JPH01194319A - Vapor growth method and device for semiconductor - Google Patents

Vapor growth method and device for semiconductor

Info

Publication number
JPH01194319A
JPH01194319A JP63018640A JP1864088A JPH01194319A JP H01194319 A JPH01194319 A JP H01194319A JP 63018640 A JP63018640 A JP 63018640A JP 1864088 A JP1864088 A JP 1864088A JP H01194319 A JPH01194319 A JP H01194319A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
semiconductor crystal
heating means
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63018640A
Other languages
Japanese (ja)
Inventor
Michio Murata
道夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63018640A priority Critical patent/JPH01194319A/en
Publication of JPH01194319A publication Critical patent/JPH01194319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a heterojunction semiconductor crystal having a sharp and good hetero-interface and crystallinity and good characteristics, by adjusting a temperature which is appropriate for growth of a semiconductor using auxiliary heating means and by changing a substrate temperature abruptly. CONSTITUTION:There are provided a high frequency coil 2 heating a susceptor 3 in a reactor 1 by induction heating to heat a substrate on the susceptor around outer periphery of the reactor 1 and an infrared lamp 5 heating the substrate at high speed. With this apparatus, a GaAs semiconductor crystal and AlGaAs are epitaxially grown on a GaAs semiconductor substrate by an organic metal vapor growth method. At this time, a temperature of the susceptor 3 is adjusted for the GaAs semiconductor crystal whose optimal temperature during crystalline growth is the lowest. This susceptor temperature is kept constant with the substrate temperature adjusted by a lamp 5 only. First, GaAs semiconductor crystal is grown, the substrate 4 is heated by the lamp 5 and then the AlGaAs semiconductor crystal is grown. Then, heating by the lamp is stopped and the substrate 4 temperature is lowered and then the GaAs semiconductor crystal is grown again.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体の気相成長法およびその装置に関する
。より詳細には、急峻でかつ結晶性のよい2種類以上の
半導体結晶のへテロ接合の気相成長方法および装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for vapor phase growth of semiconductors. More specifically, the present invention relates to a method and apparatus for vapor phase growth of a heterojunction of two or more types of semiconductor crystals having a steep slope and good crystallinity.

従来の技術 発光ダイオード、ペテロ接合バイポーラトランジスタ等
の半導体デバイスは、2種類以上の半導体をペテロ接合
することで作製される。
BACKGROUND OF THE INVENTION Semiconductor devices such as light emitting diodes and petrojunction bipolar transistors are fabricated by forming two or more types of semiconductors into petrojunctions.

上記の半導体デバイスを有機金風気1目成長法で作製す
る場合、それぞれの半導体を成長させるのに最適な基板
温度は、−船釣には異なっている。
When the above-mentioned semiconductor device is manufactured by the organic gold air one-layer growth method, the optimum substrate temperature for growing each semiconductor is different.

従って、従来は、上記のデバイスを気相成長法で作製す
るのに、 ■どの半導体をもある程度良好に成長させ得る一定の基
板温度で全ての半導体結晶を成長させる方法 か、または、 ■それぞれの半導体を各半導体ごとに適した基板温度に
調整してから成長させるが、基板温度を変える際に、い
ったん半導体結晶の成長を中断する方法 のいずれかの方法を用いていた。
Therefore, conventionally, to fabricate the above-mentioned devices using the vapor phase growth method, there were two methods: (1) growing all semiconductor crystals at a constant substrate temperature that allowed each semiconductor to grow to some extent, or (2) growing each semiconductor crystal at a constant substrate temperature. Semiconductors are grown after adjusting the substrate temperature to an appropriate temperature for each semiconductor, but when changing the substrate temperature, one of the methods used is to temporarily interrupt the growth of semiconductor crystals.

発明が解決しようとする課題 従来は、上記の2方法のいずれかにより上記の半導体デ
バイスを作製していたが、結晶成長に適する基板温度が
異なる2種類以上の半導体を同一の基板温度で成長させ
ると、半導体結晶の特性が良好にならないという問題が
あった。
Problems to be Solved by the Invention Conventionally, the above-mentioned semiconductor devices have been manufactured using either of the above two methods, but it is now possible to grow two or more types of semiconductors with different substrate temperatures suitable for crystal growth at the same substrate temperature. However, there was a problem that the characteristics of the semiconductor crystal were not improved.

