JPH0953162A - Production of soft copper foil - Google Patents

Production of soft copper foil

Info

Publication number
JPH0953162A
JPH0953162A JP23326295A JP23326295A JPH0953162A JP H0953162 A JPH0953162 A JP H0953162A JP 23326295 A JP23326295 A JP 23326295A JP 23326295 A JP23326295 A JP 23326295A JP H0953162 A JPH0953162 A JP H0953162A
Authority
JP
Japan
Prior art keywords
copper foil
annealing
thickness
copper
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23326295A
Other languages
Japanese (ja)
Inventor
Tatsuo Eguchi
達夫 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP23326295A priority Critical patent/JPH0953162A/en
Publication of JPH0953162A publication Critical patent/JPH0953162A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce soft copper foil excellent in characteristics such as tensile strength and elongation, at the time of producing copper foil by subjecting tough pitch copper or the like to hot rolling and plural cold rolling including process annealing, by executing the final finish cold rolling under specified conditions. SOLUTION: An ingot of tough pitch copper, oxygen free copper or the like is subjected to hot rolling and rough rolling to be formed into a sheet material having about 1 to 2mm thickness, which is thereafter repeatedly subjected to plural cold rolling and process annealing to gradually reduce the thickness into a thin copper sheet of 0.1 to 0.5mm. Next, it is subjected to final process annealing by batch annealing in an atmosphere of an inert gas such as nitrogen to regulate the average grain size of the recrystallized grains of the copper sheet to >=50μm, which is thereafter subjected to cold rolling in such a manner that the cold working degree calculated by [ (final process annealing thickness)-(thickness before finish annealing)}/final process annealing thickness]×100 is regulated to >=60% to produce copper foil having <=10μm thickness. Next, this copper foil is subjected to finish annealing at 170 to 250 deg.C in an atmosphere of gaseous nitrogen to produce copper foil having excellent characteristics of 150 to 170N/mm<2> tensile strength and 6.0 to 8.5 elongation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電線等のシールド
材として使用される軟質銅箔の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a soft copper foil used as a shield material for electric wires and the like.

【0002】[0002]

【従来の技術】従来の軟質銅箔の製造方法では、先ず、
タフピッチ銅又は無酸素銅の銅原料を溶解・鋳造して厚
さ50〜300mm の鋳塊を得、次いで、熱間圧延及び粗圧延
により厚さ約1.0mm の銅板とし、続いで、冷間圧延と中
間焼鈍を複数回繰り返して徐々に薄くして行くことによ
り厚さ10μm 以下の軟質銅箔を得ているが、タフピッチ
銅や無酸素銅は、冷間圧延による加工度を大きくするこ
とができるため、最終の中間焼鈍後の冷間加工度が90%
以上に圧延され、後に再結晶完了温度(平板状で加熱保
持時間を30分とした時の再結晶が完了する温度)以上、
一般には再結晶完了温度より10〜50℃高い温度で焼鈍を
行って軟質銅箔としている。
2. Description of the Related Art In the conventional method for manufacturing a soft copper foil, first,
A tough pitch copper or oxygen-free copper raw material is melted and cast to obtain an ingot with a thickness of 50 to 300 mm, which is then hot-rolled and rough-rolled into a copper plate with a thickness of about 1.0 mm, followed by cold rolling. The soft copper foil with a thickness of 10 μm or less is obtained by repeating the intermediate annealing several times and gradually thinning it, but tough pitch copper and oxygen-free copper can increase the workability by cold rolling. Therefore, the cold workability after the final intermediate annealing is 90%.
After being rolled to the above temperature, the recrystallization completion temperature (the temperature at which the recrystallization is completed when the plate is in a heating and holding time of 30 minutes) is over,
Generally, soft copper foil is annealed at a temperature 10 to 50 ° C higher than the recrystallization completion temperature.

【0003】[0003]

【発明が解決しようとする課題】軟質銅箔を電線に被覆
する工程では、一般に軟質銅箔や該銅箔に合成樹脂製フ
ィルムを張り合わせたものを電線に密着させて被覆する
ために軟質銅箔に高い張力が負荷されるが、従来の軟質
銅箔では、該工程中に銅箔が切れたり、クラックが発生
するという問題点があった。
In the step of coating an electric wire with a soft copper foil, a soft copper foil or a soft copper foil laminated with a synthetic resin film is generally adhered to the electric wire to cover the electric wire. Although a high tension is applied to the conventional soft copper foil, the conventional soft copper foil has a problem that the copper foil is broken or cracked during the process.

