JP2010120010A - Method for forming inorganic coating film - Google Patents

Method for forming inorganic coating film Download PDF

Info

Publication number
JP2010120010A
JP2010120010A JP2009226204A JP2009226204A JP2010120010A JP 2010120010 A JP2010120010 A JP 2010120010A JP 2009226204 A JP2009226204 A JP 2009226204A JP 2009226204 A JP2009226204 A JP 2009226204A JP 2010120010 A JP2010120010 A JP 2010120010A
Authority
JP
Japan
Prior art keywords
water
charged
particles
silver
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009226204A
Other languages
Japanese (ja)
Inventor
Makoto Motojima
誠 本島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMUZU KC KK
Original Assignee
EMUZU KC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMUZU KC KK filed Critical EMUZU KC KK
Priority to JP2009226204A priority Critical patent/JP2010120010A/en
Priority to CN200910208273A priority patent/CN101722141A/en
Publication of JP2010120010A publication Critical patent/JP2010120010A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Silicon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming an inorganic coating film excellent in durability regardless of dispensing with wax or polymer processing. <P>SOLUTION: Raw water (a) is brought into contact with particles 14 comprising a ceramic material, which comprises an ore selected from one or more kinds of quartz porphyry, tourmaline and granite porphyry capable of eluting a silicon component and an aluminum component upon the contact with water and contains 50-80 wt.% of silicone 10-50 wt.% of aluminum, 1.0-10 wt.% of titanium and 1.0-9.0 wt.% of iron as chemical components, or particles each of which has a surface layer containing the ceramic material as a surface layer component, an exciting current is applied to the raw water (a) to elute the charged chemical components to thereby obtain charged water (b), this charged water (b) is subsequently introduced into and passed through an electromagnetic field to produce an induced current, the charged water (b) subjected to magnetic field treatment is next ejected on the surface of a work 33 or the work 33 is immersed in and brought into contact with the charged water (b) to form the inorganic coating film based on the oxide composed of the eluted components on the surface of the work 33. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車、鉄道車輌、船舶、航空機、家電製品などの他、眼鏡、アクセサリーなどの宝飾品にも用いられる鉄,アルミニウム、合成樹脂、ガラス、ゴム、陶磁器などの構成部材表面およびそれらの塗装面の保護を対象とした無機被膜形成方法に関する。   The present invention relates to the surface of components such as iron, aluminum, synthetic resin, glass, rubber, ceramics, and the like used for jewelry such as glasses, accessories, etc. in addition to automobiles, railway vehicles, ships, aircraft, home appliances, etc. The present invention relates to a method for forming an inorganic coating for protecting a painted surface.

従来、自動車、鉄道車輌、船舶、航空機など屋外で用いられる前記構成部材の表面は、埃、煤塵、虫などが付着しやすく、常時清掃が必要であった。これら装置表面には、通常、ワックス、ポリマ加工など表面被膜で被覆、保護しているものの、それら材料は有機質精製品であるため環境汚染源となることが指摘されている。   Conventionally, dust, dust, insects, and the like are likely to adhere to the surfaces of the constituent members used outdoors such as automobiles, railway vehicles, ships, and airplanes, and always have to be cleaned. Although the surface of these devices is usually coated and protected with a surface coating such as wax or polymer processing, it has been pointed out that these materials are organic products and become environmental pollution sources.

また、これら保護被膜は、紫外線などによって風化の影響を受けやすく、塗膜の褪色、光沢の低下など外観や機能が低下する弱点があり、さらに保護被膜自体が軟質なため加傷を受けやすく、外観の保護は十分でなかった。このため、頻繁にワックスやポリマ加工を繰り返す必要があって、材料コスト、工数を要するという問題もあった。さらに、眼鏡、宝飾品、鏡など人が接する生活品では、その表面が曇り易く、付着した油脂分が除去し難いなどの問題もあった。   In addition, these protective coatings are easily affected by weathering due to ultraviolet rays, etc., and have weaknesses such as fading and gloss deterioration of the coating and deterioration in appearance and function, and further, the protective coating itself is soft and easily damaged. Appearance protection was not enough. For this reason, it is necessary to frequently repeat the wax and polymer processing, and there is a problem that material costs and man-hours are required. Furthermore, daily goods such as eyeglasses, jewelry, and mirrors have a problem that the surface is easily cloudy and it is difficult to remove the attached oil and fat.