基板温度をそれぞれの半導体に合わせ、調整することに
より、半導体結晶の特性は改善されるが、結晶成長を長
時間中断して基板温度を変化させると、その間に表面の
結晶性が乱れる、あるいは、不純物が取り込まれるなど
の現象が起こり急峻なペテロ界面を作成することができ
なかった。
By adjusting the substrate temperature to suit each semiconductor, the characteristics of semiconductor crystals can be improved, but if crystal growth is interrupted for a long time and the substrate temperature is changed, the crystallinity of the surface may be disturbed during that time, or Phenomena such as the incorporation of impurities occurred, making it impossible to create a steep Peter interface.

課題を解決するための手段 本発明に従うと、半導体基板上に、2種類以上の半導体
結晶を有機金属気相成長法によってエピタキシャル成長
させる方法において、基板の主たる加熱手段とは独立に
制御できる補助的な加熱手段を用いて、少なくとも基板
表面の温度を急速に変化させ、それぞれの半導体に適し
た基板温度で成長させることを特徴とする半導体の気相
成長方法およびこの方法を実現するための、気密に封止
され、内部の圧力および雰囲気を変えることができるリ
アクタと、リアクタ内に原料ガスおよび雰囲気ガスを供
給するガス供給手段と、リアクタ内のガスを排気する排
気手段と、リアクタ内にあって、半導体基板を搭載する
サセプタと、サセプタ上の半導体基板を加熱する加熱手
段と、を具備する半導体気相エピタキシ装置において、
前記加熱手段が、基板全体を加熱することができる主た
る加熱手段と、少なくとも基板表面を急速に加熱するこ
とができる補助加熱手段との2系統となっており、それ
ぞれ独立に制御可能であることを特徴とする半導体気相
エピタキシ装置が提供される。
Means for Solving the Problems According to the present invention, in a method for epitaxially growing two or more types of semiconductor crystals on a semiconductor substrate by metal organic vapor phase epitaxy, an auxiliary heating means that can be controlled independently of the main heating means for the substrate is used. A semiconductor vapor phase growth method characterized by rapidly changing the temperature of at least the substrate surface using a heating means and growing at a substrate temperature suitable for each semiconductor, and an airtight method for realizing this method. A reactor that is sealed and can change the internal pressure and atmosphere, a gas supply means for supplying a raw material gas and an atmosphere gas into the reactor, an exhaust means for exhausting the gas inside the reactor, and a reactor located inside the reactor, A semiconductor vapor phase epitaxy apparatus comprising a susceptor on which a semiconductor substrate is mounted, and a heating means for heating the semiconductor substrate on the susceptor,
The heating means has two systems: a main heating means that can heat the entire substrate, and an auxiliary heating means that can rapidly heat at least the surface of the substrate, and that each can be independently controlled. A semiconductor vapor phase epitaxy apparatus with features is provided.

本発明の方法および装置は、例えば、GaAs半導体基
板上に、GaAs半導体結晶とAlGaAs半導体結晶
とをエピタキシャル成長させる場合、lnP半導体基板
上に、InP半導体結晶および/またはGaInAs半
導体結晶と、A11nAs半導体結晶とをエピタキシャ
ル成長させる場合に適用することが好ましい。
For example, when a GaAs semiconductor crystal and an AlGaAs semiconductor crystal are epitaxially grown on a GaAs semiconductor substrate, the method and apparatus of the present invention can be used to grow an InP semiconductor crystal and/or a GaInAs semiconductor crystal and an A11nAs semiconductor crystal on an InP semiconductor substrate. It is preferable to apply this method when epitaxially growing.

これらの場合は、それぞれAlGaAs5A11nAs
半導体結晶成長時に主たる加熱手段と補助加熱手段の両
方を用いて、基板温度を高くし、また、GaAs、 I
nP。
In these cases, AlGaAs5A11nAs
During semiconductor crystal growth, both the main heating means and the auxiliary heating means are used to raise the substrate temperature, and also to increase the substrate temperature when growing GaAs, I
nP.

GaInAs半導体結晶を成長させる際には、主たる加
熱手段のみを用いて低い基板温度とすることが好ましい
When growing a GaInAs semiconductor crystal, it is preferable to keep the substrate temperature low by using only the main heating means.

