JPH01192760A - Ag2o3-containing oxide superconductor and production thereof - Google Patents

Ag2o3-containing oxide superconductor and production thereof

Info

Publication number
JPH01192760A
JPH01192760A JP63015821A JP1582188A JPH01192760A JP H01192760 A JPH01192760 A JP H01192760A JP 63015821 A JP63015821 A JP 63015821A JP 1582188 A JP1582188 A JP 1582188A JP H01192760 A JPH01192760 A JP H01192760A
Authority
JP
Japan
Prior art keywords
powder
sintered
oxide superconductor
oxygen
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63015821A
Other languages
Japanese (ja)
Inventor
Eishiyuu Sugawara
英州 菅原
Hideyuki Tanaka
秀之 田中
Yoshitami Saito
斉藤 好民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63015821A priority Critical patent/JPH01192760A/en
Publication of JPH01192760A publication Critical patent/JPH01192760A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve sintering density, critical current density and processing properties, to improve and to stabilize critical temperature, to uniform crystal structure and to make composition uniform, by containing specific oxide crystal grain and Ag solid solution obtained from Ag2O3 as a starting raw material arranged at least in the vicinity of grain boundary of the crystal grain. CONSTITUTION:A given amount of powder of starting raw materials (e.g., Y2O3, BaCO3 or CuO) in order to form L-B-Cu-O oxide crystal grain (L is lanthanide element including Y; B is one or more elements selected from Ba, Sr and Ca) is ground, calcined at, e.g., about 900 deg.C for 5 hours to give powder, which is press molded. Then the pressed material is sintered in an O2 atmosphere at 900-950 deg.C for, e.g., about 10 hours and ground to give first sintered powder. The first sintered powder is blended with Ag2O3 powder in the atomic ratio to satisfy the relationship shown by the formula (x is 0.07-0.7), packed with a sheath agent, molded and processed to give a molded article, which is partially melted and sintered in an O2 atmosphere at, e.g., 950-1,050 deg.C for about 10 hours to give a second sintered material. Then the second sintered material is annealed at 50-100 deg.C/hour cooling rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はY及びLn(ランタノイド)系とBa。[Detailed description of the invention] [Industrial application field] The present invention uses Y and Ln (lanthanoid) series and Ba.

Cu、Oからなる酸素欠損三重構造ペロブスカイト塑成
化物Bt導体に関し、特に加工性、焼結性が良好で、均
質なAg含有酸化物超電導体とその製造方法に関するも
のである。
The present invention relates to an oxygen-deficient triple-structure perovskite plasticized Bt conductor consisting of Cu and O, and particularly to a homogeneous Ag-containing oxide superconductor with good workability and sinterability, and a method for producing the same.

[従来技術] 一般に、Y及びLn(ランタノイド)系とBa、。[Prior art] Generally, Y and Ln (lanthanide) systems and Ba.

Cu、Oとからなる酸化物超電導体は、酸素欠損型三重
構造へロブスカイトとしで広く知られている材料である
。この材料は酸化物である為に弾性がなく、塑性変形能
がない。
An oxide superconductor made of Cu and O is a material widely known as a lobskite having an oxygen-deficient triple structure. Since this material is an oxide, it has no elasticity and no plastic deformability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

それ故、従来の超電導体材料は、線材加工等の圧延、線
引、引き抜き、押し出しがなされても、結晶自体に塑性
変形能がないため、結晶粒界での接着及び融着が起こり
にくい状態にある。しかも、結晶粒界の表面は酸素の出
入りが容易で簡単に酸素など元素の拡散が進みやすいと
いう特徴を有している。その為、多結晶体の場合、結晶
粒界は不純物及びLn (Y)、Bat Cu* 0y
−y等の化学量論組成から外れた元素が集まる等、拡散
が活発におこなわれている。また、□酸化物は呼吸して
いるかのごとくに温度の上昇、下降に伴って、酸素の吸
収、放出が行なわれている。その結果、酸素含有量が低
下してくると、Tc(臨界温度)の低下、結晶梢滝の変
化が生じるという間層があった。
Therefore, even if conventional superconductor materials are rolled, drawn, drawn, or extruded during wire processing, the crystals themselves do not have the ability to plastically deform, so adhesion and fusion at grain boundaries are difficult to occur. It is in. Moreover, the surface of the grain boundary has the characteristic that oxygen can easily enter and exit, and elements such as oxygen can easily diffuse therethrough. Therefore, in the case of polycrystalline materials, grain boundaries are formed by impurities, Ln (Y), Bat Cu* 0y
Diffusion is actively occurring, with elements that deviate from the stoichiometric composition, such as -y, gathering together. In addition, the □ oxide absorbs and releases oxygen as the temperature rises and falls, as if it were breathing. As a result, as the oxygen content decreased, a decrease in Tc (critical temperature) and a change in crystalline waterfall occurred.

それ故、酸化物を多量に供給することが良質の超電導体
を製造する為の条件である。そこで酸素量を多量に供給
するシステムが特に線材について検討されてきている。
Therefore, supplying a large amount of oxide is a condition for producing a high quality superconductor. Therefore, systems for supplying a large amount of oxygen have been studied, especially for wire rods.

そこで、本発明の技術的課題は、上記欠点に鑑み、酸化
物への酸素供給をコントロールし、かつ、塑性変形能を
付与した、加工性、焼結性が良好で、かつ、焼結体が均
質な空孔のない酸化物超電導体及びその製造方法を提供
することである。
In view of the above-mentioned drawbacks, the technical problem of the present invention is to provide a sintered body that controls oxygen supply to the oxide, imparts plastic deformability, has good workability and sinterability, and An object of the present invention is to provide a homogeneous pore-free oxide superconductor and a method for producing the same.