このような問題に対処するものとして、トルマリンの発生する電荷による電着作用でホウ酸シリカ被膜を形成させる手法が提案されている(特許文献1を参照)。しかし、この方法で得られる保護被膜は被膜耐久性の点で未だ十分とは言えなかった。
さらに、本件出願の発明者は、特許文献2に示すような、新しい無機被膜形成方法およびその装置の発明(以下、先行発明という)を提案した。そして、この技術を基にして無機被膜が高品質で安定して得られるよう改善を行い、また機能をさらに高めるための開発を行ってきた。
In order to cope with such a problem, a method of forming a silica borate film by an electrodeposition action by a charge generated by tourmaline has been proposed (see Patent Document 1). However, the protective coating obtained by this method has not been sufficient in terms of coating durability.
Furthermore, the inventor of the present application has proposed a novel inorganic film forming method and an apparatus thereof (hereinafter referred to as a prior invention) as shown in Patent Document 2. Based on this technology, we have made improvements so that inorganic coatings can be obtained stably with high quality, and have developed to further enhance the functions.

特開2000−192086号公報Japanese Patent Laid-Open No. 2000-192086 特許第3948671号公報Japanese Patent No. 3948671

本発明は、上記の問題点を解決するためになされたものであり、自動車、鉄道車輌、船舶、航空機など屋外部材の表面を保護するための、耐久性にすぐれ、低コストな無機被膜を実現でき、従来のワックスやポリマ加工を不要にし、汚染抑制、環境保全に寄与することができるという先行発明と同様なメリットがあるうえ、さらに、高品質の無機被膜が安定して得られること、無機被膜の光輝・光沢性能、防曇性など表面性を改質すること、電荷水の除菌性など自然生態系に対する安全性を高めることなどの改善が可能な無機被膜形成方法を提供するものである。   The present invention has been made to solve the above-described problems, and realizes an inorganic coating having excellent durability and low cost for protecting the surface of an outdoor member such as an automobile, a railway vehicle, a ship, and an aircraft. In addition to having the same advantages as the prior invention that can eliminate the need for conventional wax and polymer processing, contribute to pollution control and environmental conservation, and furthermore, a high-quality inorganic coating can be stably obtained. It provides an inorganic film formation method that can improve the surface properties such as brightness and gloss performance and anti-fogging properties of coatings, and improve safety against natural ecosystems such as sterilization of charged water. is there.

そして、本発明は、前記先行発明をベースにしており、その課題解決のため被膜形成液中の特定の溶出化学成分に着目したものであり、具体的には、その溶出成分の基になる素材の化学組成が特定の値の場合に、安定して高い値の被膜機能が得られるという知見に基づいている。   And this invention is based on the said prior invention, and paid its attention to the specific elution chemical component in a film formation liquid for the solution of the subject, Specifically, the raw material used as the basis of the elution component This is based on the finding that when the chemical composition has a specific value, a high-value film function can be obtained stably.

上記の問題は、水と接触して珪素成分とアルミニウム成分を溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の選択された鉱石を素材としてなり、化学組成として珪素50〜80%(質量%、以下同様)、アルミニウム10〜50%、チタニウム1.0〜10%、鉄1.0〜9.0%を含むセラミック材の粒子またはそれらセラミック材を表層成分とした表層を有する粒子に原水を接触させ、この原水に電荷を帯びた前記化学成分を励起電流とともに溶出させて電荷水となし、次いでその電荷水を電磁界内に導入、通過させ誘導電流を発生させた後、その磁界処理を行った電荷水をワーク表面に噴射またはワークをこの電荷水に浸漬して接触させて、そのワーク表面に前記溶出成分の酸化物を主成分とする無機被膜を形成することを特徴とする本発明の無機被膜形成方法によって、解決することができる。   The above-mentioned problems are caused by the use of one or more selected ores selected from quartz porphyry, tourmaline, and barley stone that can elute silicon and aluminum components in contact with water. Ceramic particles containing 50 to 80% silicon (mass%, the same applies hereinafter), aluminum 10 to 50%, titanium 1.0 to 10%, iron 1.0 to 9.0%, or the ceramic material as surface layer components The raw water is brought into contact with the particles having the surface layer, and the chemical component charged with this raw water is eluted together with the excitation current to form charged water, and then the charged water is introduced into and passed through the electromagnetic field to induce an induced current. After being generated, the charged water subjected to the magnetic field treatment is sprayed on the surface of the work or the work is immersed in the charged water and brought into contact with the work surface to form an inorganic coating mainly composed of the oxide of the eluted component on the work surface. form An inorganic film forming method of the present invention which is characterized in that, can be solved.

なお、本発明における化学組成(質量%)は、構成元素のうち酸素を除外した構成元素の含有量を100%とした場合の値で示している。以下の説明でも、酸化物として明記した場合を除き、同様である。   In addition, the chemical composition (mass%) in this invention is shown by the value at the time of setting content of the structural element which excluded oxygen among the structural elements as 100%. In the following description, the same applies except when it is explicitly described as an oxide.

そして本発明は、被膜機能を改質するため、前記セラミック材には、銀を0.01〜0.5%含有させた形態に具体化でき、さらに、前記銀が方鉛鉱、輝銀鉱、およびまたは、角銀鉱から精錬、抽出したものである形態に好ましく具体化できる。   And, in order to modify the coating function of the present invention, the ceramic material can be embodied in a form containing 0.01 to 0.5% of silver, and further, the silver is galena, pyroxenite, And / or can be preferably embodied in a form that is refined and extracted from horned silver ore.

