between the side edge portion of the bottom portion 22 of the spinner main body 21 and the upper edge portion of the outer peripheral side of the metal plate 24 from the metal plate 24. In order to suppress heat dissipation, it is preferable to provide a gap C of 1 to 2 mm.
[0023]
The heat insulating heat insulating material 25 is sandwiched and fixed between the bottom portion 22 of the spinner main body 21 and the plate 24. As a material of the heat insulation material 25, an inorganic short fiber mat to which a resin binder is not applied is preferable because it needs to withstand a high temperature of 800 ° C. or higher. In particular, a mat made of ceramic wool such as alumina silica-based wool is preferable in terms of heat resistance. The density of such a mat is preferably 10 to 250 kg / m 3 . When the heat insulating structure as shown in FIG. 3 is employed when the density is less than 10 kg / m 3 , there is a possibility that the short fibers, which are the mat material, are scattered from the gap C to the outside by centrifugal force. On the other hand , if it exceeds 250 kg / m 3 , the heat insulating and warming part becomes heavy. Further, the thickness is preferably 5 to 50 mm. This is because if the thickness is less than 5 mm, the heat insulation and heat retaining property is insufficient, and if it exceeds 50 mm, the heat insulation and heat retaining portion 23 becomes heavy.
[0024]
If it is set as the above structure, the heat insulation heat insulation part 23 will suppress the heat radiation from the bottom part 22 of the spinner main body 21, the temperature difference between the upper part and the lower part of the side wall 7 will be reduced, and the difference in the discharge amount of molten glass will be very small. Become. Accordingly, the progress of the corrosion of the inner wall of the orifice 8 by the molten glass to be discharged becomes uniform or almost uniform between the upper part and the lower part of the side wall 7, so that the range of the fiber diameter distribution of the glass wool is not widened, and the glass wool obtained The fiber diameter distribution range can be narrowed. In addition, the spinner life is extended. Further, in order to keep the temperature of the lower portion of the side wall 7, it is not necessary to burn the fuel excessively in the combustion device 9. Furthermore, since the temperature difference between the upper part and the lower part of the spinner side wall is reduced, the fiberization of the glass having a narrow fiberization temperature range can be stably performed.
[0025]
[Examples and Comparative Examples]
Hereinafter, with respect to the examples of the spinner for melting glass fiber according to the present invention, spinners similar to the conventional ones were produced as comparative examples as follows, and the results of use were compared.
EXAMPLE As an example of a spinner for melting glass fiber according to the present invention, a metal plate made of SUS310 having a thickness of 4 mm is provided at the bottom of a cobalt alloy spinner body having a diameter of 300 mm, an orifice number of 17820, and an orifice diameter of 0.7 mm. Ceramic wool (kao wool, trade name) with a density of 130 kg / m 3 and a thickness of 6 mm was placed and fixed on a plate with a diameter of 300 mm processed to form a spinner provided with a heat insulating heat retaining part with a thickness of 10 mm. In addition, a gap of about 2 mm was provided between the side edge of the bottom of the spinner body and the upper edge of the plate.
Comparative Example The same spinner body as in the above example was used as a spinner without providing a heat insulation and heat retaining part.
Comparative results The spinners of the above examples and comparative examples were each attached to a conventional fiberizing apparatus to fiberize molten glass, fiber diameter distribution change over time, spinner surface temperature distribution, spinner life and fuel (LNG) The amount used was evaluated. The results are shown in Table 1.
[Table 1]
Figure 0003714493
In the fiber diameter distribution in the table, 200 glass wools were collected, the diameters were measured one by one using a microscope, and the maximum and minimum values of the measured values were listed. The surface temperature of the spinner was measured with a radiation thermometer. Spinner life refers to the time between the start of a new spinner use and the need to change the spinner, and the amount of glass fiberized during that time.