[発明の概要] Ln (Y)BaCuO系酸化物超電導体は酸化物を構
成する酸素のコントロールが非常に重要である。酸素含
有量は超電導体の結晶構造、及び超電動特性(Tc、x
)をほぼ決定する。その為、線材に加工した場合には酸
素量が低下するとか、酸化物特有の性質として塑性変形
能がない為に、−マイクロクラックが発生し、Jc(臨
界電流密度)が低下するなどの問題がある。
[Summary of the Invention] For Ln(Y)BaCuO-based oxide superconductors, control of oxygen constituting the oxide is very important. The oxygen content is determined by the crystal structure of the superconductor and the superelectric properties (Tc, x
) is almost determined. Therefore, when processed into a wire rod, there are problems such as a decrease in the amount of oxygen, a lack of plastic deformability as a characteristic of oxides, and the occurrence of microcracks and a decrease in Jc (critical current density). There is.

そこで、本発明ではAg2Oi(過酸化銀)の粉末を添
加することで酸素含有量のコントロール、及び供給を計
った。
Therefore, in the present invention, the oxygen content was controlled and supplied by adding Ag2Oi (silver peroxide) powder.

Agの添加効果はJapanese Journal 
ofapplied physics vol、26 
No、5 Hay 1987 PPL832〜833で
説明されておりCuOとAg2Oとの置換効果によりT
c付近で電気抵抗の消失が急峻となり、さらにAgをC
uと50%置換しても、Tcに大幅な変化がないことが
報告されている。
The effect of adding Ag is explained in Japanese Journal
ofapplied physics vol, 26
No. 5 Hay 1987 PPL832-833 explains that T due to the substitution effect of CuO and Ag2O
The electrical resistance disappears steeply near c, and furthermore Ag is reduced to C.
It has been reported that there is no significant change in Tc even after 50% substitution with u.

本発明はA g 202を加えることを特徴とする。The present invention is characterized by adding Ag 202.

つまり、これらLn (Y)BaCuO系の焼結温度を
950℃以上に昇温すると、一部溶融がはじまる。この
一部溶融の起きたサンプルは酸素を放出して酸素欠損が
進み、結晶構造が斜方晶から正方晶へと変態する。その
際、酸素は酸化物外である酸化物と、シース材の間に拡
散して出てゆくのが常である。そこで本発明では前にも
記載した様にA g 202を加えることでAgi o
2の酸素を放出して、空間を酸素過剰とし、酸素元素の
酸素物外への放出を防ぎ、又溶融時は酸素を吸着させ、
凝固時に酸素を放出させるようにしたものである。
In other words, when the sintering temperature of these Ln (Y) BaCuO systems is raised to 950° C. or higher, a portion of the materials starts to melt. This partially melted sample releases oxygen, oxygen vacancies progress, and the crystal structure transforms from orthorhombic to tetragonal. At this time, oxygen usually diffuses out between the oxide, which is outside the oxide, and the sheath material. Therefore, in the present invention, as described above, by adding A g 202, Agio
It releases oxygen from step 2 to make the space over-oxygenated, prevents the release of oxygen elements to the outside of the oxygen substance, and also adsorbs oxygen when melting.
It is designed to release oxygen during solidification.

ここでAgの一般的性質について説明する。Here, the general properties of Ag will be explained.

銀は一般的には硫化物として産出し、輝銀鉱(Ag□S
)、濃紅銀鉱(3Ag*S。
Silver is generally produced as a sulfide and is produced in the form of bright silverite (Ag□S).
), dark silver ore (3Ag*S.

AgtSs)、脆銀鉱(5Ag2S−3bi Si )
などが知られている。また相当量の銀が銅、亜鉛の金属
精製に際し、副産物として得られている。
AgtSs), brittle silver ore (5Ag2S-3bi Si)
etc. are known. A considerable amount of silver is also obtained as a by-product during metal refining of copper and zinc.

又、銀は銀白色の光沢のある金属で、その溶融状態で多
量の酸素(O□20.28 ml/ 1 ml  A 
g at973℃)を吸蔵し、凝固時に吸蔵酸素を放出
し、5hittina (飛びはね)現象を引き起こす
、電気、及び熱伝導性は金属中で最大、展延性は金につ
いで大きい。
In addition, silver is a silver-white, shiny metal, and in its molten state, it absorbs a large amount of oxygen (O□20.28 ml/1 ml A).
It absorbs oxygen (g at 973°C), releases occluded oxygen during solidification, and causes the 5hittina (splatter) phenomenon.It has the highest electrical and thermal conductivity among metals, and is second only to gold in malleability.

化学的には水および酸素に対して安定であるが、オゾン
により黒色の過酸化銀を生成する。N2゜N2.Cとは
高温でも反応しないが、Aロゲン及びイオウとは容易に
反応する。塩酸のような非酸化性酸には侵されないが、
硝酸には溶け、熱硫酸にもよく溶ける。
Chemically stable to water and oxygen, but produces black silver peroxide when exposed to ozone. N2°N2. It does not react with C even at high temperatures, but it easily reacts with Alogen and sulfur. It is not attacked by non-oxidizing acids such as hydrochloric acid, but
Soluble in nitric acid and well in hot sulfuric acid.