本発明の無機被膜形成方法は、以上説明したように構成されており、これから得られる処理水によって得られる無機被膜は、次の特徴的原理に基づいている。
本発明によって得られる無機被膜は、前記セラミック材の粒子またはそれらセラミック材を表層成分とした表層を有する粒子の溶出成分から構成されるSiO−Al−TiO系の鉱石(ストーン)被膜であり、副成分として、酸化鉄(FeOと総称する)を有し、さらに、酸化銀を付加させることもできる。さらに酸化マグネシウム(MgO)、酸化カルシウム(CaO)などを付随成分として含むことがある。そして、これら被膜はナノメータ・レベルの超薄膜型メッキの性格を備えており、電気化学反応メッキの性格も備えている。
The inorganic film forming method of the present invention is configured as described above, and the inorganic film obtained from the treated water obtained therefrom is based on the following characteristic principle.
The inorganic coating obtained by the present invention is a SiO 2 —Al 2 O 3 —TiO 2 -based ore composed of particles of the ceramic material or an elution component of particles having a surface layer made of the ceramic material. It is a film, has iron oxide (collectively referred to as FeO) as a subcomponent, and silver oxide can also be added. Furthermore, magnesium oxide (MgO), calcium oxide (CaO), etc. may be included as an accompanying component. These coatings have the characteristics of ultra-thin type plating at the nanometer level, and also have the characteristics of electrochemical reaction plating.

かくして、本発明の無機被膜形成方法によれば、得られる無機被膜は、SiO−Al−TiO、FeO被膜の場合、低コストと優れた耐久性を実現して、従来のワックスやポリマ加工を不要にする他、汚染物質自体を分解して除去できる光触媒機能や、高光沢性、親水性、防曇性など有益な表面改質が期待できる。さらに、酸化銀(AgO)を含む被膜では、除菌性が付与されて生態系により好ましいものとなる。かくして、本発明は、従来の問題点を解消した無機被膜形成装置として、実用的価値はきわめて大なるものがある。 Thus, according to the inorganic film forming method of the present invention, when the obtained inorganic film is SiO 2 —Al 2 O 3 —TiO 2 , FeO film, the conventional wax is realized with low cost and excellent durability. In addition to eliminating the need for polymer processing, the photocatalytic function that decomposes and removes contaminants, and useful surface modification such as high gloss, hydrophilicity, and antifogging properties can be expected. Furthermore, a coating film containing silver oxide (AgO) is given more sterilization properties and is more preferable for the ecosystem. Thus, the present invention has an extremely large practical value as an inorganic film forming apparatus that has solved the conventional problems.

本発明を説明するための主要な装置の模式的ブロック図。The typical block diagram of the main apparatuses for demonstrating this invention. 噴射圧力と被膜厚さの関係を示すグラフ。The graph which shows the relationship between an injection pressure and a film thickness. 処理時間と被膜厚さの関係を示すグラフ。The graph which shows the relationship between processing time and film thickness. 処理面の反射率を示すグラフ。The graph which shows the reflectance of a process surface. 処理面の摩擦係数を示すグラフ。The graph which shows the friction coefficient of a process surface. 処理面の表面硬度を示すグラフ。The graph which shows the surface hardness of a process surface. 処理面の光電子分析(ESCA)結果を示すグラフ。The graph which shows the photoelectron analysis (ESCA) result of a process surface. 処理面の汚染分解性を示すグラフ。The graph which shows the decomposability | degradability of a process surface. 磁界処理の効果を示すグラフ。The graph which shows the effect of magnetic field processing. 電荷水中の鉄分とセラミック材の鉄分との関係を示すグラフ。The graph which shows the relationship between the iron content of charge water, and the iron content of a ceramic material. 屋外曝露における光沢度の変化を示すグラフ。The graph which shows the change of the glossiness in outdoor exposure. Si量、Al量と光沢度の関係を示すグラフ。The graph which shows the relationship between Si amount, Al amount, and glossiness. 超音波処理前後の接触角の変化を示すグラフ。The graph which shows the change of the contact angle before and behind ultrasonication. 超音波照射と活性酸素の関係を示すグラフ。The graph which shows the relationship between ultrasonic irradiation and active oxygen.

次に、本発明の無機被膜形成方法に係る実施形態について、図1〜8、図9〜13を参照しながら説明する。
先ず、図1は、本発明に用いられる無機被膜形成装置の原理を示し、その基本的な構成は、電荷水を生成する電荷水生成槽1、電荷水を磁界処理する磁界処理槽2、ワーク表面に磁界処理水を接触させ、無機被膜を形成させる被膜形成槽3とから少なくとも構成され、この点は先行発明と同様である。
Next, an embodiment according to the inorganic film forming method of the present invention will be described with reference to FIGS. 1 to 8 and FIGS.
First, FIG. 1 shows the principle of an inorganic coating film forming apparatus used in the present invention. The basic configuration is a charged water generating tank 1 that generates charged water, a magnetic field processing tank 2 that magnetically processes the charged water, and a workpiece. It is comprised at least from the film formation tank 3 which makes the surface contact magnetic-field-treated water and forms an inorganic film, and this point is the same as that of a prior invention.