【0004】本発明者は上記問題点を解決するために、
従来の軟質銅箔の引張強さを測定したところ、厚さ9μ
m の軟質銅箔の巾10mm、長さ150mm のものを試験片とし
て引張速度10mm/min 、初期チャック間長さ50mmで測定
した引張試験により求めた引張強さが110 〜140 N/mm
2 、伸びが3.0 〜4.5 %と低いものであった。そこで、
軟質銅箔の引張強さ及び伸び共に高い値となる銅箔の具
現化をはかるべく研究、実験を重ねた結果、仕上焼鈍後
の再結晶集合組織である立方体方位の発達を抑制できれ
ば、軟質銅箔に十分な引張強さと伸びが付与されて高い
張力負荷に対して耐久性のある軟質銅箔を得ることがで
きるという刮目すべき知見を得、前記技術的課題を達成
したものである。
In order to solve the above problems, the present inventor has
When the tensile strength of the conventional soft copper foil was measured, the thickness was 9μ.
Tensile strength of 110 to 140 N / mm obtained by a tensile test using a soft copper foil with a width of 10 mm and a length of 150 mm as a test piece at a tensile speed of 10 mm / min and an initial chuck length of 50 mm.
2. The growth was low at 3.0-4.5%. Therefore,
As a result of repeated research and experiments aimed at realizing a copper foil having both high tensile strength and elongation of a soft copper foil, if the development of a cubic orientation, which is a recrystallization texture after finish annealing, can be suppressed, soft copper foil The above technical problems have been achieved by obtaining conspicuous knowledge that a soft copper foil having sufficient tensile strength and elongation to be imparted to the foil and having durability against a high tensile load can be obtained.

【0005】[0005]

【課題を解決するための手段】前記技術課題は、次の通
りの本発明によって解決できる。即ち、本発明に係る軟
質銅箔の製造方法は、タフピッチ銅又は無酸素銅の鋳塊
を熱間圧延後、冷間圧延と中間焼鈍を複数回繰り返し、
最終の中間焼鈍後の仕上圧延において[{(最終の中間
焼鈍厚さ)−(仕上焼鈍前厚さ)}/最終の中間焼鈍厚
さ]×100 から算出される冷間加工度を60%以上とし、
その後仕上焼鈍を施して厚さ10μm 以下の軟質銅箔を製
造する方法において、前記最終の中間焼鈍後における銅
板の再結晶粒の平均結晶粒径を50μm 以上とするもので
ある。
The above technical problems can be solved by the present invention as follows. That is, the method for producing a soft copper foil according to the present invention is, after hot rolling the ingot of tough pitch copper or oxygen-free copper, repeating cold rolling and intermediate annealing a plurality of times,
In the finish rolling after the final intermediate annealing, the cold workability calculated from [{(final intermediate annealing thickness)-(thickness before finishing annealing)} / final intermediate annealing thickness] x 100 is 60% or more. age,
Then, in the method of producing a soft copper foil having a thickness of 10 μm or less by performing finish annealing, the average crystal grain size of the recrystallized grains of the copper plate after the final intermediate annealing is 50 μm or more.

【0006】[0006]

【発明の実施の形態】本発明に係る軟質銅箔の製造方法
を詳しく説明すれば次の通りである。銅鋳塊は、溶解・
鋳造して得た厚さ約30〜300mm の普通のタフピッチ銅又
は無酸素銅を使用することができる。この銅鋳塊を熱間
圧延及び粗圧延により厚さ約1.0 〜2.0mm 前後の銅板と
し、冷間圧延と中間焼鈍を複数回繰り返して徐々に薄く
して厚さ約0.1 〜0.5mm の銅板とする。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a soft copper foil according to the present invention will be described in detail below. Copper ingot melts
Conventional tough pitch copper or oxygen free copper having a thickness of about 30 to 300 mm obtained by casting can be used. This copper ingot is hot-rolled and rough-rolled to form a copper plate having a thickness of about 1.0 to 2.0 mm, which is gradually thinned by repeating cold rolling and intermediate annealing a plurality of times to form a copper plate having a thickness of about 0.1 to 0.5 mm. To do.