以上の様な性質の為、Ag及び酸化銀、過酸化銀は比較
的安定であり、Ag、202を酸化物超電導体と一緒に
添加することで、酸素の吸着、放出をコントロールでき
、Ln (Y)BaCuOに十分な酸素量を供給するこ
とが可能である。
Because of the above properties, Ag, silver oxide, and silver peroxide are relatively stable, and by adding Ag and 202 together with the oxide superconductor, oxygen adsorption and release can be controlled, and Ln ( Y) It is possible to supply a sufficient amount of oxygen to BaCuO.

さらにAg2O2粉末は焼結体の粉砕粉末を微細にする
ことで、容易に均質に混しりあう、この様なAg202
とYBaCuO混合粉末とをプレス成形し、焼結すると
、Ag2o2と YBaCuO粉末とが相互拡散を起し、焼結密度の向上
が奸られ、結晶粒の拡大及び結晶構造の均一化が計られ
る。
Furthermore, Ag2O2 powder can be easily mixed homogeneously by making the crushed powder of the sintered body fine.
When Ag2o2 and YBaCuO mixed powder are press-molded and sintered, mutual diffusion occurs between Ag2o2 and YBaCuO powder, improving the sintered density, expanding crystal grains, and making the crystal structure uniform.

さらに、又、Ag2o2粉末とYBaCuO混合粉末と
Ag及びAg合金などのシース材に封入して圧延又は線
引きなどの塑性加工を施こすと、AgxO2が入ってい
ないものに比較して焼結性が向上し、より均質な酸化物
が作製できる様になる。
Furthermore, when the Ag2o2 powder and YBaCuO mixed powder is sealed in a sheath material such as Ag or Ag alloy and subjected to plastic processing such as rolling or wire drawing, the sinterability is improved compared to one that does not contain AgxO2. However, a more homogeneous oxide can be produced.

以上の効果の理由としては、次の様に説明できる。The reason for the above effects can be explained as follows.

酸素中で焼結を行ったLn (Y)BaCuO粉末は一
般に十分に酸素を吸蔵している。このLn (Y)Ba
CuO粉末の特徴として室温から昇温すると550℃以
上で酸素を放出するという性質があり、900〜950
℃から冷却すると550℃位まで酸素を吸収するという
性質がある。又、Ag202の性質としては室温におい
て、オゾン酸化させることで作製するで過飽和の状態で
酸素と結合している。そこで、これら Ln (Y)BaCuO粉末とAgxotとを混合させ
、プレス成形、及びシース材に封入して加熱するとAg
202は酸素を放出し、又溶融を始める。溶融したAg
は酸素を多量に吸蔵することができる。その際、YBa
CuOから放出された酸素を吸蔵して溶融Ag内に内蔵
する。又、この溶融Agは周りのLn (Y)BaCu
Oと反応してLn (Y)BaCuAgO含CuAg、
酸素を多量に含有する。凝固時には溶融Agは酸素を放
出するが、放出された酸素は Ln (Y)BaCuAgO系が冷却とともに酸素を吸
着する。
Ln(Y)BaCuO powder sintered in oxygen generally occludes oxygen sufficiently. This Ln (Y)Ba
A characteristic of CuO powder is that it releases oxygen at 550°C or higher when heated from room temperature.
It has the property of absorbing oxygen when cooled from ℃ to about 550℃. Further, the property of Ag202 is that it is produced by ozone oxidation at room temperature, so it bonds with oxygen in a supersaturated state. Therefore, when these Ln (Y) BaCuO powders and Agxot are mixed, press-molded, sealed in a sheath material, and heated, Ag
202 releases oxygen and begins to melt again. molten Ag
can store large amounts of oxygen. At that time, YBa
Oxygen released from CuO is stored and incorporated into molten Ag. Moreover, this molten Ag is surrounded by Ln(Y)BaCu
Ln(Y)BaCuAgO-containing CuAg by reacting with O,
Contains a large amount of oxygen. During solidification, molten Ag releases oxygen, and the released oxygen is absorbed by the Ln(Y)BaCuAgO system as it cools.

さらに、Agシース材を通して拡散して入ってくる酸素
はLn (Y)BaCuAgO系へ供給されることとな
り、化学量論比率 ’W’+ Ba2 (Cu、Ag)s Oa、*から酸
素が解離することによって生ずる異相の発生がなく、良
好な超電導特性(Tc、x)を示し、さらに焼結性が良
くなるので、Jcの向上も計ることができ、A g x
 O2添加の効果は非常に大きい。
Furthermore, oxygen that diffuses and enters through the Ag sheath material will be supplied to the Ln (Y) BaCuAgO system, and oxygen will dissociate from the stoichiometric ratio 'W' + Ba2 (Cu, Ag)s Oa, * There is no generation of foreign phases caused by this, and it exhibits good superconducting properties (Tc,
The effect of adding O2 is very large.

勿論、バルク材の場合にはも、Ag202から解離した
Agがあるので多孔質とならず、焼結密度が向上し、そ
の結果容易にクラックが入りにくくなり、加工性が向上
してる。
Of course, in the case of a bulk material, since there is Ag dissociated from Ag202, it does not become porous, and the sintered density improves, resulting in less easy cracking and improved workability.

以上の様に、本発明ではAFK202をLn (Y)B
aCuO系の酸化物超電導体に混合することでLn (
Y)BaCuO粉末の焼結性の改善、及びバルク焼結体
の均質化による加工性の改善が計られた。さらに、Ag
202の添加により酸素元素を十分にLn (Y)Ba
CuOに供給できるので結晶構造の安定化による良好な
超電導特性(Tc、x)及びJcを示し、酸化物超電導
体の応用に際し、非常に有益な方法である。
As described above, in the present invention, AFK202 is Ln (Y)B
By mixing it with aCuO-based oxide superconductor, Ln (
Y) Improved sinterability of BaCuO powder and improved workability by homogenizing the bulk sintered body. Furthermore, Ag
By adding 202, oxygen element is sufficiently added to Ln(Y)Ba
Since it can be supplied to CuO, it exhibits good superconducting properties (Tc, x) and Jc due to the stabilization of the crystal structure, and is a very useful method in the application of oxide superconductors.

