JPH01198457A - Annealed copper wire for coil - Google Patents
Annealed copper wire for coilInfo
- Publication number
- JPH01198457A JPH01198457A JP2242088A JP2242088A JPH01198457A JP H01198457 A JPH01198457 A JP H01198457A JP 2242088 A JP2242088 A JP 2242088A JP 2242088 A JP2242088 A JP 2242088A JP H01198457 A JPH01198457 A JP H01198457A
- Authority
- JP
- Japan
- Prior art keywords
- copper wire
- annealed copper
- annealed
- wire
- small
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 239000013078 crystal Substances 0.000 claims description 18
- 238000004804 winding Methods 0.000 claims description 12
- 238000005452 bending Methods 0.000 abstract description 5
- 238000005482 strain hardening Methods 0.000 abstract description 5
- 239000010949 copper Substances 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 230000003746 surface roughness Effects 0.000 abstract description 2
- 230000002093 peripheral effect Effects 0.000 abstract 2
- 238000007598 dipping method Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 238000005491 wire drawing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は周囲に絶縁皮膜を被覆してモータ、トランス、
リレー等に使用するコイル巻線用軟銅線に関するもので
ある。[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to motors, transformers,
This relates to annealed copper wire for coil winding used in relays and the like.
コイル巻線は、しなやかで柔らかく巻線作業が容易であ
ること、巻線時に断線しないこと、コイル巻き後のスプ
リングバックによってコイルの形状が崩れないことなど
が重要であり、そのだめに、コイル巻線用軟銅線は耐力
が低く、引張強さと伸びが大きいものが理想とされてい
る。また巻線性を代表する特性として一般にスプリング
エロンゲーションナンバー(S、E、N)が大きいもの
が良いとされている。It is important for coil winding to be flexible, soft and easy to wind, not to break during winding, and not to lose its shape due to springback after winding. The ideal annealed copper wire for wiring has low yield strength and high tensile strength and elongation. Furthermore, as a characteristic representative of windability, it is generally said that a wire with a large spring elongation number (S, E, N) is good.
このような軟鋼線を得るため(、従来から種々の方法が
講じられてきた。その主なものをあげると、
(1)Cu中の不純物を除去し、再結晶温度を下げると
共に、格子歪を低減させる。In order to obtain such a mild steel wire, various methods have been used in the past. The main ones are: (1) removing impurities in Cu, lowering the recrystallization temperature, and reducing lattice strain; reduce
(2)最終焼鈍温度を高くするか、焼鈍時間を長くして
、伸線加工中に増殖した転位を低減させる。(2) Increase the final annealing temperature or lengthen the annealing time to reduce dislocations that have multiplied during wire drawing.
(3)中間焼鈍を繰返し入れて、再結晶集合組織の生成
を阻止する。(3) Repeated intermediate annealing is performed to prevent the formation of recrystallized texture.
などである。etc.
(発明が解決しようとする課題)
しかしながら上記方法は何れも一長一短がある。即ち上
記(1)の方法iま、特殊な精錬と溶解鋳造が必要でコ
スト高となり、上記(2)の方法は容易に製造できるメ
リットはあるが、転位密度の低減と同時に結晶の成長が
進行して粗大結晶になって肌荒れが顕著になるという問
題があった。また上記(3)の方法は、焼鈍直後確かに
耐力が低く、引張強さと伸びが大きいという優れた特性
を示すも、加工硬化しやすいために、絶縁皮膜の塗布焼
付は及びボビンへの巻取りの際に作用する曲げと張力の
影響で製品に仕上げた時には硬くなってしまうという問
題がある。(Problems to be Solved by the Invention) However, all of the above methods have advantages and disadvantages. In other words, the method (1) above requires special refining and melting and casting, which increases the cost, while the method (2) above has the advantage of being easy to manufacture, but it causes crystal growth to proceed at the same time as the dislocation density is reduced. There is a problem in that the crystals become coarse and the skin becomes noticeably rough. In addition, method (3) above shows excellent properties such as low yield strength and high tensile strength and elongation immediately after annealing, but because it is easy to work harden, the application and baking of the insulating film is difficult and the winding onto the bobbin is difficult. There is a problem in that the bending and tension that occur during this process make the finished product hard.
本発明はこれに鑑み種々検討の結果、肌荒れが無く、し
なやかで柔らかいコイル巻線用軟銅線を開発したもので
、周囲に絶縁皮膜を被覆するコイル巻線用軟銅線におい
て、軟銅線の結晶組織を、中心部で結晶粒が大きく、外
周部で結晶粒が小さい粒度分布を有する再結晶組織とし
たことを特徴とするものである。In view of this, as a result of various studies, the present invention has developed an annealed copper wire for coil winding that has no rough skin, is flexible, and is soft. It is characterized by having a recrystallized structure having a grain size distribution in which crystal grains are large in the center and small in the outer periphery.