作用 ヘテロ接合を利用した各種半導体においては、それぞれ
の半導体結晶の結晶性がよく、特性が優れていることと
、半導体どうしの接合が良好であり、ヘテロ界面が急峻
であることとの両方が要求される。
Various types of semiconductors using functional heterojunctions require both that each semiconductor crystal has good crystallinity and excellent characteristics, and that the semiconductors have good junctions and that the heterojunction is steep. be done.

ヘテロ接合を有する半導体結晶を、有機金属気相成長法
で作製する場合、それぞれの半導体結晶を成長させるの
に適した基板温度は、普通半導体ごとに異なっている。
When a semiconductor crystal having a heterojunction is manufactured by metal organic vapor phase epitaxy, the substrate temperature suitable for growing each semiconductor crystal usually differs depending on the semiconductor.

しかしながら、従来は、基板温度一定のまま、全ての半
導体結晶を成長させる方法か、または、各半導体ごとに
基板温度を変えるが、基板温度を変える際には、半導体
結晶の成長を中断する方法のいずれかの方法を用いてい
た。
However, the conventional methods are to grow all semiconductor crystals while keeping the substrate temperature constant, or to change the substrate temperature for each semiconductor, but when changing the substrate temperature, the growth of semiconductor crystals is interrupted. Either method was used.

前者の方法では、基板温度は一定であり、個々の半導体
について結晶成長を行うのに最適な基板温度とはならな
いため、半導体結晶の結晶性がよくなく、特性に問題が
あった。また、後者の方法では、半導体結晶の結晶性、
特性は改善されるが、結晶成長を長時間中断し、基板温
度を変えるため、その間に表面の結晶性が乱れたり、不
純物が取り込まれたりして、ヘテロ接合の状態が悪く、
また、界面も急峻でなくなってしまっていた。
In the former method, the substrate temperature is constant and is not the optimum substrate temperature for crystal growth of each semiconductor, resulting in poor crystallinity of the semiconductor crystal and problems with properties. In addition, in the latter method, the crystallinity of the semiconductor crystal,
Although the characteristics are improved, since crystal growth is interrupted for a long time and the substrate temperature is changed, the crystallinity of the surface is disturbed and impurities are incorporated during that time, resulting in poor heterojunction conditions.
Additionally, the interface was no longer steep.

本発明の方法では、補助的な加熱手段を用いることによ
り、基板温度を急速に変化させ、結晶成長を長時間中断
させずに、それぞれの半導体結晶を成長させるのに適し
た基板温度に変える。
In the method of the present invention, by using auxiliary heating means, the substrate temperature is rapidly changed to a temperature suitable for growing the respective semiconductor crystal without interrupting the crystal growth for a long time.

従って、本発明の方法で得られるペテロ接合半導体結晶
は、各半導体結晶の結晶性もよく、特性が優れているだ
けでなく、ヘテロ接合の状態および界面の状態も良好で
あり、高性能なものとなる。
Therefore, the petrojunction semiconductor crystal obtained by the method of the present invention not only has good crystallinity of each semiconductor crystal and excellent properties, but also has good heterojunction state and interface state, and is a high-performance product. becomes.

本発明の方法は、Gaへs半導体基板上に、AlGaA
s半導体結晶およびGaAs半導体結晶とをエピタキシ
ャル成長させて、ヘテロ接合半導体を作製する場合や、
InP半導体基板上に、InP半導体結晶および/また
はGaInAs半導体結晶と、Al[nAs半導体結晶
とをエピタキシャル成長させて、ヘテロ接合半導体を作
製する場合に応用することが好ましい。
In the method of the present invention, AlGaA
When producing a heterojunction semiconductor by epitaxially growing an s semiconductor crystal and a GaAs semiconductor crystal,
It is preferable to apply this method to the case where a heterojunction semiconductor is manufactured by epitaxially growing an InP semiconductor crystal and/or a GaInAs semiconductor crystal and an Al[nAs semiconductor crystal on an InP semiconductor substrate.