即ち、本発明は、Ln (Y)BaCuO系酸化物にA
glow(過酸化銀)を加えることにより酸化物の酸素
供給源とし、かつ、Ag*02から遊離した純AgがL
n (Y)BaC’uO内に拡散置換固溶し、酸化物超
電導体の加工性、焼結性が良好で、かつ、焼結体が均質
な空孔のない酸化物超電導体となる様にしたものである
That is, the present invention provides Ln(Y)BaCuO based oxide with A
By adding glow (silver peroxide), pure Ag liberated from Ag*02 can be used as an oxygen source for oxides.
n (Y) BaC'uO is diffused and substituted as a solid solution, so that the processability and sinterability of the oxide superconductor are good, and the sintered body becomes a homogeneous oxide superconductor without voids. This is what I did.

その製造方法としては、Ln (Y)BaCuO系焼結
済み粉末に不安定な過酸化銀を混合拡販し、粉砕する0
作製した粉末は焼結及びシース材につめ込んで焼結され
、昇温に伴い、Agz O2からの酸素の遊離がうなが
され、 Ln (Y)BaCuOへ酸素が供給される。さらに遊
離したAg元素をマトリックス内に拡散させることで、
加工性、焼結性の改善、均質な構造を有し、良好な超電
導特性を付与している。
The manufacturing method involves mixing unstable silver peroxide with Ln(Y)BaCuO-based sintered powder and pulverizing it.
The produced powder is sintered and packed into a sheath material and sintered, and as the temperature rises, oxygen is released from AgzO2 and oxygen is supplied to Ln(Y)BaCuO. Furthermore, by diffusing the free Ag element into the matrix,
It has improved workability and sinterability, has a homogeneous structure, and has good superconducting properties.

[課題を解決するための手段] 本発明によれば、L−B−Cu−0酸化物結晶粒(ここ
で、LはYを含むランタノイド系元素、BはBa、Sr
及びCaからなるグループから選択された少なくとも一
種以上の元素を表す、)と、Agt02を出発原料とす
るAg固溶体を含有し、該Ag固溶体は前記酸化物結晶
粒の少なくとも粒界近傍に配置されていることを特徴と
するAgx Ox含有酸化物超電導体が得られる。
[Means for Solving the Problems] According to the present invention, L-B-Cu-0 oxide crystal grains (where L is a lanthanoid element containing Y, B is Ba, Sr
represents at least one or more elements selected from the group consisting of An AgxOx-containing oxide superconductor is obtained.

更に、本発明によれば、L−B−Cu−0酸化物結晶粒
(ここで、LはYを含むランタノイド系元素、BはBa
、Sr及びCaからなるグループから選択された少なく
とも一種以上の元素を表す)を生成するための出発原料
粉末を粉砕する第1の粉砕工程と、該粉砕された出発原
料粉末を仮焼して仮焼粉末を生成する仮焼工程と、該仮
焼粉末を粉砕して、プレス用粉末を生成する第2の粉砕
工程と、該プレス用粉末をプレス成形してプレス体を生
成するプレス工程と、該プレス体を酸素雰囲気内で焼結
して第1の焼結体を生成する第1の焼結工程と、該第1
の焼結体を粉砕する第3の粉砕工程と、該粉砕された第
1の焼結体粉末に、Ag2o2粉末を添加する添加工程
と、該Ag2Ot粉末を添加した第1の焼結体粉末を、
シース材に充填後成形加工を施す成形工程と、該成形体
を酸素雰囲気内で焼結して、第2の焼結体を生成する第
2の焼結工程と、該第2の焼結体を徐冷する徐冷工程と
を有することを特徴とするAgi o2含有酸化物超電
導体の製造方法が得られる。
Furthermore, according to the present invention, L-B-Cu-0 oxide crystal grains (where L is a lanthanoid element containing Y, B is Ba
, representing at least one element selected from the group consisting of Sr and Ca); a calcination step of producing a calcined powder; a second pulverization step of pulverizing the calcined powder to produce a pressing powder; a pressing step of press-molding the pressing powder to produce a pressed body; a first sintering step of sintering the pressed body in an oxygen atmosphere to produce a first sintered body;
a third pulverizing step of pulverizing the sintered body, an addition step of adding Ag2O2 powder to the pulverized first sintered body powder, and a first sintered body powder to which the Ag2Ot powder is added. ,
a forming step in which the sheath material is filled and then shaped; a second sintering step in which the formed object is sintered in an oxygen atmosphere to produce a second sintered body; and the second sintered object. A method for manufacturing an oxide superconductor containing Agio2 is obtained, which is characterized by comprising a slow cooling step of slowly cooling the Agio2-containing oxide superconductor.

[実施例] 次に、本発明に係るA g * 02含有酸化物超電導
体の実施例について説明する。
[Example] Next, an example of the A g *02-containing oxide superconductor according to the present invention will be described.

第1図はYBaCuO系にAgx Ot粉末を添加した
酸化物超電導体の作製工程である。まず、Y20s 、
 B aCOs 、 Cu Oなどの粉末原料を準備し
■、乳鉢及び他の方法で微細に粉砕する■。
FIG. 1 shows the manufacturing process of an oxide superconductor in which Agx Ot powder is added to a YBaCuO system. First, Y20s,
Prepare powder raw materials such as B aCOs and Cu 2 O, and pulverize them finely using a mortar or other method.