(作 用)
即ち本発明コイル巻線用軟銅線は、その結晶組織を第1
図に示すように、中心部で結晶粒が大きく、外周部で結
晶粒が小さい粒度分布を有する再結晶組織としたもので
、外周部の結晶粒は比較的小さいので肌荒れの心配がな
く、また中心部は十分転位密度が低減し、結晶粒も大き
くなっているので、全体としてしなやかで柔らかい特性
を示す。(Function) That is, the annealed copper wire for coil winding of the present invention has a crystal structure that is
As shown in the figure, it has a recrystallized structure with a grain size distribution in which the crystal grains are large in the center and small in the outer periphery.Since the crystal grains in the outer periphery are relatively small, there is no need to worry about rough skin. In the center, the dislocation density is sufficiently reduced and the crystal grains are large, so the material exhibits supple and soft characteristics as a whole.
(実施例)
直径5.0.の酸素含有量3 ppmの無酸素銅線に、
溶融メツキにより酸素40pl)m 、 A gloo
pI)mを含有する銅を被覆し、直径8.0#の純銅線
とした。これを高速連続伸線機によって直径2.6mの
線材とし、更に中間焼鈍を施すことなく直径0.8mま
で連続伸線機で引き落した。これを400 ’Cで1時
間、Ar雰囲気中で焼鈍し、断面組織が第1図に示すよ
うに中心部で大きく、外周部で小ざい本発明軟銅線を作
製した。(Example) Diameter 5.0. Oxygen-free copper wire with an oxygen content of 3 ppm,
40 pl of oxygen by melt plating
The wire was coated with copper containing pI)m to obtain a pure copper wire with a diameter of 8.0#. This was made into a wire rod with a diameter of 2.6 m using a high-speed continuous wire drawing machine, and further drawn down to a diameter of 0.8 m using a continuous wire drawing machine without performing intermediate annealing. This was annealed at 400'C for 1 hour in an Ar atmosphere to produce an annealed copper wire of the present invention in which the cross-sectional structure was large at the center and small at the outer periphery, as shown in FIG.
一方比較のため上記直径5.0 mmの無酸素銅線を直
径2.6mまで伸線加工し、その半分を通電加熱により
中間焼鈍を施した後、直径0.8mまで伸線加工し、そ
の一部を300°Cで1時間、Ar雰囲気中で焼鈍し、
残りを400℃で1時間Ar雰囲気中で焼鈍することに
より、断面組織が中心部と外周部で共に小さい比較軟銅
線と、中心部と外周部で共に大きい比較軟銅線を作製し
た。また残りの半分を中間焼鈍することなく直径0.8
.まで伸線加工し、その一部を300℃で1時間Ar雰
囲気中で焼鈍し、残りを400℃で1時間Ar雰囲気中
で焼鈍することにより、断面組織が中心部と外周部で共
に小さい比較軟銅線と、中心部と外周部で共に大きい比
較軟銅線を作製した。On the other hand, for comparison, the oxygen-free copper wire with a diameter of 5.0 mm was drawn to a diameter of 2.6 m, half of which was subjected to intermediate annealing by electrical heating, and then drawn to a diameter of 0.8 m. A portion was annealed at 300°C for 1 hour in an Ar atmosphere,
The remaining wire was annealed at 400° C. for 1 hour in an Ar atmosphere to produce a comparative annealed copper wire with a small cross-sectional structure in both the center and the outer periphery, and a comparative annealed copper wire with a large cross-sectional structure in both the center and the outer periphery. Also, the remaining half has a diameter of 0.8 without intermediate annealing.
.. By drawing the wire to 300°C, annealing a part of it in an Ar atmosphere at 300°C for 1 hour, and annealing the remaining part in an Ar atmosphere at 400°C for 1 hour, the cross-sectional structure is small in both the center and the outer periphery. An annealed copper wire and a comparative annealed copper wire that were larger in both the center and the outer periphery were fabricated.
このようにして作製した本発明軟銅線と比較軟銅線につ
いて、引張強さ、0.2%耐力、伸び及び20回曲げ後
の0.2%耐力を調べた。その結果を第1表に示す。尚
20回曲げ後の0.2%耐力とは第2図に示すように直
径180mのウレタン貼りシーブ(2)に軟銅線(1)
を掛合せ、その両端に2Kgの重り(3)を取付けて張
力を加えた状態で、軟銅線(1)をウレタン貼りシーブ
(2)の周面に沿って上下に往復運動させ、20回曲げ
た俊の0.2%耐力を測定した。The tensile strength, 0.2% proof stress, elongation, and 0.2% proof stress after 20 bends were examined for the annealed copper wire of the present invention and the comparative annealed copper wire thus produced. The results are shown in Table 1. The 0.2% yield strength after 20 bends is as shown in Figure 2. Annealed copper wire (1) is attached to a urethane-covered sheave (2) with a diameter of 180 m.