[0026]
As can be seen from Table 1, the spinner according to the embodiment of the present invention has a smaller temperature difference between the uppermost and lowermost side walls of the side wall than the comparative spinner, and the fiber diameter distribution increases with time. It can be seen that uniform glass wool is obtained. Further, since the temperature difference is small, even when the temperature of the molten glass is lowered, the temperature in the vicinity of the lowermost stage is high, so that fiberization is possible without any problem. Furthermore, it can be seen that the spinner according to the embodiment of the present invention has a long spinner life, can fiberize more glass, and can reduce the energy cost because the amount of fuel used is small.
[0027]
【The invention's effect】
As described above, the molten glass fiber spinning spinner according to the present invention receives the molten glass flowing down from the upper opening at the bottom, and discharges the molten glass from the orifice provided in the side wall connected to the bottom. Since it is composed of a main body and a heat insulating heat retaining part provided on the outer surface of the bottom part of the spinner main body, the temperature difference between the upper part and the lower part of the side wall part can be reduced, and this allows the fiber diameter distribution to be uniform without spreading over time. There is an effect that glass wool can be obtained. Moreover, since the temperature difference between the upper part and the lower part of the side wall part can be reduced, even if the temperature of the molten glass is lowered, the temperature of the lower part of the side wall part is high, so that all the orifices of the side wall can be used for fiberization without any problem. . Furthermore, the spinner life can be extended, more glass can be made into fibers, the amount of fuel used can be reduced, and the energy cost can be reduced.
[0028]
In the spinner for molten glass fiber according to claim 2, since the heat insulation and heat insulation part is composed of the plate-shaped plate made of heat resistant material and the inorganic short fiber mat, in addition to the above-mentioned common effect, the heat insulation heat insulation part is easy and inexpensive. There is an effect that it can be configured.
[0029]
In the spinner for melting glass fiber according to claim 3, since the heat-resistant material plate is made of metal and the inorganic short fiber mat is made of ceramic wool, in addition to the effects common to the spinner of claim 2, There is an effect that it can be made excellent in terms of heat resistance and impact resistance.
[0030]
In the spinner for molten glass fiber according to claim 4, since a gap is provided between the side edge portion of the bottom portion continuous to the side wall portion of the spinner body and the upper edge portion of the outer peripheral side of the heat resistant material plate, the above claim is provided. In addition to the effects common to the spinners 2 and 3, the heat conduction between the bottom of the spinner body and the heat-resistant material plate is prevented to suppress heat radiation from the heat-resistant material plate, There is an effect that it is possible to further suppress an increase in the temperature difference.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a fiberizing apparatus using a spinner according to the present invention.
FIG. 2 is a schematic cross-sectional view of a fiberizing apparatus using a conventional spinner.
FIG. 3 is a cross-sectional view showing a specific example of a structure for attaching a heat-resistant material plate to the bottom of a spinner body in one embodiment of the spinner of the present invention.
[Explanation of symbols]
1 Molten Glass 1a Molten Glass 2 to be Discharged 2 Fore Haas
3 Fiberizer 4 Nozzle (Bushing)
5 Spinner 6 Spinner Top Opening 7 Side Wall 8 Orifice 9 Shaft 10 Spinner Bottom 11 Combustion Device 12 Gas Flow 20 Spinner 21 Spinner Body 22 Spinner Body Bottom 23 Heat Insulation Keeping Plate 24 Heat-resistant Material Plate 25 Heat Insulation Keeping Material 26 With Flange Core rod (quill)
27 Bolt 28 Nut C Clearance