その後、空気中で900℃X5hrの仮焼を行ない■、
焼き上った粉末を再度粉砕する■、その後焼結のし易い
形状に成形して■、900〜1000℃x 10hr(
酸素中)で焼結する■、その後、炉冷(50〜b する。その後、その焼結体を再度微細に粉砕し10μを
以下とする■、この粉砕粉末に、A g * Ox(過
酸化銀)粉末を原子比で、x=0.01〜0.7、(Y
+ Bat  (Cut−x Agx )s 07−y
 )に加え、均等に拡販混合して十分にすり合せる■、
その後、シース材に充填し加工成形■後、950〜10
5G’Cx 10hr (酸素中)で一部溶融の焼結を
施こし■、炉冷する11.その際、加熱の過程でAg2
02は酸素を放出するが、シース材中において回りが密
封されており、さらに酸素との反応が起りにくい材料を
用いるのが一般的なので、シース材中で酸素過飽和の状
態になる。これら過飽和酸素は950〜1050℃で一
部溶融する銀に吸収される。又、この銀は酸化物から発
生離脱する酸素をも多量に吸蔵しうる。それ故、酸化物
中への銀の拡散、及び粒弄べ拡散した銀が酸素を保有し
ているので冷却の際の酸化物内への酸素の拡散に際して
酸素供給源として働き、十分なる酸素を供給することが
できる0以上の様な工程で作製したすンプルはTc、x
、ρ、組織、及び組成の分析等各11111I定に供さ
れた0組成比は原子比でY 20 s 。
After that, perform calcination in air at 900°C for 5 hours.
The baked powder is crushed again (■), then molded into a shape that is easy to sinter (■), and heated at 900 to 1000℃ x 10 hours (
After that, the sintered body is sintered in a furnace (50 ~ Silver) powder in atomic ratio, x = 0.01 to 0.7, (Y
+ Bat (Cut-x Agx)s 07-y
), mix evenly and thoroughly rub ■,
After that, after filling into the sheath material and processing and molding, 950~10
Partially melted and sintered with 5G'Cx 10 hr (in oxygen) 11. At that time, during the heating process Ag2
Although 02 releases oxygen, the surroundings are sealed in the sheath material, and since it is common to use a material that hardly reacts with oxygen, the sheath material becomes supersaturated with oxygen. These supersaturated oxygens are absorbed by the silver, which partially melts at 950-1050°C. Furthermore, this silver can also store a large amount of oxygen generated and released from oxides. Therefore, since the silver diffused into the oxide and the silver that has been dispersed through the grains contains oxygen, it acts as an oxygen supply source during the diffusion of oxygen into the oxide during cooling, and provides sufficient oxygen. Samples manufactured by 0 or more processes that can be supplied are Tc, x
, ρ, structure, and composition analysis, etc. The zero composition ratio subjected to each 11111I constant is Y 20 s in atomic ratio.

BaCo5 、Cub、Agt ofの粉末原料を使用
してY: Ba : (Cu十Ag)=1 : 2 : 3の比率
がTc−90°に付近を示す代表的な組成である。
Using powder raw materials of BaCo5, Cub, and Agt, the ratio of Y: Ba: (Cu + Ag) = 1: 2: 3 is a typical composition close to Tc - 90°.

第2図(a)(b)に、上記組成比のYBaCuO系の
破断面構造写真を示した。このサンダルは、900℃で
焼結したY+ Baz Cus 07−Fであり、代表
的な酸化物超電導体の組織を表わしている。
FIGS. 2(a) and 2(b) show photographs of the fracture surface structure of the YBaCuO system having the above composition ratio. This sandal is Y+ Baz Cus 07-F sintered at 900°C and represents a typical oxide superconductor structure.

この写真からも解る様にYBaCuOの組織は数μmの
結晶粒からなっており、結晶粒間には空間が見られる。
As can be seen from this photograph, the structure of YBaCuO consists of crystal grains of several μm in size, and spaces can be seen between the crystal grains.

この為、超電動特性はTc、xは単結晶と比較しても大
きな違いはないが、Lcは結晶粒界の為、103分の1
と非常に小さい、又化学的安定性も多孔性であり結晶粒
界に不純物及び化学量論比からずれた元素が集積しやす
く、拡散が不十分で変質しやすい組成及び結晶構造とな
っている。
For this reason, the superelectric properties Tc and x are not much different compared to single crystals, but Lc is 1/103 due to the grain boundaries.
It is very small in size, and has a porous chemical stability, so impurities and elements that deviate from the stoichiometric ratio tend to accumulate at grain boundaries, resulting in a composition and crystal structure that are susceptible to deterioration due to insufficient diffusion. .

本発明で作製したサンプルはAg2Oを粉末の添加効果
により焼結性、及び超電動特性Tc、xが改善され、多
孔質でなく緻密な組織となっている。
The sample produced according to the present invention has improved sinterability and superelectric properties Tc and x due to the effect of adding Ag2O powder, and has a non-porous and dense structure.

第3図に、電気抵抗の温度変化の代表的な例を示した0
組成は Y+ Bat  (Cua、a Ago、2)s 0t
−yである。
Figure 3 shows a typical example of temperature change in electrical resistance.
The composition is Y+ Bat (Cua, a Ago, 2)s 0t
-y.