With 2 kg weights (3) attached to both ends to apply tension, the annealed copper wire (1) was moved up and down along the circumferential surface of the urethane-covered sheave (2) and bent 20 times. The 0.2% yield strength of Ta-shun was measured.
第1表から判るように、本発明品NQ1は中心部の結晶
粒が大きく、外周部の結晶粒が小さくなっているので、
肌荒れという問題がなく、また曲げ変形による加工硬化
も少なく、コイル巻線用として最適であり、実際にコイ
ル巻きしたところ、スプリングバックによる形状の崩れ
はほとんど認められなかった。As can be seen from Table 1, the present invention product NQ1 has large crystal grains at the center and small crystal grains at the outer periphery.
There is no problem of rough skin, and there is little work hardening due to bending deformation, making it ideal for coil winding. When coils were actually wound, almost no deformation due to springback was observed.
一方直径2.6mで中間焼鈍し、最終焼鈍温度を300
℃とした比較量Nα2は、焼鈍温度が低いために結晶が
小さく、肌荒れは無いが、加工硬化が激しい。直径2.
6mで中間焼鈍し、最終焼鈍温度を400℃とした比較
量Nα3は結晶が粗大化し、肌荒れが生じる。また直径
2.6履で中間焼鈍を施さず、最終焼鈍温度を300℃
とした比較量Nα4は再結晶集合組織の成長により、焼
鈍後の0.2%耐力が大きく、仝体的に硬い手触りであ
り、直径2.6Mで中間焼鈍を施さず、最終焼鈍温度を
400℃とした比較量NQ5は、比較量Nα3と同様に
結晶が粗大化し、肌荒れを生じた。On the other hand, intermediate annealing was performed with a diameter of 2.6 m, and the final annealing temperature was 300 m.
The comparative amount Nα2, which is expressed as °C, has small crystals due to the low annealing temperature, and although there is no surface roughness, work hardening is severe. Diameter 2.
In the comparative amount Nα3, which was intermediately annealed at 6 m and the final annealing temperature was 400° C., the crystals became coarse and the surface became rough. In addition, with a diameter of 2.6 shoes, no intermediate annealing was performed, and the final annealing temperature was 300℃.
The comparative amount Nα4 has a large 0.2% yield strength after annealing due to the growth of the recrystallized texture, has a physically hard feel, has a diameter of 2.6M, does not undergo intermediate annealing, and has a final annealing temperature of 400 The comparative amount NQ5, which was set at .degree. C., had coarse crystals and rough skin, similar to the comparative amount N.alpha.3.
このように従来の軟銅線である比較量は結晶が粗大にな
って肌荒れしたり、0.2%耐力が高かったり、又は加
工硬化が激しく、20回曲げ後の0.2%耐力が高くな
り、満足なものが得られないが、本発明軟銅線である本
発明品は、肌荒れがなく、0.2%耐力も低く、加工硬
化も少ないという特性を示し、コイル巻線用軟銅線とし
て最適である。In this way, the comparative amount of conventional annealed copper wire has coarse crystals and rough surface, high 0.2% yield strength, or severe work hardening, resulting in high 0.2% yield strength after 20 bends. However, the product of the present invention, which is the annealed copper wire of the present invention, has the characteristics of no roughening, low 0.2% yield strength, and little work hardening, and is ideal as an annealed copper wire for coil winding. It is.
(発明の効果)
本発明軟銅線は中心部の結晶粒が大きく、外周部の結晶
粒が小さく、しなやかで柔らかく、かつ肌荒れもないと
いう優れた特性を有し、コイル巻線用軟銅線として適し
ており、モーター、トランス、リレー等のコイル作製を
容易にする等工業上顕著な効果を奏するものである。(Effects of the Invention) The annealed copper wire of the present invention has large crystal grains in the center and small crystal grains in the outer periphery, and has excellent properties such as being supple, soft, and free from rough skin, and is suitable as an annealed copper wire for coil winding. It has significant industrial effects, such as facilitating the production of coils for motors, transformers, relays, etc.