(電荷水生成槽)
この電荷水生成槽1は、水道水や井水などの原水aを導入する原水供給口11と処理後の電荷水bを取り出す電荷水取出し口12を備え、その内部に水と接触して少なくとも珪素、アルミニウム、チタニウム、鉄成分を溶出成分として溶出するするセラミック材からなる無数の粒子(以下、この粒子と、それらセラミック材を表層成分とした表層を有する粒子とを総称して、単にセラミック粒子14という)を装填したセラミック粒子装填部13から構成されている。
(Charged water generation tank)
This charged water generation tank 1 is provided with a raw water supply port 11 for introducing raw water a such as tap water and well water, and a charged water outlet 12 for taking out treated water b, and is in contact with the water at least. Innumerable particles made of ceramic material that elutes silicon, aluminum, titanium, and iron components as eluting components (hereinafter, these particles and particles having surface layers made of these ceramic materials as a surface layer component are simply referred to as ceramic particles. 14), and the ceramic particle loading unit 13 is loaded.

このセラミック粒子14は、下記化学組成を持つSiO−Al−TiO系セラミック材からなる粒径3〜10mmの略球形粒子が適当であるが、後記する電荷水の生成効率を高めるには、石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の選択された鉱石を素材として50%以上含有させたセラミック材から構成されるのがより好ましい。そして、このセラミック材は、化学組成(酸化物換算)として珪素50〜80%(質量%、以下同様)、アルミニウム10〜50%、チタニウム1.0〜10%、鉄1.0〜9.0%を含むことが重要であり、これらの範囲を外れると好ましい無機被膜を形成することができない。 The ceramic particles 14 are suitably spherical particles having a particle diameter of 3 to 10 mm made of a SiO 2 —Al 2 O 3 —TiO 2 ceramic material having the following chemical composition, but increase the generation efficiency of charged water described later. More preferably, it is composed of a ceramic material containing 50% or more of one or more selected ores selected from quartz porphyry, tourmaline, and barleystone. This ceramic material has a chemical composition (as oxide) of 50 to 80% silicon (mass%, the same applies hereinafter), aluminum 10 to 50%, titanium 1.0 to 10%, iron 1.0 to 9.0. % Is important, and if it is out of these ranges, a preferred inorganic film cannot be formed.

前記石英斑岩、電気石、麦飯石は天然鉱石であり、その種類も多く存在するが代表的なものについて解説する。
先ず、石英斑岩は、火山岩である花崗岩類似の鉱物構成を持ち、石英、長石を主とし黒雲母など副成分を10%内外含み、その化学組成の一例は、SiO:77%、Al:13% NaKO:8% 、その他TiO、Fe、MgOなど1%以下含む、である。
また、電気石(トルマリン)は、一般化学式は、(Ca/Na)(Mg/Fe2+/Fe3+/Al/Li)Al(BO(Si18)(OH、F) で表されるが、(Mg/Fe2+/Fe3+/Al/Li)中の特定成分が主成分となる場合には、例えば、Mgが主の場合に「苦土電気石」、鉄が主となると「鉄電気石」と呼ばれる。
麦飯石は、花崗岩が風化したもので、その化学組成の一例は、SiO:66%、Al:16% NaKO:6%、その他Fe:2%、CaO:3%、MgO:1%などからなる。
Quartz porphyry, tourmaline, and barleystone are natural ores, and there are many types of them.
First, quartz porphyry has a mineral composition similar to granite, which is a volcanic rock. It mainly contains quartz and feldspar, and contains 10% of minor components such as biotite. An example of the chemical composition is SiO 2 : 77%, Al 2. O 3 : 13% NaKO: 8%, other TiO 2 , Fe 2 O 3 , MgO, etc. 1% or less.
Further, tourmaline (tourmaline) has a general chemical formula of (Ca / Na) (Mg / Fe 2+ / Fe 3+ / Al / Li) 3 Al 6 (BO 3 ) 3 (Si 6 O 18 ) (OH, F) In the case where the specific component in (Mg / Fe 2+ / Fe 3+ / Al / Li) is the main component, for example, when “Mg” is the main component, Mainly called “iron tourmaline”.
Barley stone is weathered granite, and examples of its chemical composition are SiO 2 : 66%, Al 2 O 3 : 16% NaKO: 6%, other Fe 2 O 3 : 2%, CaO: 3%, MgO: 1% or the like.