縦軸の電気抵抗は4端子法で測定され、その測定条件は
電流値が100nAで電圧測定の分解能は1×10−’
Vである。試料温度は81半導体温度計を用いて測温さ
れた。サンプルは初め液体窒素に漬けることで77°に
が測定され、その後自然昇温により第3図に示した通り
約99°に付近で電気抵抗がゼロとなっており超電導体
であることを示している。又、電気抵抗は99°に以上
の温度域では温度の上昇と共に直線的に上昇して金属的
電気電導体の温度変化の性質を示している。
The electrical resistance on the vertical axis is measured using the 4-terminal method, and the measurement conditions are a current value of 100 nA and a resolution of voltage measurement of 1 x 10-'
It is V. Sample temperature was measured using an 81 semiconductor thermometer. The sample was first immersed in liquid nitrogen and measured at 77°, and then due to natural temperature rise, the electrical resistance became zero around 99° as shown in Figure 3, indicating that it was a superconductor. There is. In addition, the electrical resistance increases linearly as the temperature rises in a temperature range of 99° or higher, indicating the nature of temperature changes in metallic electrical conductors.

第4図はY B a Cu A g O系のTc(臨界
温度)付近の電気抵抗の温度変化の一例である0本発明
のTcの定義はTc O(onset TC:抵抗の9
0%)、Tcm (lid pornt Tc :抵抗
の50%)、Tce(end point Tc :抵
抗の90%)としている。
Figure 4 shows an example of the temperature change in electrical resistance near Tc (critical temperature) of the Y B a Cu A g O system.
0%), Tcm (lid port Tc: 50% of the resistance), and Tce (end point Tc: 90% of the resistance).

第5図は第4図で定義したTco、Tcm。FIG. 5 shows Tco and Tcm defined in FIG.

T c eについてA g 20□含有量を’1’+ 
Ba2 (CuI−g Agx )i 07−yのXを
0〜0.6まで変化させた時の結果を示したものである
。このサンプルは一部溶融させたサンプルである。x=
0.4付近まではTcに大きな変化は見られないが、x
=0.6ではTcは大幅に低下している。またx=0.
1の組成ではTcoとTceの間、つまり10〜90%
の温度幅がΔT=0.9°にとX=0のΔT=4゛にに
比較して大幅に低下している。
For T c e, A g 20□ content is '1' +
The results are shown when X of Ba2(CuI-gAgx)i07-y was varied from 0 to 0.6. This sample is a partially melted sample. x=
There is no major change in Tc up to around 0.4, but x
=0.6, Tc is significantly reduced. Also, x=0.
1 composition is between Tco and Tce, that is, 10 to 90%
The temperature range of ΔT=0.9° is significantly reduced compared to ΔT=4° for X=0.

このことはA g 20□粉末を添加することで焼結性
が向上し、酸素が十分に供給され、組成の不均質の改善
、及び構造が均一化された為である以上の様にA g 
x O2の添加により焼結性の改善、超電導特性の向上
、とくにΔT、Jcの改善に効果がある。
This is because the addition of A g 20□ powder improves sinterability, supplies sufficient oxygen, improves compositional heterogeneity, and makes the structure uniform.
The addition of xO2 is effective in improving sinterability and superconducting properties, especially in improving ΔT and Jc.

第6図には、 Y+ Ba2(Cul−x Agt )s 07−Fの
Jcの測定結果を示した。A g 202を添加するに
つれてJcが大幅に向上しているのがわかる。JcはA
g202の含有量、x=0.4まで上昇するがX=0.
5で急激に減少している。これは第5図のTcの低下の
為である。勿論、x=0.6ではTcは77°に以下と
なりJcは測定できない。
FIG. 6 shows the measurement results of Jc of Y+ Ba2(Cul-x Agt)s 07-F. It can be seen that as more A g 202 is added, Jc is significantly improved. Jc is A
The content of g202 increases to x=0.4, but when x=0.
5, there is a sharp decline. This is due to the decrease in Tc shown in FIG. Of course, when x=0.6, Tc is less than 77° and Jc cannot be measured.

以上より、Ag202の含有量がふえる程、Jcの向上
が確認された。もちろんYをLn(ランタノイド系)の
La、Ce、Pr、Nd、Pm。
From the above, it was confirmed that Jc improved as the content of Ag202 increased. Of course, Y is Ln (lanthanoid) La, Ce, Pr, Nd, Pm.

Sm、Eu、Gd、Td、Dy、Ho、Er。Sm, Eu, Gd, Td, Dy, Ho, Er.

Tm、Yb、Lu、又BaをSr、Caなどに置換して
も同一の効果があることは云うまでもない。
It goes without saying that the same effect can be obtained by replacing Tm, Yb, Lu, or Ba with Sr, Ca, or the like.

以上の結果から、本特許のAgi 02粉末を添加する
際の組成範囲としてx=0.01〜0.7に限定した。
Based on the above results, the composition range when adding the Agi 02 powder of this patent was limited to x=0.01 to 0.7.

Agt0.2がx<0.01ではJcの向上、及び加工
性の改善に効果がない、又Ag2o2がX〉0.7以上
では超電導を示さなくなるので範囲を限定した。
When Agt0.2 is x<0.01, there is no effect on improving Jc and workability, and when Ag2o2 is x>0.7 or more, superconductivity is not exhibited, so the range was limited.

勿論、常温付近にTcを有する常温超電導体にも適用し
うろことは明白である。
Of course, it is obvious that the present invention can also be applied to room-temperature superconductors having Tc near room temperature.