第1図は本発明軟銅線を示す断面組織図、第2図は20
回曲げ後の0.2%耐力測定用曲げ方法の説明図でおる
。
1、軟銅線
2、ウレタン貼りシー7
3、重りFig. 1 is a cross-sectional structure diagram showing the annealed copper wire of the present invention, and Fig. 2 is a 20
This is an explanatory diagram of the bending method for measuring 0.2% yield strength after bending twice. 1. Annealed copper wire 2. Urethane pasting sheet 7 3. Weight
Claims (1)
おいて、軟銅線の結晶組織を、中心部で結晶粒が大きく
、外周部で結晶粒が小さい粒度分布を有する再結晶組織
としたことを特徴とするコイル巻線用軟銅線。(1) In an annealed copper wire for coil winding that is coated with an insulating film around the periphery, the crystal structure of the annealed copper wire is a recrystallized structure in which the crystal grains are large in the center and the crystal grains are small in the outer periphery. Annealed copper wire for coil winding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2242088A JPH01198457A (en) | 1988-02-02 | 1988-02-02 | Annealed copper wire for coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2242088A JPH01198457A (en) | 1988-02-02 | 1988-02-02 | Annealed copper wire for coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01198457A true JPH01198457A (en) | 1989-08-10 |
Family
ID=12082184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2242088A Pending JPH01198457A (en) | 1988-02-02 | 1988-02-02 | Annealed copper wire for coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01198457A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120305286A1 (en) * | 2010-02-08 | 2012-12-06 | Seigi Aoyama | Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same |
US20130022831A1 (en) * | 2011-07-21 | 2013-01-24 | Hitachi Cable, Ltd. | Soft dilute copper alloy wire, soft dilute copper alloy plate and soft dilute copper alloy stranded wire |
JP2015162301A (en) * | 2014-02-26 | 2015-09-07 | 日立金属株式会社 | Conductor, and wire and cable prepared using the same |
US9805836B2 (en) | 2010-10-20 | 2017-10-31 | Hitachi Metals, Ltd. | Dilute copper alloy material and method of manufacturing dilute copper alloy member excellent in characteristics of resistance to hydrogen embrittlement |
US9809872B2 (en) | 2009-04-17 | 2017-11-07 | Hitachi Metals, Ltd. | Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire |
CN111112330A (en) * | 2020-01-10 | 2020-05-08 | 江西理工大学 | Processing method for improving strength of copper strip without causing anisotropy |
-
1988
- 1988-02-02 JP JP2242088A patent/JPH01198457A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9809872B2 (en) | 2009-04-17 | 2017-11-07 | Hitachi Metals, Ltd. | Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire |
US20120305286A1 (en) * | 2010-02-08 | 2012-12-06 | Seigi Aoyama | Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same |
US10030287B2 (en) * | 2010-02-08 | 2018-07-24 | Hitachi Metals, Ltd. | Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same |
US9805836B2 (en) | 2010-10-20 | 2017-10-31 | Hitachi Metals, Ltd. | Dilute copper alloy material and method of manufacturing dilute copper alloy member excellent in characteristics of resistance to hydrogen embrittlement |
US20130022831A1 (en) * | 2011-07-21 | 2013-01-24 | Hitachi Cable, Ltd. | Soft dilute copper alloy wire, soft dilute copper alloy plate and soft dilute copper alloy stranded wire |
JP2015162301A (en) * | 2014-02-26 | 2015-09-07 | 日立金属株式会社 | Conductor, and wire and cable prepared using the same |
CN111112330A (en) * | 2020-01-10 | 2020-05-08 | 江西理工大学 | Processing method for improving strength of copper strip without causing anisotropy |
CN111112330B (en) * | 2020-01-10 | 2021-07-13 | 江西理工大学 | Processing method for improving strength of copper strip without causing anisotropy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5243137A (en) | Overhead transmission conductor | |
JPH02274815A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JPH02153051A (en) | Conductor for winding wire | |
JPH0588304B2 (en) | ||
JPH01198457A (en) | Annealed copper wire for coil | |
JP5206017B2 (en) | Method for producing high silicon steel sheet | |
EP0374948B1 (en) | Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same | |
JPH05140648A (en) | Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss | |
JPH0953162A (en) | Production of soft copper foil | |
JP3050554B2 (en) | Magnet wire | |
JPS6053106B2 (en) | Oxygen-free copper wire material | |
JP4016552B2 (en) | Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties | |
JPH07109552A (en) | Production of extremely thin soft copper foil | |
JP2585168B2 (en) | Method for producing high strength low linear expansion Fe-Ni alloy wire | |
US5766375A (en) | Non-oriented magnetic steel sheet having excellent bending workability | |
JPH0215606B2 (en) | ||
JPS62274047A (en) | High-silicon iron sheet excellent in formability | |
JPS60125359A (en) | Production of conductor for image display apparatus and acoustic apparatus | |
JPH03230415A (en) | Copper alloy wire rod | |
JPH04103110A (en) | Winding and manufacture thereof | |
JP3305025B2 (en) | Method of manufacturing ultra-high silicon electrical steel sheet with good magnetic flux density | |
JPH03294422A (en) | Production of nonoriented silicon steel sheet excellent in magnetic property | |
JPH09125145A (en) | Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss | |
JPS60152633A (en) | Manufacture of thin strip of high-silicon iron alloy having superior magnetic characteristic | |
JPH0920926A (en) | Production of grain oriented silicon steel sheet excellent in magnetostrictive characteristic |