本発明のセラミック材およびセラミック粒子は次のような手順で製作することができる。
石英斑岩、電気石、麦飯石から選択された鉱石を粒径0.1mm以下に粉砕して鉱石粉砕物とし、これを調湿し、造粒機で粒径3〜10mm程度で球形、柱形状など適宜な立体形状に造粒する。そのその造粒物を乾燥後、加熱炉で焼結する。焼結の程度は、前記電荷水生成槽1に装填するなどの取り扱いで破損しない程度に焼結させるが、吸水率5%以上を保持する多孔質とするのがより好ましい。
The ceramic material and ceramic particles of the present invention can be produced by the following procedure.
An ore selected from quartz porphyry, tourmaline, and barley stone is pulverized to a particle size of 0.1 mm or less to obtain an ore pulverized product. Granulate into an appropriate three-dimensional shape such as shape. The granulated product is dried and then sintered in a heating furnace. The degree of sintering is such that it is not damaged by handling such as loading into the charged water generation tank 1, but it is more preferable to use a porous material that maintains a water absorption of 5% or more.

そして、このセラミック粒子は、石英斑岩、電気石、麦飯石から選択された鉱石だけで構成してもよいが、それら鉱石に適宜な成形助剤(粘土類)、増量剤(珪砂、シャモットなど)、焼結バインダ(長石、ガラス粉など)を添加してもよい。その場合は、本発明の作用効果を確実ならしめるためには選択された前記鉱石が50%以上を占めることが重要である。そして、それらセラミック粒子の化学組成(酸化物換算)として珪素50〜80%(質量%、以下同様)、アルミニウム10〜50%、チタニウム1.0〜10%、鉄1.0〜9.0%を含むことが重要である。   The ceramic particles may be composed only of ores selected from quartz porphyry, tourmaline, and barleystone, but suitable ore forming aids (clays), extenders (silica sand, chamotte, etc.) ), A sintered binder (feldspar, glass powder, etc.) may be added. In that case, it is important that the selected ore occupies 50% or more in order to ensure the effects of the present invention. And as a chemical composition (as oxide) of these ceramic particles, silicon 50 to 80% (mass%, the same applies hereinafter), aluminum 10 to 50%, titanium 1.0 to 10%, iron 1.0 to 9.0% It is important to include

なお、前記石英斑岩、電気石、麦飯石から選択された鉱石から、前記化学組成が構成できない場合、不足する成分については、別途添加する必要がある。通常、チタニウム1.0〜10%、鉄1.0〜9.0%は、選択された鉱石からは十分に得られないので、この鉱石の粉砕前または粉砕後に、酸化チタンまたは酸化鉄の形態の要量を添加・混合することで目的の化学組成が得られる。   In addition, when the said chemical composition cannot be comprised from the ore selected from the said quartz porphyry, tourmaline, and barleystone, it is necessary to add separately about the component which is insufficient. Usually, 1.0 to 10% titanium and 1.0 to 9.0% iron are not sufficiently obtained from the selected ore, so the form of titanium oxide or iron oxide before or after grinding the ore. The desired chemical composition can be obtained by adding and mixing the required amount.

さらに、チタニウム、鉄成分の添加方法として好ましい手法を説明する。
焼結前または焼成後の多孔質の鉱石造粒粒子に可溶性チタニウム、可溶性鉄の水溶液、例えば、硝酸チタニウム、硝酸鉄などの適宜濃度の水溶液を含浸させ、加熱、分解すれば、造粒粒子の表面から中央部分に向けてその気孔内に微細なチタニウム、鉄の酸化物を露出させて分散させて保持させることができる。この手法によれば、添加量のほぼ全量が水と接触可能な状態で分散していることから、酸化チタンまたは酸化鉄を単純に混合した場合に較べて溶出し易く、各成分に基づく被膜性能の改質に効果的を寄与することができる。
Furthermore, a preferred method for adding titanium and iron components will be described.
If the porous ore granulated particles before sintering or after firing are impregnated with an aqueous solution of soluble titanium or soluble iron, for example, an aqueous solution of an appropriate concentration such as titanium nitrate or iron nitrate, and heated and decomposed, Fine titanium and iron oxides can be exposed and dispersed in the pores from the surface toward the central portion. According to this method, almost all of the added amount is dispersed in a state where it can be contacted with water, so that it is easier to elute compared with the case of simply mixing titanium oxide or iron oxide, and the coating performance based on each component. It is possible to contribute effectively to the reforming.