Claims (4)

溶融ガラスを遠心法によって繊維化する装置に使用するスピナーであって、上部の開口から流下させた上記溶融ガラスを底部で受け、該底部に連なる側壁部に設けたオリフィスから上記溶融ガラスを吐出するスピナー本体と、上記底部の外面に設ける断熱保温部とからなることを特徴とする溶融ガラス繊維化用スピナー。A spinner used in an apparatus for fiberizing molten glass by a centrifugal method, receiving the molten glass flowing down from the opening at the top at the bottom, and discharging the molten glass from an orifice provided on a side wall connected to the bottom. A spinner for molten glass fiber comprising a spinner main body and a heat insulating and heat retaining portion provided on an outer surface of the bottom portion. 上記断熱保温部が、皿状の耐熱材料製プレートと、該耐熱材料製プレートと上記底部との間に充填する無機質短繊維マットとからなることを特徴とする請求項1の溶融ガラス繊維化用スピナー。2. The molten glass fiber-forming composition according to claim 1, wherein the heat insulating and heat-insulating section includes a dish-shaped heat-resistant material plate and an inorganic short fiber mat filled between the heat-resistant material plate and the bottom portion. Spinner. 上記耐熱材料製プレートが金属製プレートであり、上記無機質短繊維マットがセラミックウールからなるマットであることを特徴とする請求項2の溶融ガラス繊維化用スピナー。3. The molten glass fiber spinning spinner according to claim 2, wherein the heat resistant material plate is a metal plate, and the inorganic short fiber mat is a mat made of ceramic wool. 上記側壁部に連なる上記底部の側縁部と、上記耐熱材料製プレートの外周側の上縁部との間に、隙間を設けてなることを特徴とする請求項2または3の溶融ガラス繊維化用スピナー。4. The molten glass fiberization according to claim 2, wherein a gap is provided between a side edge portion of the bottom portion connected to the side wall portion and an upper edge portion of the outer peripheral side of the plate made of heat-resistant material. Spinner for.
JP13068496A 1996-04-26 1996-04-26 Spinner for melting glass fiber Expired - Lifetime JP3714493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13068496A JP3714493B2 (en) 1996-04-26 1996-04-26 Spinner for melting glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13068496A JP3714493B2 (en) 1996-04-26 1996-04-26 Spinner for melting glass fiber

Publications (2)

Publication Number Publication Date
JPH09295824A JPH09295824A (en) 1997-11-18
JP3714493B2 true JP3714493B2 (en) 2005-11-09

Family

ID=15040150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13068496A Expired - Lifetime JP3714493B2 (en) 1996-04-26 1996-04-26 Spinner for melting glass fiber

Country Status (1)

Country Link
JP (1) JP3714493B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239418B4 (en) * 2002-08-28 2006-04-13 Sebastian Woltz Device for heating spinner disks for glass fibers
US8087265B2 (en) * 2006-12-28 2012-01-03 Owens Corning Intellectual Captial, Llc Fiberizing spinner including a radiation shield for the manufacture of high quality fibers
JP2009155172A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Glass fiber laminate, and vacuum heat insulating material
CN104370459A (en) * 2013-08-12 2015-02-25 苏州宏久航空防热材料科技有限公司 Centrifugal disc with thermal insulation bottom

Also Published As

Publication number Publication date
JPH09295824A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
AU664852B2 (en) Method and apparatus for manufacturing mineral wool, and mineral wool produced thereby
US5554324A (en) Method for producing mineral wool
CN1246242C (en) Method and device for forming mineral wool
JP2752256B2 (en) Method and apparatus for producing mineral wool, and mineral wool produced thereby
EP0235897B1 (en) Apparatus for manufacturing short inorganic fibres
AU648831B2 (en) A method of and an apparatus for producing fibres by internal centrifugation and the application of the said method and apparatus to the drawing out of certain glasses into fibres
JP3714493B2 (en) Spinner for melting glass fiber
KR20060015255A (en) Glass fiber production method and production device
WO2008116176A1 (en) Rotary fiberizer
US20080156042A1 (en) Fiberizing spinner including a radiation shield for the manufacture of high quality fibers
WO2007005402A1 (en) Fiberizing spinner for the manufacture of low diameter, high quality fibers
US11505490B2 (en) Fibre-forming plate
EP0355187A1 (en) Production of micro glass fibers
JP3978396B2 (en) Spinner for melting glass fiber
AU2002247714A1 (en) Process and device for formation of mineral wool and mineral wool products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term