【0007】最終の中間焼鈍を除く中間焼鈍は、従来公
知の方法で行えば良いが、最終の中間焼鈍後における銅
板の再結晶粒の平均結晶粒径を50μm 以上とするため
に、最終の中間焼鈍は、連続焼鈍法又はバッチ式焼鈍で
行い、物温を350 ℃以上、特に、400 ℃以上の条件で行
えばより好ましい。そして、連続焼鈍法の場合は、加熱
保持時間が短いため、物温は高いほうがよく、バッチ式
焼鈍の場合は、通常コイル表面温度が目標温度に到達
後、2〜3時間の保持を行うが、加熱保持時間を10時間
以上に延長することで物温350 ℃でも、再結晶粒の平均
結晶粒径50μm 以上のものを得ることができる。再結晶
粒の平均結晶粒径が50μm 以下では、仕上焼鈍後に再結
晶集合組織である立方体方位が発達し、引張強さ・伸び
が小さくなり、好ましくない。なお、再結晶粒の平均結
晶粒径の上限は特に限定されるものではないが、あまり
大きすぎると圧延時に切れ等が生じ易くなるので、再結
晶粒の平均結晶粒径は50〜150 μm の範囲とするのが好
ましい。
The intermediate annealing excluding the final intermediate annealing may be performed by a conventionally known method, but in order to make the average crystal grain size of the recrystallized grains of the copper sheet after the final intermediate annealing 50 μm or more, the final intermediate annealing is performed. It is more preferable that the annealing is carried out by a continuous annealing method or a batch type annealing, and the material temperature is 350 ° C. or higher, especially 400 ° C. or higher. Further, in the case of the continuous annealing method, since the heating and holding time is short, it is preferable that the material temperature is high. In the case of the batch type annealing, the coil surface temperature is usually held for 2 to 3 hours after reaching the target temperature. By extending the heating and holding time to 10 hours or longer, it is possible to obtain recrystallized grains having an average crystal grain size of 50 μm or more even at a material temperature of 350 ° C. When the average crystal grain size of the recrystallized grains is 50 μm or less, the cubic orientation, which is a recrystallized texture, develops after the finish annealing, and the tensile strength / elongation becomes small, which is not preferable. The upper limit of the average crystal grain size of the recrystallized grains is not particularly limited, but if it is too large, cutting or the like is likely to occur during rolling, so the average crystal grain size of the recrystallized grains is 50 to 150 μm. It is preferably in the range.

【0008】仕上焼鈍前の冷間圧延(仕上圧延)では、
1パス(一対の圧延ロール間に銅板を一回通す)あたり
5〜50%の範囲内で繰り返し圧延を行って所望厚さのも
のを得るのが好ましい。仕上焼鈍前の冷間加工度が60%
以下では、仕上焼鈍後に銅箔同志がくっつき、次工程が
スムーズに行えない場合がある。仕上焼鈍は、一般に採
用されるバッチ式焼鈍によればよく、170 〜250 ℃の温
度で焼鈍を行えばよい。
In cold rolling (finish rolling) before finish annealing,
It is preferable to repeatedly perform rolling within a range of 5 to 50% per one pass (passing a copper plate once between a pair of rolling rolls) to obtain one having a desired thickness. 60% cold workability before finish annealing
In the following, the copper foils may stick to each other after the finish annealing, and the next step may not be performed smoothly. The finish annealing may be a batch type annealing generally adopted, and the annealing may be performed at a temperature of 170 to 250 ° C.

【0009】なお、中間焼鈍は、連続焼鈍法又はバッチ
式焼鈍を採用して行われ、仕上焼鈍は一般にバッチ式焼
鈍を採用して行われるが、いずれの方法においても、不
活性ガス雰囲気下で行われ、使用する不活性ガスとして
は、アルゴンや窒素等があるが、窒素ガスを用いれば、
経済的である。また、冷間加工度を算出するための最終
の中間焼鈍厚さとは、仕上圧延を開始する前に行われる
中間焼鈍時の板厚のことであり、仕上焼鈍前厚さとは、
最後の冷間圧延によって得られる銅箔の厚さ、即ち製品
厚さのことである。さらに、再結晶粒の平均結晶粒径
は、中間焼鈍後の試料に電解研磨を施し、化学エッチン
グにより組織を現した後、JIS H 0501 の伸銅品
結晶粒度試験方法の比較法によれば簡易に求めることが
できる。
The intermediate annealing is carried out by adopting a continuous annealing method or a batch type annealing, and the finish annealing is generally carried out by adopting a batch type annealing. In either method, however, in an inert gas atmosphere. The inert gas used is argon, nitrogen, etc., but if nitrogen gas is used,
It is economical. Further, the final intermediate annealing thickness for calculating the cold working degree is the plate thickness during intermediate annealing performed before starting the finish rolling, and the thickness before finish annealing is
It is the thickness of the copper foil obtained by the final cold rolling, that is, the product thickness. Further, the average crystal grain size of the recrystallized grains is simple according to the comparison method of the JIS H 0501 copper alloy grain size test method after electrolytic polishing the sample after the intermediate annealing and revealing the structure by chemical etching. You can ask.