また、本発明では、上記の方法を実現するための半導体
気相エピタキシ装置が提供される。本発明の気相エピタ
キシ装置は、基板の加熱手段が基板全体を加熱する主た
る加熱手段と、少なくとも基板表面を急速に加熱するこ
とができる補助加熱手段との、それぞれ独立した2系統
となっているところにその主要な特徴がある。
Further, the present invention provides a semiconductor vapor phase epitaxy apparatus for implementing the above method. In the vapor phase epitaxy apparatus of the present invention, the substrate heating means consists of two independent systems: a main heating means that heats the entire substrate, and an auxiliary heating means that can rapidly heat at least the surface of the substrate. Herein lies its main characteristic.

本発明の気相エピタキシ装置の加熱手段としては、例え
ば主たる加熱手段として高周波誘導加熱装置、補助加熱
手段として赤外線ランプを用いることが好ましい。また
、基板を搭載するサセプタと基板との間に例えば石英板
等の断熱材を挟み、基板周辺の熱容量を小さくし、補助
加熱手段による温度変化が、より急速となるようにする
ことも好ましい。
As the heating means for the vapor phase epitaxy apparatus of the present invention, it is preferable to use, for example, a high frequency induction heating device as the main heating means and an infrared lamp as the auxiliary heating means. It is also preferable to sandwich a heat insulating material such as a quartz plate between the susceptor on which the substrate is mounted and the substrate to reduce the heat capacity around the substrate so that the temperature change by the auxiliary heating means becomes more rapid.

実施例 第1図および第2図に、本発明の装置の一例の構造図お
よび基板周辺の拡大図を示す。第1図に示す本発明の装
置は、気密に封止されたりアクタ1、リアクタ1の外周
に配置され、リアクタ1内のカーボン製サセプタ3を誘
導加熱することでサセプタ3上の基板4を加熱する高周
波コイル2、基板4を急速に加熱するための赤外線ラン
プ5、原料ガスを正確に供給する供給手段(不図示)、
リアクタ1内を高真空まで排気し、かつリアクタ1内の
圧力を自由に設定可能な排気手段(不図示)とで主に構
成される。また、第2図に示すよう基板4は、サセプタ
3上に断熱効果を有する石英板6を介して置かれ、サセ
プタ3内部と石英板6上のダミー基板7上には、それぞ
れ熱電対8.9が設置され、サセプタ3および基板4の
温度をモニターする。
Embodiment FIGS. 1 and 2 show a structural diagram of an example of the device of the present invention and an enlarged view of the vicinity of the substrate. The device of the present invention shown in FIG. 1 is hermetically sealed or placed around the outer periphery of an actor 1, and heats a substrate 4 on the susceptor 3 by induction heating a carbon susceptor 3 inside the reactor 1. a high-frequency coil 2 for rapidly heating the substrate 4, an infrared lamp 5 for rapidly heating the substrate 4, a supply means (not shown) for accurately supplying raw material gas,
It mainly consists of an evacuation means (not shown) that evacuates the inside of the reactor 1 to a high vacuum and can freely set the pressure inside the reactor 1. Further, as shown in FIG. 2, the substrate 4 is placed on the susceptor 3 via a quartz plate 6 having a heat insulating effect, and thermocouples 8. 9 is installed to monitor the temperatures of the susceptor 3 and the substrate 4.

上記本発明の装置を用いて、本発明の方法でGaAs半
導体基板上にGaAs半導体結晶とAlGaAs半導体
結晶とを、また、InP半導体基板上にInP半導体結
晶、GafnAs半導体結晶とAlInAs半導体結晶
とを、いずれも有機金属気相成長法によりエピタキシャ
ル成長させた。
Using the above-described apparatus of the present invention, a GaAs semiconductor crystal and an AlGaAs semiconductor crystal are formed on a GaAs semiconductor substrate by the method of the present invention, and an InP semiconductor crystal, a GafnAs semiconductor crystal, and an AlInAs semiconductor crystal are formed on an InP semiconductor substrate. All were grown epitaxially by metal organic vapor phase epitaxy.