[発明の効果] 以上、述べてきた様に、本発明によればLn(Y)Ba
t   (Cut−xAgt)sow−yのAg20t
の含有量をx=o、01〜0.7まで添加することで、
焼結密度の向上、Tcの安定化、ΔTの低下、Jcの向
上、結晶構造の均一化、組成の均質化ができた0本発明
によりJcの高い、又加工性の良い酸化物超電導体を作
製することが可能となり線材への応用が可能となった。
[Effect of the invention] As described above, according to the present invention, Ln(Y)Ba
t (Cut-xAgt) sow-y Ag20t
By adding the content of x=o, from 01 to 0.7,
The present invention has improved sintered density, stabilized Tc, reduced ΔT, improved Jc, uniformed crystal structure, and homogenized composition.The present invention provides an oxide superconductor with high Jc and good workability. It became possible to fabricate it and apply it to wire rods.

4、発明の詳細な説明 第1図はY  Ba  Cu  O+Ag*O*粉末3
図はY+ B at  (Cu o、a Ago、* 
) s 0y−yの電気抵抗の温度変化相関図、第4図
はYHBa2 (Cuo、t Ago、s )v O?
−yの電気抵抗の温度変化相関図、第5図は Y+  Bai   (Cu  l−K  Agg  
)  s  07−F  のT c  o  。
4. Detailed explanation of the invention Figure 1 shows Y Ba Cu O+Ag*O* powder 3
The diagram shows Y+ B at (Cu o, a Ago, *
) s 0y-y electrical resistance temperature change correlation diagram, Figure 4 is YHBa2 (Cuo, t Ago, s ) v O?
Figure 5 shows the temperature change correlation diagram of electrical resistance of −y.
) T co of s 07-F.

Tcm、TceのA g 202含有量依存性相関図、
第6図はY+ Bat  (Cu l−K Agg )
 s 07−Fの77°にでの線材の臨界温度Jc(A
/aJ)相関図である。
A g 202 content dependence correlation diagram of Tcm and Tce,
Figure 6 is Y+ Bat (Cul-K Agg)
Critical temperature Jc (A
/aJ) is a correlation diagram.

第4図 第5図 Ag(x)Figure 4 Figure 5 Ag(x)

Claims (5)

【特許請求の範囲】[Claims] 1.L−B−Cu−O酸化物結晶粒(ここで、LはYを
含むランタノイド系元素、BはBa,Sr及びCaから
なるグループから選択された少なくとも一種以上の元素
を表す。)と、 Ag_2O_2を出発原料とするAg固溶体を含有し、
該Ag固溶体は前記酸化物結晶粒の少なくとも粒界近傍
に配置されていることを特徴とする Ag_2O_2含有酸化物超電導体。
1. L-B-Cu-O oxide crystal grains (here, L represents a lanthanoid element including Y, and B represents at least one element selected from the group consisting of Ba, Sr, and Ca), and Ag_2O_2 Contains an Ag solid solution using as a starting material,
An Ag_2O_2-containing oxide superconductor, wherein the Ag solid solution is arranged at least near grain boundaries of the oxide crystal grains.
2.第1の請求項記載のAg_2O_2含有酸化物超電
導体において、前記Ag_2O_2を、式、L_0_.
_5〜_1_._5−Ba_1_._0〜_3_._0
−(Cu_1_−_x−Ag_x)_1_._5〜_4
_._0−O_b_a_l(ただし、x=0.01〜0
.7である。)を実質的に満足する原子比を以て含有す
ることを特徴とするAg_2O_2含有酸化物超電導体
2. In the Ag_2O_2-containing oxide superconductor according to the first claim, the Ag_2O_2 is expressed by the formula L_0_.
_5~_1_. _5-Ba_1_. _0~_3_. _0
-(Cu_1_-_x-Ag_x)_1_. _5~_4
_. _0-O_b_a_l (where x=0.01~0
.. It is 7. ) in a substantially satisfying atomic ratio.
3.L−B−Cu−O酸化物結晶粒(ここで、LはYを
含むランタノイド系元素、BはBa,Sr及びCaから
なるグループから選択された少なくとも一種以上の元素
を表す。)を生成するための出発原料粉末を粉砕する第
1の粉砕工程と、該粉砕された出発原料粉末を仮焼して
仮焼粉末を生成する仮焼工程と、該仮焼粉末を粉砕して
、プレス用粉末を生成する第2の粉砕工程と、該プレス
用粉末をプレス成形してプレス体を生成するプレス工程
と、該プレス体を酸素雰囲気内で焼結して第1の焼結体
を生成する第1の焼結工程と、該第1の焼結体を粉砕す
る第3の粉砕工程と、該粉砕された第1の焼結体粉末に
、Ag_2O_2粉末を添加する添加工程と、該Ag_
2O_2粉末を添加した第1の焼結体粉末を、シース材
に充填後成形加工を施す成形工程と、該成形体を酸素雰
囲気内で焼結して、第2の焼結体を生成する第2の焼結
工程と、該第2の焼結体を徐冷する徐冷工程とを有する
ことを特徴とするAg_2O_2含有酸化物超電導体の
製造方法。
3. Generate L-B-Cu-O oxide crystal grains (where L represents a lanthanoid element including Y, and B represents at least one element selected from the group consisting of Ba, Sr, and Ca). a first pulverizing step of pulverizing a starting raw material powder for use in the production process; a calcination step of calcination of the pulverized starting material powder to produce a calcined powder; and a calcination step of pulverizing the calcined powder to produce a powder for pressing. a second pulverizing step to produce a pressed powder, a pressing step to press-form the pressing powder to produce a pressed body, and a first sintered body to be produced by sintering the pressed body in an oxygen atmosphere. 1 sintering step, a third pulverizing step of pulverizing the first sintered body, an addition step of adding Ag_2O_2 powder to the pulverized first sintered body powder, and the Ag_2O_2 powder.
A molding process in which a first sintered body powder containing 2O_2 powder is filled into a sheath material and then shaped, and a second sintered body is produced by sintering the molded body in an oxygen atmosphere. 1. A method for manufacturing an oxide superconductor containing Ag_2O_2, comprising a sintering step of step 2 and an annealing step of annealing the second sintered body.
4.第3の請求項記載のAg_2O_2含有酸化物超電
導体の製造方法において、前記添加工程におけるAg微
粒子の添加量は、式、 L_0_._5〜_1_._5−Ba_1_._0〜_
3_._0−(Cu_1_−_x−Ag_■)_1_.
_5〜_4_._0−O_b_a_l(但し、x=0.
07〜0.7である。) を満足する原子比を以て添加されることを特徴とするA
g_2O_2酸化物超電導体の製造方法。
4. In the method for manufacturing an Ag_2O_2-containing oxide superconductor according to the third claim, the amount of Ag fine particles added in the addition step is determined by the formula: L_0_. _5~_1_. _5-Ba_1_. _0〜_
3__. _0-(Cu_1_-_x-Ag_■)_1_.
_5~_4_. _0-O_b_a_l (However, x=0.
07 to 0.7. ) is added with an atomic ratio that satisfies
g_2O_2 oxide superconductor manufacturing method.
5.第3又は第4の請求項記載のAg_2O_2含有酸
化物超電導体の製造方法において、前記第2の焼結工程
は、実質的に950〜1050℃の焼結温度で、一部溶
融焼結を施すことを特徴とする Ag_2O_2含有酸化物超電導体の製造方法。
5. In the method for producing an oxide superconductor containing Ag_2O_2 according to claim 3, the second sintering step includes partially melting and sintering at a sintering temperature of substantially 950 to 1050°C. A method for producing an oxide superconductor containing Ag_2O_2, characterized in that:
JP63015821A 1988-01-28 1988-01-28 Ag2o3-containing oxide superconductor and production thereof Pending JPH01192760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63015821A JPH01192760A (en) 1988-01-28 1988-01-28 Ag2o3-containing oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63015821A JPH01192760A (en) 1988-01-28 1988-01-28 Ag2o3-containing oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH01192760A true JPH01192760A (en) 1989-08-02