【0010】本発明においては、最終の中間焼鈍におい
て銅板又は銅箔の再結晶粒の平均結晶粒径を50μm 以上
とする中間焼鈍工程を経ることにより、[{(最終の中
間焼鈍厚さ)−(仕上焼鈍前厚さ)}/最終の中間焼鈍
厚さ]×100 から算出される冷間加工度が60%以上とな
るように、冷間圧延を行った厚さ10μm 以下の銅箔は、
仕上焼鈍を行った場合、再結晶集合組織である立方体方
位の発達が少なく、結果として、銅箔に十分な引張強さ
と伸びが得られ、電線等に銅箔を被覆する工程中の高い
張力に対して耐久性のある軟質銅箔を得ることができ
る。
In the present invention, in the final intermediate annealing, by performing an intermediate annealing step in which the average crystal grain size of the recrystallized grains of the copper plate or copper foil is 50 μm or more, [[(final intermediate annealing thickness)- (Thickness before finish annealing)} / Final intermediate annealing thickness] × 100% cold-rolled copper foil with a cold workability of 60% or more
When finish annealing is performed, the cubic orientation, which is a recrystallized texture, is less developed, and as a result, sufficient tensile strength and elongation can be obtained for the copper foil, resulting in high tension during the process of coating the copper foil on electric wires. On the other hand, a durable soft copper foil can be obtained.

【0011】[0011]

【実施例】以下、本発明の実施例を比較例と共に説明す
る。 実施例1.溶解・鋳造して、厚さ30mm×巾200mm ×長さ
300mm としたタフピッチ銅鋳塊を熱間圧延及び粗圧延に
より厚さ1.2mm の銅板とし、中間焼鈍と冷間圧延を繰返
し行って徐々に薄くして厚さ0.4mm とし、バッチ式焼鈍
において窒素雰囲気下で、物温400 ℃×2時間保持の最
終の中間焼鈍を行った。最終の中間焼鈍後の平均結晶粒
径を前記伸銅品結晶粒度試験方法により測定したところ
55μm であった。続いて、この銅板に対して1パスあた
り5〜50%の範囲内で繰り返し冷間圧延を行い合計の冷
間加工度が97.8%となり、厚さが9μm の銅箔を得た。
最後にこの銅箔に、バッチ式焼鈍において窒素雰囲気下
で、物温200 ℃×2時間保持の仕上焼鈍を行い、軟質銅
箔とした。この軟質銅箔の引張強さ及び伸びを測定した
ところ、引張強さ158 N/mm2 、伸び6.8 %であった。
Hereinafter, examples of the present invention will be described together with comparative examples. Embodiment 1 FIG. Melted and cast, thickness 30 mm x width 200 mm x length
A tough pitch copper ingot of 300 mm was hot-rolled and rough-rolled into a 1.2 mm-thick copper plate, which was repeatedly annealed and cold-rolled to gradually reduce the thickness to 0.4 mm. A final intermediate annealing was carried out under the temperature of 400 ° C for 2 hours. When the average grain size after the final intermediate annealing was measured by the copper grain product grain size test method
It was 55 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 97.8% and a copper foil having a thickness of 9 μm.
Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and the elongation of this soft copper foil were measured, the tensile strength was 158 N / mm 2 and the elongation was 6.8%.

【0012】実施例2.実施例1と同様にして得た厚さ
0.4mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温500 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ80μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が97.8%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ171
N/mm2 、伸び8.2 %であった。
Embodiment 2 FIG. Thickness obtained in the same manner as in Example 1
0.4mm copper plate was subjected to final annealing in batch annealing in a nitrogen atmosphere at a material temperature of 500 ° C for 2 hours.
The average crystal grain size was measured and found to be 80 μm. Subsequently, this copper sheet was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 97.8% and a copper foil having a thickness of 9 μm. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 171
It was N / mm 2 and the elongation was 8.2%.

【0013】実施例3.実施例1と同様にして得た厚さ
0.2mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温450 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ70μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が95.5%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔にバッ
チ式焼鈍において窒素雰囲気下で、物温200 ℃×2時間
保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅箔
の引張強さ及び伸びを測定したところ、引張強さ165 N
/mm2 、伸び6.7 %であった。
Embodiment 3. Thickness obtained in the same manner as in Example 1
A 0.2 mm copper plate was subjected to a final annealing in a batch annealing in a nitrogen atmosphere at a material temperature of 450 ° C for 2 hours.
The average crystal grain size was measured and found to be 70 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 95.5%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to a batch annealing in a nitrogen atmosphere under a nitrogen atmosphere for finish annealing at a material temperature of 200 ° C. for 2 hours to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 165 N
/ Mm 2 , and the elongation was 6.7%.

【0014】実施例4.実施例1と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温350 ℃×15時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ55μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が91.0%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ149
N/mm2 、伸び6.2 %であった。
Example 4. Thickness obtained in the same manner as in Example 1
A 0.1 mm copper plate was subjected to a final intermediate annealing at a material temperature of 350 ° C for 15 hours in a nitrogen atmosphere during batch annealing.
The average crystal grain size was measured and found to be 55 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 91.0%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 149
The N / mm 2 and the elongation were 6.2%.

【0015】実施例5.実施例1と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温400 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ70μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が91.0%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ153
N/mm2 、伸び6.5 %であった。
Embodiment 5 FIG. Thickness obtained in the same manner as in Example 1
0.1mm copper plate is subjected to final annealing in batch annealing under nitrogen atmosphere at a material temperature of 400 ° C for 2 hours.
The average crystal grain size was measured and found to be 70 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 91.0%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 153
It was N / mm 2 and the elongation was 6.5%.