GaAs系半導体を作製する際は、サセプタ温度を結晶
成長の最適温度が最も低いGaAs半導体結晶に合わせ
、700℃とした。尚、このサセプタ温度は、半導体作
製中は一定のままで、基板温度の調整は赤外線ランプの
みで行った。最初にGaAs半導体結晶を1μm成長さ
せ、赤外線ランプにより基板温度を775℃に加熱した
後、AlGaAs半導体結晶を0.5μm成長させた。
When producing a GaAs-based semiconductor, the susceptor temperature was set to 700° C. in accordance with the GaAs semiconductor crystal, which has the lowest optimum temperature for crystal growth. Note that this susceptor temperature remained constant during semiconductor fabrication, and the substrate temperature was adjusted only by an infrared lamp. First, a GaAs semiconductor crystal was grown to a thickness of 1 μm, and after heating the substrate temperature to 775° C. with an infrared lamp, an AlGaAs semiconductor crystal was grown to a thickness of 0.5 μm.

さらに、赤外線ランプによる加熱をやめ、基板温度を7
00℃まで下げて、再びGaAs半導体結晶を1μm成
長させた。結晶成長を中断した時間は、いずれも10秒
間であり、従来の方法に比較して大幅に短縮された。
Furthermore, we stopped heating the infrared lamp and lowered the substrate temperature to 7.
The temperature was lowered to 00° C., and GaAs semiconductor crystal was grown again to a thickness of 1 μm. The time during which crystal growth was interrupted was 10 seconds in each case, which was significantly shortened compared to conventional methods.

InP系半導体を作製する際は、サセプタ温度をInP
半導体結晶の成長最適温度である600℃に合わせ、I
nP半導体結晶を1μm成長させた後、赤外線ランプで
加熱、基板温度を670℃にしてAlInAs半導体結
晶を0.1μm成長させた。さらに、赤外線ランプによ
る加熱をやめ、基板温度が620℃に下がったところで
再びGaInAs半導体結晶を0.3μm成長させた。
When manufacturing InP-based semiconductors, the susceptor temperature should be
I
After growing an nP semiconductor crystal to a thickness of 1 μm, heating was performed using an infrared lamp to raise the substrate temperature to 670° C., and an AlInAs semiconductor crystal was grown to a thickness of 0.1 μm. Furthermore, heating with an infrared lamp was stopped, and when the substrate temperature had fallen to 620° C., GaInAs semiconductor crystal was grown again to a thickness of 0.3 μm.

上記のように、本発明の装置および方法で作製されたG
aAs系へテロ接合半導体結晶およびInP系へテロ接
合半導体結晶は、いずれもヘテロ界面が6Å以下になっ
ており、極めて急峻であった。また、各半導体の結晶性
もよく、優れた特性を有していた。
As described above, G
Both the aAs-based heterojunction semiconductor crystal and the InP-based heterojunction semiconductor crystal had a heterointerface of 6 Å or less, which was extremely steep. In addition, each semiconductor had good crystallinity and excellent properties.

発明の効果 以上詳述のように本発明に従うと、従来に比較して急峻
かつ良好なヘテロ界面および結晶性を有し、特性の優れ
たヘテロ接合半導体結晶が得られる。これは、本発明の
装置に独特な補助加熱手段を利用して、本発明の方法の
特徴である、各半導体の成長に最適な温度に合わせ、か
つ基板温度を急速に変えることにより、結晶成長の中断
時間を極めて短時間とすることにより可能になったもの
である。
Effects of the Invention As detailed above, according to the present invention, a heterojunction semiconductor crystal having a steeper and better heterojunction interface and crystallinity and having excellent characteristics can be obtained compared to the conventional method. This is achieved by utilizing an auxiliary heating means unique to the apparatus of the present invention, adjusting the temperature to the optimum temperature for the growth of each semiconductor, and rapidly changing the substrate temperature, which is a feature of the method of the present invention. This was made possible by making the interruption time extremely short.