また、本発明の所定の化学組成のセラミック粒子を得るには、予め化学組成のうち特定の元素、例えば、珪素、アルミニウム、チタニウム、鉄などの含有量を変化させて焼結したセラミック粒子を適当な種類に準備し、それらを所定の化学組成になるよう、組み合せて混合するようにしてもよい。このような混合するための組成を持った事例であるセラミック粒子1〜3を、次の表1に示しておく。このような方法によれば、実用に供するセラミック粒子の化学組成を所望の範囲のものに、容易に設定することができる。   In order to obtain ceramic particles having a predetermined chemical composition according to the present invention, ceramic particles sintered in advance by changing the content of a specific element of the chemical composition, for example, silicon, aluminum, titanium, iron, etc. They may be prepared in various types, and may be combined and mixed so as to have a predetermined chemical composition. Table 1 shows ceramic particles 1 to 3 which are examples having such a composition for mixing. According to such a method, the chemical composition of ceramic particles for practical use can be easily set within a desired range.

Figure 2010120010
Figure 2010120010

なお、本発明のセラミック粒子は、前記した特定の化学組成を持つセラミック材を表層成分とした表層を有する粒子、つまり表層と芯部とが成分を異なる複数の層構造の粒子に具体化してもよい。この場合、溶出成分は表層部分から供給されることになるので、原材料コストを低減できる利点がある。なお、この表層部分は、前記の選択された鉱石50%以上含み、かつ前記の化学組成をもつことが要求されるのは言うまでもない。   The ceramic particles of the present invention may be embodied as particles having a surface layer composed of a ceramic material having a specific chemical composition as described above, that is, particles having a plurality of layer structures in which the surface layer and the core have different components. Good. In this case, since the eluted component is supplied from the surface layer portion, there is an advantage that the raw material cost can be reduced. Needless to say, the surface layer portion is required to contain 50% or more of the selected ore and have the chemical composition.

また、本発明では、被膜性能を改質し、除菌性能を付与するために、前記セラミック粒子の少なくとも表面部分に銀を含有させることが好ましい。この場合、銀の含有量は0.1%未満ではその効果が希薄であり、0.5%超えでは含有量の割にはその効果が向上しないので、含有量は0.1〜0.5%で十分である。   In the present invention, it is preferable that silver is contained in at least the surface portion of the ceramic particles in order to improve the coating performance and to provide sterilization performance. In this case, if the silver content is less than 0.1%, the effect is dilute, and if it exceeds 0.5%, the effect does not improve for the content. % Is sufficient.

また、この銀成分は、選択された鉱石に金属銀を混合して粉砕するようにしてもよいが、前記したチタニウム、鉄の場合のように、焼結前または焼成後の造粒粒子に銀塩水溶液、例えば、硝酸銀、塩化銀、酢酸銀などの適宜濃度の水溶液を含浸させ、加熱、分解すれば、セラミック粒子の表面から芯にかけて、その気孔内に微細な酸化銀を露出させて分散させて保持させるのが好ましい。かくして、分散させた銀が他の成分で覆われることがないので、添加量の全量が溶出可能となるので、比較的少ない銀の含有量で前記被膜性能の改質に効果的を寄与することができる。   The silver component may be pulverized by mixing metallic silver with the selected ore. However, as in the case of titanium and iron described above, silver is added to the granulated particles before sintering or after firing. When impregnated with an aqueous solution of salt, for example, silver nitrate, silver chloride, silver acetate or the like, and heated and decomposed, the fine silver oxide is exposed and dispersed in the pores from the surface of the ceramic particles to the core. It is preferable to hold it. Thus, since the dispersed silver is not covered with other components, all the added amount can be eluted, so that it contributes to the improvement of the film performance with a relatively small silver content. Can do.

また、この方法によれば、銀の含有量を簡単に調節できる利点がある。銀含有量は、対象となるセラミック粒子に対する銀塩水溶液の含浸量に比例する、また銀塩水溶液の濃度にも比例するという関係があるから、銀塩水溶液の濃度あるいは含浸量を制御することで、セラミック粒子の銀含有量を調整することができる。
なお、前記銀が方鉛鉱、輝銀鉱、およびまたは、角銀鉱から精錬、抽出したものであるが好ましい。
Further, this method has an advantage that the silver content can be easily adjusted. The silver content is proportional to the amount of silver salt aqueous solution impregnated in the target ceramic particles, and is also proportional to the concentration of silver salt aqueous solution, so by controlling the concentration of silver salt aqueous solution or the amount of impregnation The silver content of the ceramic particles can be adjusted.
In addition, it is preferable that the silver is refined and extracted from galena, bright silver ore, and / or square silver ore.

そして、これらセラミック粒子は、原水供給口11から送入された原水aが該セラミック粒子14に接触しながら通過可能な状態にセラミック粒子装填部13に装填されている。例えば、原水aの水流によってセラミック粒子14が流動し撹拌され、セラミック粒子14と原水aとが十分に接触するのが好ましいので、その場合には、セラミック粒子14は流動可能に装填されるのがよい。   These ceramic particles are loaded in the ceramic particle loading unit 13 so that the raw water a fed from the raw water supply port 11 can pass while contacting the ceramic particles 14. For example, it is preferable that the ceramic particles 14 flow and be agitated by the water stream of the raw water a, and the ceramic particles 14 and the raw water a are in sufficient contact with each other. In this case, the ceramic particles 14 are loaded in a flowable manner. Good.