【0016】実施例6.実施例1と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温500 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ95μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が91.0%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ168
N/mm2 、伸び7.5 %であった。
Embodiment 6 FIG. Thickness obtained in the same manner as in Example 1
0.1mm copper plate was subjected to final annealing in batch annealing under nitrogen atmosphere at a material temperature of 500 ° C for 2 hours.
The average crystal grain size was measured and found to be 95 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 91.0%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a batch atmosphere in a nitrogen atmosphere to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 168
It was N / mm 2 and the elongation was 7.5%.

【0017】実施例7.実施例1と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温250 ℃×2時間保持の中間焼鈍を行い、冷間圧
延を行うことにより0.025mm とした。さらに、バッチ式
焼鈍において窒素雰囲気下で物温400 ℃×2時間保持の
最終の中間焼鈍を行い、平均結晶粒径を測定したところ
80μm であった。続いて、この銅板に対して1パスあた
り5〜50%の範囲内で繰り返し冷間圧延を行い合計の冷
間加工度が64.0%となり、厚さが9μm の銅箔を得た。
最後にこの銅箔に、バッチ式焼鈍において窒素雰囲気下
で、物温200 ℃×2時間保持の仕上焼鈍を行い、軟質銅
箔とした。この軟質銅箔の引張強さ及び伸びを測定した
ところ、引張強さ170 N/mm2 、伸び8.4 %であった。
Embodiment 7 FIG. Thickness obtained in the same manner as in Example 1
A 0.1 mm copper plate was batch-annealed in a nitrogen atmosphere in an atmosphere of nitrogen at an object temperature of 250 ° C. for 2 hours, and then cold-rolled to 0.025 mm. Furthermore, in batch annealing, the final intermediate annealing was carried out under a nitrogen atmosphere at a material temperature of 400 ° C for 2 hours, and the average grain size was measured.
It was 80 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 64.0% and a copper foil having a thickness of 9 μm.
Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 170 N / mm 2 and the elongation was 8.4%.

【0018】実施例8.溶解・鋳造して、厚さ30mm×巾
200mm ×長さ300mm とした無酸素銅鋳塊を熱間圧延及び
粗圧延により厚さ1.2 mmの銅板とし、中間焼鈍と冷間圧
延を繰り返し行って徐々に薄くして厚さ0.4mm とし、連
続焼鈍法において窒素雰囲気下で、物温600 ℃×2時間
保持の最終の中間焼鈍を行った。最終の中間焼鈍後の平
均結晶粒径を前記伸銅品結晶粒度試験方法により測定し
たところ60μm であった。続いて、この銅板に対して1
パスあたり5〜50%の範囲内で繰り返し冷間圧延を行い
合計の冷間加工度が97.8%となり、厚さが9μm の銅箔
を得た。最後にこの銅箔に、バッチ式焼鈍において窒素
雰囲気下で、物温200 ℃×2時間保持の仕上焼鈍を行
い、軟質銅箔とした。この軟質銅箔の引張強さ及び伸び
を測定したところ、引張強さ160 N/mm2 、伸び6.3 %
であった。
Embodiment 8 FIG. Melted and cast, thickness 30 mm x width
An oxygen-free copper ingot with a length of 200 mm and a length of 300 mm was hot-rolled and rough-rolled to form a copper plate with a thickness of 1.2 mm, which was repeatedly annealed and cold-rolled to gradually reduce the thickness to 0.4 mm, and then continuously. In the annealing method, the final intermediate annealing was carried out under a nitrogen atmosphere at a material temperature of 600 ° C. for 2 hours. The average crystal grain size after the final intermediate annealing was 60 μm as measured by the above-mentioned grain size test method for copper alloy products. Then, 1 for this copper plate
Repeated cold rolling was performed within the range of 5 to 50% per pass to obtain a total cold workability of 97.8% and a copper foil having a thickness of 9 μm. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 160 N / mm 2 , the elongation was 6.3%.
Met.

【0019】実施例9.実施例8と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温400 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ65μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が91.0%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ160
N/mm2 、伸び7.2 %であった。
Embodiment 9 FIG. Thickness obtained in the same manner as in Example 8
0.1mm copper plate is subjected to final annealing in batch annealing under nitrogen atmosphere at a material temperature of 400 ° C for 2 hours.
The average crystal grain size was measured and found to be 65 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 91.0%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 160
It was N / mm 2 and the elongation was 7.2%.