本発明を、ヘテロ界面の2次元電子を用いるHEMTや
量子井戸構造を利用したレーザダイオードなどの作製に
利用すると効果的である。
The present invention is effective when used to fabricate HEMTs that use two-dimensional electrons at heterointerfaces, laser diodes that use quantum well structures, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の装置の一例の構造図であり、第2図
は、第1図で示した装置の基板周辺の拡大図である。 〔主な参照番号〕 1・・・リアクタ、   2・・・高周波コイル、3・
・・サセプタ、  4・・・基板、5・・・赤外線ラン
プ、6・・・石英板、7・・・ダミー基板、  8.9
・・・熱電対特許出願人  住友電気工業株式会社
FIG. 1 is a structural diagram of an example of the device of the present invention, and FIG. 2 is an enlarged view of the vicinity of the substrate of the device shown in FIG. [Main reference numbers] 1...Reactor, 2...High frequency coil, 3...
... Susceptor, 4... Substrate, 5... Infrared lamp, 6... Quartz plate, 7... Dummy substrate, 8.9
...Thermocouple patent applicant Sumitomo Electric Industries, Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)半導体基板上に、2種類以上の半導体結晶を有機
金属気相成長法によってエピタキシャル成長させる方法
において、基板の主たる加熱手段とは独立に制御できる
補助的な加熱手段を用いて、少なくとも基板表面の温度
を急速に変化させ、それぞれの半導体に適した基板温度
で成長させることを特徴とする半導体の気相成長方法。
(1) In a method of epitaxially growing two or more types of semiconductor crystals on a semiconductor substrate by metal organic vapor phase epitaxy, at least the surface of the substrate is A method for vapor phase growth of semiconductors characterized by rapidly changing the temperature of the semiconductor and growing at a substrate temperature suitable for each semiconductor.
(2)GaAs半導体基板上に、GaAs半導体結晶と
AlGaA半導体結晶とをエピタキシャル成長させる方
法において、AlGaAs半導体結晶成長時には、上記
主たる加熱手段と上記補助的な加熱手段の両方を用いて
加熱することで基板温度を高くし、GaAs半導体結晶
成長時には、上記主たる加熱手段のみで基板を加熱し、
基板温度を低くすることを特徴とした請求項(1)に記
載の方法。
(2) In a method of epitaxially growing a GaAs semiconductor crystal and an AlGaA semiconductor crystal on a GaAs semiconductor substrate, when growing the AlGaAs semiconductor crystal, the substrate is heated using both the above-mentioned main heating means and the above-mentioned auxiliary heating means. Raising the temperature and heating the substrate using only the above-mentioned main heating means during GaAs semiconductor crystal growth,
The method according to claim 1, characterized in that the substrate temperature is lowered.
(3)InP半導体基板上に、InP半導体結晶および
/またはGaInAs半導体結晶と、AlInAs半導
体結晶とをエピタキシャル成長させる方法において、A
lInAs半導体結晶成長時には、上記主たる加熱手段
と上記補助的な加熱手段の両方を用いて加熱することで
基板温度を高くし、InP半導体結晶およびGaInA
s半導体結晶成長時には、上記主たる加熱手段のみで基
板を加熱し、基板温度を低くすることを特徴とした請求
項(1)に記載の方法。
(3) In a method of epitaxially growing an InP semiconductor crystal and/or a GaInAs semiconductor crystal and an AlInAs semiconductor crystal on an InP semiconductor substrate, A
During the growth of the lInAs semiconductor crystal, the substrate temperature is raised by heating using both the above-mentioned main heating means and the above-mentioned auxiliary heating means, and the InP semiconductor crystal and GaInA
s. The method according to claim 1, wherein during semiconductor crystal growth, the substrate is heated only by the main heating means to lower the substrate temperature.
(4)気密に封止され、内部の圧力および雰囲気を変え
ることができるリアクタと、リアクタ内に原料ガスおよ
び雰囲気ガスを供給するガス供給手段と、リアクタ内の
ガスを排気する排気手段と、リアクタ内にあって、半導
体基板を搭載するサセプタと、サセプタ上の半導体基板
を加熱する加熱手段と、を具備する半導体気相エピタキ
シ装置において、前記加熱手段が、基板全体を加熱する
ことができる主たる加熱手段と、少なくとも基板表面を
急速に加熱することができる補助加熱手段との2系統と
なっており、それぞれ独立に制御可能であることを特徴
とする半導体気相エピタキシ装置。
(4) A reactor that is hermetically sealed and can change the internal pressure and atmosphere, a gas supply means for supplying raw material gas and atmospheric gas into the reactor, an exhaust means for exhausting the gas inside the reactor, and a reactor. In a semiconductor vapor phase epitaxy apparatus comprising a susceptor on which a semiconductor substrate is mounted, and a heating means for heating the semiconductor substrate on the susceptor, the heating means is a main heating device capable of heating the entire substrate. 1. A semiconductor vapor phase epitaxy apparatus comprising two systems: a heating means and an auxiliary heating means capable of rapidly heating at least the surface of a substrate, each of which can be controlled independently.
(5)上記主たる加熱手段が、高周波コイルであり、補
助加熱手段が赤外線ランプであることを特徴とする請求
項(4)に記載の半導体気相エピタキシ装置。
(5) The semiconductor vapor phase epitaxy apparatus according to claim 4, wherein the main heating means is a high-frequency coil, and the auxiliary heating means is an infrared lamp.
(6)上記半導体気相エピタキシ装置が、有機金属気相
成長法に用いられることを特徴とする請求項(4)また
は(5)に記載の半導体気相エピタキシ装置。
(6) The semiconductor vapor phase epitaxy apparatus according to claim (4) or (5), wherein the semiconductor vapor phase epitaxy apparatus is used for metal organic vapor phase epitaxy.
JP63018640A 1988-01-29 1988-01-29 Vapor growth method and device for semiconductor Pending JPH01194319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63018640A JPH01194319A (en) 1988-01-29 1988-01-29 Vapor growth method and device for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63018640A JPH01194319A (en) 1988-01-29 1988-01-29 Vapor growth method and device for semiconductor