この電荷水生成槽1では、原水aが前記した鉱石成分を含むセラミック粒子14に接触すると瞬間的に水中に放電され、その励起電流とともに、セラミック粒子14から少なくとも珪素、アルミニウム、チタニウム、鉄の溶出成分が、電荷を帯びた状態で溶出して活性化した電荷水bが得られる。この励起電流は、前記セラミック粒子14から半永久的に得られるもので、本発明により得られる無機被膜形成のための主要な起動力となっているのである。   In the charged water generation tank 1, when the raw water a comes into contact with the ceramic particles 14 containing the ore component described above, the water is instantaneously discharged into the water, and together with the excitation current, at least silicon, aluminum, titanium and iron are eluted from the ceramic particles 14. Charged water b in which the components are eluted and activated in a charged state is obtained. This excitation current is obtained semipermanently from the ceramic particles 14 and is the main starting force for forming the inorganic coating obtained by the present invention.

(磁界処理槽)
次に、磁界処理槽2は、前記電荷水生成槽1で得られた電荷水bを送り込む電荷水送入口21と磁界処理水cを取り出す磁界処理水取出し口22を備え、内部に電磁界を形成するS極23aおよびN極23bとを配置し、その間に電荷水bの通過水路24を設けて構成される。
この磁界処理槽2においては、電荷を帯びた前記電荷水bをS極23aとN極23bとで形成される電磁界内に導入し、その通過水路24を通過させれば、ファラデーの法則によって所定の誘導電流が発生し、電荷水bは、より活性化した磁界処理水cとして取り出される。この磁界処理の目的には、この電磁界の強度を0.10〜0.80mGに設定するのが好ましく、より好ましくは0.30〜0.80mGに設定するのがよい。このような条件は先行発明と全く同様である。
(Magnetic field treatment tank)
Next, the magnetic field treatment tank 2 includes a charged water inlet 21 through which the charged water b obtained in the charged water generation tank 1 is fed, and a magnetic field treated water outlet 22 through which the magnetic field treated water c is taken out. The S pole 23a and the N pole 23b to be formed are arranged, and a passage water passage 24 for the charged water b is provided between them.
In the magnetic field treatment tank 2, if the charged water b having a charge is introduced into an electromagnetic field formed by the S pole 23a and the N pole 23b and allowed to pass through the passage water channel 24, Faraday's law is applied. A predetermined induced current is generated, and the charge water b is taken out as more activated magnetic field treated water c. For the purpose of this magnetic field treatment, the intensity of the electromagnetic field is preferably set to 0.10 to 0.80 mG, more preferably 0.30 to 0.80 mG. Such conditions are exactly the same as in the prior invention.

この場合、この磁界処理を行わなくても、前記電荷水によりある程度の無機被膜が得られるものの、磁界処理を行った場合は、特に被膜形成の安定性、形成被膜の耐久性などの点で好ましい結果が得られため、本発明ではこの磁界処理槽は省くことのできない重要な装置である。   In this case, even if this magnetic field treatment is not performed, a certain amount of inorganic film can be obtained with the charged water, but when the magnetic field treatment is performed, it is particularly preferable in terms of the stability of film formation and the durability of the formed film. Since a result is obtained, in the present invention, this magnetic treatment tank is an important device that cannot be omitted.

(被膜形成槽)
次ぎに、本発明における被膜形成槽3は、前記磁界処理槽2で得られた磁界処理水cを送り込む磁界処理水送入口31と処理排水dを取り出す処理排水取出し口32を備え、槽内に配置したワーク33の表面に磁界処理水cを接触させる手段として、図1の事例では、ワーク33表面に加圧した磁界処理水cを噴射するノズル34を備えている。
(Film formation tank)
Next, the film formation tank 3 in the present invention includes a magnetic field treatment water inlet 31 for feeding the magnetic field treatment water c obtained in the magnetic field treatment tank 2 and a treatment waste water outlet 32 for taking out the treatment waste water d. As a means for bringing the magnetic field treated water c into contact with the surface of the workpiece 33 arranged, in the example of FIG. 1, a nozzle 34 that ejects the pressurized magnetic field treated water c to the surface of the workpiece 33 is provided.