【0020】比較例1.実施例1と同様にして得た厚さ
0.4mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温300 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ30μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が97.8%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ140
N/mm2 、伸び4.2 %であった。
Comparative Example 1 Thickness obtained in the same manner as in Example 1
0.4mm copper plate was subjected to final annealing in batch annealing in nitrogen atmosphere at a material temperature of 300 ° C for 2 hours.
The average crystal grain size was measured and found to be 30 μm. Subsequently, this copper sheet was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 97.8% and a copper foil having a thickness of 9 μm. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a batch atmosphere in a nitrogen atmosphere to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 140
The N / mm 2 and the elongation were 4.2%.

【0021】比較例2.実施例1と同様にして得た厚さ
0.2mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温350 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ40μm であった。続い
て、この銅箔に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が95.5%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ124
N/mm2 、伸び3.2 %であった。
Comparative Example 2 Thickness obtained in the same manner as in Example 1
A 0.2 mm copper plate was subjected to final annealing in batch annealing in a nitrogen atmosphere at a material temperature of 350 ° C for 2 hours.
The average crystal grain size was measured and found to be 40 μm. Subsequently, this copper foil was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 95.5%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 124
It was N / mm 2 and the elongation was 3.2%.

【0022】比較例3.実施例1と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温300 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ35μm であった。続い
て、この銅箔に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が91.0%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ133
N/mm2 、伸び4.5 %であった。
Comparative Example 3. Thickness obtained in the same manner as in Example 1
A 0.1 mm copper plate was subjected to final annealing in a batch atmosphere under a nitrogen atmosphere at a material temperature of 300 ° C for 2 hours,
The average crystal grain size was measured and found to be 35 μm. Subsequently, this copper foil was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 91.0%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 133%.
The N / mm 2 and the elongation were 4.5%.

【0023】比較例4.実施例1と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温350 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ40μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が91.0%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ130
N/mm2 、伸び4.5 %であった。
Comparative Example 4. Thickness obtained in the same manner as in Example 1
A 0.1 mm copper plate was subjected to final intermediate annealing in a batch atmosphere under a nitrogen atmosphere at a material temperature of 350 ° C for 2 hours.
The average crystal grain size was measured and found to be 40 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 91.0%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 130%.
The N / mm 2 and the elongation were 4.5%.

【0024】比較例5.実施例1と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温250 ℃×2時間保持の中間焼鈍を行い、冷間圧
延を行うことにより0.020mm とした。さらに、バッチ式
焼鈍において窒素雰囲気下で物温250 ℃×2時間保持の
最終の中間焼鈍を行い、平均結晶粒径を測定したところ
40μm であった。続いて、この銅板に対して1パスあた
り5〜50%の範囲内で繰り返し冷間圧延を行い合計の冷
間加工度が55.0%となり、厚さが9μm の銅箔を得た。
最後にこの銅箔に、バッチ式焼鈍において窒素雰囲気下
で、物温200 ℃×2時間保持の仕上焼鈍を行った。この
軟質銅箔の引張強さ及び伸びを測定したところ、引張強
さ113 N/mm2 、伸び0.7 %と軟質化しきっていなかっ
た。
Comparative Example 5. Thickness obtained in the same manner as in Example 1
A 0.1 mm copper plate was batch-annealed in a nitrogen atmosphere under a nitrogen atmosphere at an intermediate temperature of 250 ° C. for 2 hours to perform intermediate annealing, and then cold rolled to 0.020 mm. Furthermore, in the batch type annealing, the final intermediate annealing was carried out in a nitrogen atmosphere at a material temperature of 250 ° C for 2 hours, and the average grain size was measured.
It was 40 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 55.0% and a copper foil having a thickness of 9 μm was obtained.
Finally, the copper foil was subjected to finish annealing in batch annealing in a nitrogen atmosphere at a material temperature of 200 ° C. for 2 hours. When the tensile strength and the elongation of this soft copper foil were measured, the tensile strength was 113 N / mm 2 and the elongation was 0.7%, indicating that the soft copper foil was not fully softened.

【0025】比較例6.実施例8と同様にして得た厚さ
0.4mm の銅板を、連続焼鈍法において窒素雰囲気下で、
物温300 ℃の最終の中間焼鈍を行った。最終の中間焼鈍
後の平均結晶粒径を前記伸銅品結晶粒度試験方法により
測定したところ20μm であった。続いて、この銅板に対
して1パスあたり5〜50%の範囲内で繰り返し冷間圧延
を行い合計の冷間加工度が97.8%となり、厚さが9μm
の銅箔を得た。最後にこの銅箔に、バッチ式焼鈍におい
て窒素雰囲気下で、物温200 ℃×2時間保持の仕上焼鈍
を行い、軟質銅箔とした。この軟質銅箔の引張強さ及び
伸びを測定したところ、引張強さ141 N/mm2 、伸び4.
2 %であった。
Comparative Example 6. Thickness obtained in the same manner as in Example 8
A 0.4 mm copper plate was continuously annealed in a nitrogen atmosphere,
A final intermediate annealing was performed at a material temperature of 300 ° C. The average crystal grain size after the final intermediate annealing was measured by the above-mentioned grain size test method for copper alloy products and found to be 20 μm. Subsequently, this copper sheet was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 97.8% and a thickness of 9 μm.
I got a copper foil. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 141 N / mm 2 , and the elongation was 4.
It was 2%.