Publications (1)

Publication Number Publication Date
JPH01194319A true JPH01194319A (en) 1989-08-04

Family

ID=11977197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63018640A Pending JPH01194319A (en) 1988-01-29 1988-01-29 Vapor growth method and device for semiconductor

Country Status (1)

Country Link
JP (1) JPH01194319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809211A (en) * 1995-12-11 1998-09-15 Applied Materials, Inc. Ramping susceptor-wafer temperature using a single temperature input
JP2003092267A (en) * 2001-09-17 2003-03-28 Denso Corp Apparatus and method for manufacturing silicon carbide semiconductor
JP2006147943A (en) * 2004-11-22 2006-06-08 Kokusai Electric Semiconductor Service Inc Substrate processor and semiconductor device manufacturing method
JP2008251995A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Temperature information acquiring device and heating system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809211A (en) * 1995-12-11 1998-09-15 Applied Materials, Inc. Ramping susceptor-wafer temperature using a single temperature input
JP2003092267A (en) * 2001-09-17 2003-03-28 Denso Corp Apparatus and method for manufacturing silicon carbide semiconductor
JP4639563B2 (en) * 2001-09-17 2011-02-23 株式会社デンソー Silicon carbide semiconductor manufacturing equipment
JP2006147943A (en) * 2004-11-22 2006-06-08 Kokusai Electric Semiconductor Service Inc Substrate processor and semiconductor device manufacturing method
JP2008251995A (en) * 2007-03-30 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Temperature information acquiring device and heating system

Similar Documents

Publication Publication Date Title
JP3569807B2 (en) Method for manufacturing nitride semiconductor device
JP4867137B2 (en) Compound semiconductor epitaxial substrate
EP0430562B1 (en) Semiconductor heterostructure and method of producing the same
JPH01194319A (en) Vapor growth method and device for semiconductor
JPH0732247B2 (en) Semiconductor device
JP2002289529A (en) Substrate for growing semiconductor layer
KR100281939B1 (en) Semiconductor epitaxial substrate
CN113584596A (en) Annealing method for improving flatness of silicon carbide wafer
JP4883547B2 (en) Compound semiconductor epitaxial substrate
JP2003224072A (en) Semiconductor structure and manufacturing method therefor
JP3927778B2 (en) Epitaxial wafer and manufacturing method thereof
JP3536057B2 (en) Material layer forming device
JP2712505B2 (en) Vapor phase epitaxy
JP2671089B2 (en) Quantum structure fabrication method
JPS63228714A (en) Manufacture of semiconductor crystal film
JPH0714785A (en) Semiconductor epitaxial substrate and production thereof
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JP4802442B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
JPH0427116A (en) Method of forming semiconductor heterojunction
JPS62115831A (en) Manufacture of semiconductor device
JPH0917737A (en) Vapor growth method for semiconductor laminated structure
JP4078169B2 (en) Field effect transistor
JPH0536605A (en) Manufacture of compound semiconductor substrate
JPH025439A (en) Semiconductor substrate
JPH05243158A (en) Manufacture of semiconductor device