Family

ID=11899517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63015821A Pending JPH01192760A (en) 1988-01-28 1988-01-28 Ag2o3-containing oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH01192760A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212221A (en) * 1988-02-18 1989-08-25 Chisso Corp Y-ba-cu-o oxide
JPH01215713A (en) * 1988-02-25 1989-08-29 Matsushita Electric Ind Co Ltd Production of superconductor
JPH02158015A (en) * 1988-12-12 1990-06-18 Sumitomo Heavy Ind Ltd Manufacture of oxide superconductive ceramic wire rod
JPH02175650A (en) * 1988-12-28 1990-07-06 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Superconductive material composition and production thereof
JPH0721855A (en) * 1991-12-09 1995-01-24 Chubu Electric Power Co Inc Manufacture of composite superconductor
JPH0840767A (en) * 1994-12-05 1996-02-13 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Superconducting material composition
JP2010120010A (en) * 2008-10-22 2010-06-03 Emuzu Kc:Kk Method for forming inorganic coating film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294569A (en) * 1987-11-12 1989-11-28 Philips Gloeilampenfab:Nv Superconductive matter and product thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294569A (en) * 1987-11-12 1989-11-28 Philips Gloeilampenfab:Nv Superconductive matter and product thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212221A (en) * 1988-02-18 1989-08-25 Chisso Corp Y-ba-cu-o oxide
JPH01215713A (en) * 1988-02-25 1989-08-29 Matsushita Electric Ind Co Ltd Production of superconductor
JPH02158015A (en) * 1988-12-12 1990-06-18 Sumitomo Heavy Ind Ltd Manufacture of oxide superconductive ceramic wire rod
JPH02175650A (en) * 1988-12-28 1990-07-06 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Superconductive material composition and production thereof
JPH0721855A (en) * 1991-12-09 1995-01-24 Chubu Electric Power Co Inc Manufacture of composite superconductor
JPH0840767A (en) * 1994-12-05 1996-02-13 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Superconducting material composition
JP2010120010A (en) * 2008-10-22 2010-06-03 Emuzu Kc:Kk Method for forming inorganic coating film

Similar Documents

Publication Publication Date Title
US4968663A (en) Ductile, single phase-continuous super-conducting oxide conductors
JPH01192760A (en) Ag2o3-containing oxide superconductor and production thereof
US5354535A (en) Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor
WO1991000622A1 (en) Silver doped superconductor composite
JPH04224111A (en) Rare earth type oxide superconductor and its production
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JPH01153525A (en) Oxide superconductor of ag fine particle-containing oxygen deficient triple structure perovskite type and production thereof
Polasek et al. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JP2931446B2 (en) Method for producing rare earth oxide superconductor
JPS63260853A (en) Superconductive material
JPH0248459A (en) Production of compound oxide superconductor
JP2785263B2 (en) Superconductor manufacturing method
JPH01133924A (en) Perovskite type oxide superconductor having silver-containing oxygen-defective triple structure
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
EP0436723B1 (en) Oxide superconductor and method of producing the same
JP2574173B2 (en) Superconducting wire manufacturing method
JP2545443B2 (en) Method for manufacturing oxide superconductor
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH01183450A (en) Production of formed oxide superconductor
JPH04317415A (en) Production of bi-based oxide superconductor
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JPH0640721A (en) Preparation of superconductive body with high critical electric current density