【0026】比較例7.実施例8と同様にして得た厚さ
0.1mm の銅板を、バッチ式焼鈍において窒素雰囲気下
で、物温300 ℃×2時間保持の最終の中間焼鈍を行い、
平均結晶粒径を測定したところ30μm であった。続い
て、この銅板に対して1パスあたり5〜50%の範囲内で
繰り返し冷間圧延を行い合計の冷間加工度が91.0%とな
り、厚さが9μm の銅箔を得た。最後にこの銅箔に、バ
ッチ式焼鈍において窒素雰囲気下で、物温200 ℃×2時
間保持の仕上焼鈍を行い、軟質銅箔とした。この軟質銅
箔の引張強さ及び伸びを測定したところ、引張強さ135
N/mm2 、伸びは3.8 %であった。
Comparative Example 7. Thickness obtained in the same manner as in Example 8
A 0.1 mm copper plate was subjected to final annealing in a batch atmosphere under a nitrogen atmosphere at a material temperature of 300 ° C for 2 hours,
The average crystal grain size was measured and found to be 30 μm. Subsequently, this copper plate was repeatedly cold-rolled within a range of 5 to 50% per pass to obtain a total cold workability of 91.0%, and a copper foil having a thickness of 9 μm was obtained. Finally, this copper foil was subjected to finish annealing at a material temperature of 200 ° C. for 2 hours in a nitrogen atmosphere in batch annealing to obtain a soft copper foil. When the tensile strength and elongation of this soft copper foil were measured, the tensile strength was 135
The N / mm 2 and the elongation were 3.8%.

【0027】上記実施例1〜9及び比較例1〜7におけ
る軟質銅箔の立方体方位強度をX線回折により(10
0)の回折強度を測定し、比較例2の強度を1として強
度比を算出し、その結果を表1に示した。
The cubic orientation strengths of the soft copper foils in Examples 1 to 9 and Comparative Examples 1 to 7 were measured by X-ray diffraction (10).
The diffraction intensity of 0) was measured, the intensity ratio was calculated with the intensity of Comparative Example 2 being 1, and the results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】銅の場合、一般的に冷間加工度が90%以上
となると(100)立方体方位の占有率が急激に増加す
ることが知られているが、表1に示す通り、最終の中間
焼鈍で平均結晶粒径を50μm 以上としたものは仕上圧
延、仕上焼鈍後の再結晶集合組織である(100)立方
体方位の発達が少なく、結果として高い引張強さと伸び
が得られた。
In the case of copper, it is generally known that the occupancy of the (100) cubic orientation increases sharply when the cold workability is 90% or more. Those having an average crystal grain size of 50 μm or more by annealing showed little development of (100) cubic orientation, which is a recrystallized texture after finish rolling and finish annealing, and as a result, high tensile strength and elongation were obtained.

【0030】[0030]

【発明の効果】以上説明した通り、本発明によれば、最
終の中間焼鈍における銅箔の再結晶粒の平均結晶粒径を
50μm 以上としたので、仕上焼鈍後の再結晶集合組織で
ある、立方体方位の発達が抑制され、引張強さ150 〜17
0 N/mm2 、伸び6.0 〜8.5 %と高い数値を得ることが
でき、銅箔に十分な引張強さと伸びが付与され、高い張
力や伸びに対して耐久性のある軟質銅箔を得ることがで
きる。これにより電線等に被覆する際に、銅テープが切
れたり、銅箔部分にクラックが生じることなく、好適に
使用することができる。従って、本発明の産業上利用性
は非常に高いといえる。
As described above, according to the present invention, the average crystal grain size of the recrystallized grains of the copper foil in the final intermediate annealing can be determined.
Since it is set to 50 μm or more, the development of cubic orientation, which is the recrystallized texture after finish annealing, is suppressed, and the tensile strength is 150 to 17
It is possible to obtain a high numerical value of 0 N / mm 2 and an elongation of 6.0 to 8.5%, to give a copper foil sufficient tensile strength and elongation, and to obtain a soft copper foil that is durable against high tension and elongation. You can As a result, the copper tape is not broken or the copper foil portion is not cracked when it is covered with an electric wire or the like, and can be suitably used. Therefore, it can be said that the industrial applicability of the present invention is very high.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タフピッチ銅又は無酸素銅の鋳塊を熱間
圧延後、冷間圧延と中間焼鈍を複数回繰り返し、最終の
中間焼鈍後の仕上圧延において[{(最終の中間焼鈍厚
さ)−(仕上焼鈍前厚さ)}/最終の中間焼鈍厚さ]×
100 から算出される冷間加工度を60%以上とし、その後
仕上焼鈍を施して厚さ10μm 以下の軟質銅箔を製造する
方法において、前記最終の中間焼鈍後における銅板の再
結晶粒の平均結晶粒径を50μm 以上とすることを特徴と
する軟質銅箔の製造方法。
1. After hot rolling an ingot of tough pitch copper or oxygen-free copper, cold rolling and intermediate annealing are repeated a plurality of times, and in final rolling after final intermediate annealing, [{(final intermediate annealing thickness) -(Thickness before finish annealing)} / final intermediate annealing thickness] ×
In the method of producing a soft copper foil having a thickness of 10 μm or less by subjecting the cold workability calculated from 100 to 60% or more, and then performing finish annealing, the average crystal of recrystallized grains of the copper plate after the final intermediate annealing. A method for producing a soft copper foil, which has a particle size of 50 μm or more.
JP23326295A 1995-08-18 1995-08-18 Production of soft copper foil Withdrawn JPH0953162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23326295A JPH0953162A (en) 1995-08-18 1995-08-18 Production of soft copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23326295A JPH0953162A (en) 1995-08-18 1995-08-18 Production of soft copper foil

Publications (1)

Publication Number Publication Date
JPH0953162A true JPH0953162A (en) 1997-02-25

Family

ID=16952331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23326295A Withdrawn JPH0953162A (en) 1995-08-18 1995-08-18 Production of soft copper foil

Country Status (1)

Country Link
JP (1) JPH0953162A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501997A (en) * 2011-05-13 2014-01-08 Jx日矿日石金属株式会社 Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
CN104232984A (en) * 2014-09-25 2014-12-24 江苏鑫成铜业有限公司 Method for preparing copper alloy with high corrosion resistance
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
CN107046768A (en) * 2016-02-05 2017-08-15 Jx金属株式会社 Flexible printed board copper foil, copper clad layers stack, flexible printed board and electronic device using it
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
CN113774229A (en) * 2021-09-08 2021-12-10 虹华科技股份有限公司 Processing technology of high-strength high-conductivity high-purity copper wire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
CN103501997A (en) * 2011-05-13 2014-01-08 Jx日矿日石金属株式会社 Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
CN104232984A (en) * 2014-09-25 2014-12-24 江苏鑫成铜业有限公司 Method for preparing copper alloy with high corrosion resistance
CN107046768A (en) * 2016-02-05 2017-08-15 Jx金属株式会社 Flexible printed board copper foil, copper clad layers stack, flexible printed board and electronic device using it
CN107046768B (en) * 2016-02-05 2019-12-31 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN113774229A (en) * 2021-09-08 2021-12-10 虹华科技股份有限公司 Processing technology of high-strength high-conductivity high-purity copper wire
CN113774229B (en) * 2021-09-08 2023-11-28 虹华科技股份有限公司 Processing technology of high-strength high-conductivity high-purity copper wire

Similar Documents

Publication Publication Date Title
KR20070057283A (en) Steel sheet having high al content and exhibiting excellent workability and method for production thereof
CN100518979C (en) Method for producing metallic strips
US2801942A (en) Method of rendering an aluminum-iron alloy ductile
JPWO2003087420A1 (en) Oriented electrical steel sheet with excellent film adhesion and method for producing the same
JPH0953162A (en) Production of soft copper foil
JP2004292875A (en) 70/30 brass with crystal grain refined, and production method therefor
EP0374948B1 (en) Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
US3415696A (en) Process of producing silicon steel laminations having a very large grain size after final anneal
JP2003089859A (en) Method for producing aluminum alloy sheet having excellent bending workability
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
EP0500377B1 (en) Production of copper-beryllium alloys and copper-beryllium alloys produced thereby
JPS6320103A (en) Production of aluminum foil having excellent strength and workability
JPH01198457A (en) Annealed copper wire for coil
JPH07109552A (en) Production of extremely thin soft copper foil
JPS5910522B2 (en) copper coated aluminum wire
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH0747809B2 (en) Manufacturing method of high-purity copper wire consisting of coarse crystal grains
CN1033822C (en) Method of making regular grain oriented silicon steel without hot band anneal.
US20020088514A1 (en) Processes for producing articles with stress-free slit edges
JPH02104624A (en) Manufacture of lead frame material
JPH08218155A (en) Production of zirconium-copper alloy sheet having fine crystal grain
JPH0641634A (en) Production of high strength low linear expansion fe-ni alloy wire
JP3949280B2 (en) Manufacturing method of thin fin material for heat exchanger
JPH10230303A (en) Manufacture of hard copper foil
JPS5943972B2 (en) Manufacturing method of lead frame material for Ag plating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105