この被膜形成槽3では、ワーク33表面に磁界処理水cが接触することにより、磁界処理水c中の少なくとも珪素、アルミニウム、チタニウム、マグネシウム、鉄の各溶出成分が、カソード還元析出に準じた電気化学的反応によって、ワーク33表面に無機被膜を形成するのである。なお、この無機被膜は、光電子分析(ESCA)の結果、珪素、アルミニウム、チタニウム、マグネシウム、鉄の溶出成分の酸化物を主成分とし、それぞれの酸化物が結合したSiO−Al−TiO、MgO、FeO系のガラス状被膜であることが判明している。 In the coating film forming tank 3, when the magnetic field treated water c comes into contact with the surface of the work 33, at least each elution component of silicon, aluminum, titanium, magnesium, and iron in the magnetic field treated water c is an electric material according to cathode reduction deposition. An inorganic coating is formed on the surface of the work 33 by a chemical reaction. As a result of photoelectron analysis (ESCA), this inorganic coating is mainly composed of oxides of elution components of silicon, aluminum, titanium, magnesium, and iron, and SiO 2 —Al 2 O 3 — bonded with the respective oxides. It has been found to be a TiO 2 , MgO, FeO-based glassy coating.

このような、被膜形成には、ワーク33を磁界処理水c中に浸漬するような方法ももちろん可能であるが、図1に例示するような噴射ノズルを用いて、ワーク33表面全体に加圧した磁界処理水cを噴射するのが好ましい。その理由は、ノズル34から噴射して衝撃を与えると、衝撃電流が発生し、被膜形成の効率を向上させるからである。   For such film formation, a method of immersing the work 33 in the magnetic field treated water c is of course possible, but the entire surface of the work 33 is pressurized using an injection nozzle as illustrated in FIG. It is preferable to spray the magnetic field treated water c. The reason is that when an impact is applied by spraying from the nozzle 34, an impact current is generated and the efficiency of film formation is improved.

本発明においては、前記した励起電流、誘導電流、衝撃電流の総和を0.05〜0.07mAに保持するのが好ましい。その理由は、後述のような耐久性にすぐれた無機被膜が確実に形成されるからである。   In the present invention, the sum of the excitation current, the induction current, and the impact current described above is preferably maintained at 0.05 to 0.07 mA. The reason is that an inorganic coating having excellent durability as described later is reliably formed.

次に、本発明における無機被膜の特性の一部を図2〜9および図10に示す。これら特性では先行発明の場合と実質的に差異のないことが判った。
すなわち、図2に示す前記噴射圧力と得られる被膜の厚さの関係によれば、10〜500N/cmの圧力範囲において膜厚は10〜60nmの範囲でほぼ安定して得られることが分った。(図中の複数の〇印は被膜形成条件を変えた場合を示す。図3も同様)
Next, some of the characteristics of the inorganic coating in the present invention are shown in FIGS. It has been found that these characteristics are not substantially different from those of the prior invention.
That is, according to the relationship between the spray pressure shown in FIG. 2 and the thickness of the coating film obtained, it is found that the film thickness can be obtained almost stably in the range of 10 to 60 nm in the pressure range of 10 to 500 N / cm 2. It was. (Several circles in the figure indicate the case where the film forming conditions are changed. The same applies to FIG. 3)

また、図3に示す被膜形成槽3の処理時間と得られる被膜の厚さの関係によれば、瞬間的な1秒前後でも厚さ10〜100nmの被膜は得られるが、10〜60nmの安定な被膜を得るには10秒以上が好ましく、なお、60秒以上は経済的でなく不要である。また、前記電荷水を前記被膜形成に供するに際し本発明の被膜形成槽3における、処理液の温度を30〜50℃に保持するが好ましい。   Further, according to the relationship between the treatment time of the film forming tank 3 shown in FIG. 3 and the thickness of the obtained film, a film having a thickness of 10 to 100 nm can be obtained even for about 1 second, but the stability of 10 to 60 nm is obtained. In order to obtain a satisfactory coating, 10 seconds or more are preferable, and 60 seconds or more are not economical and unnecessary. In addition, when the charged water is used for the film formation, the temperature of the treatment liquid in the film formation tank 3 of the present invention is preferably maintained at 30 to 50 ° C.

さらに、図4は、被膜表面の肌荒れ、退色あるいは光沢劣化を示す指標となる鏡面反射率に関するもので、本発明の1回処理面(記号f)、2回処理面(記号g)、5回処理面(記号h)と、ワックス処理面(記号e、以下の各図も同様に表示)のそれぞれを比較しても、本発明の被膜による下地の塗装表面に対する保護効果が大であることが分る。   Further, FIG. 4 relates to the specular reflectivity serving as an index indicating rough skin, fading or gloss deterioration of the coating surface. The once treated surface (symbol f), the twice treated surface (symbol g), and 5 times of the present invention. Even when each of the treated surface (symbol h) and the wax-treated surface (symbol e, which is also shown in the following drawings) is compared, the protective effect of the coating of the present invention on the underlying painted surface is significant. I understand.

また、図5は、塗装表面への塵埃や汚損物の付着し難さおよび清掃のし易さの指標である摩擦係数(動摩擦)に関するもので、これによれば、図4と同様な本発明処理面とワックス処理面とを比較したグラフであり、これによっても、本発明の被膜による塵埃などの付着し難さや清掃のし易さが格段に優れていることが分る。   FIG. 5 relates to a coefficient of friction (dynamic friction) that is an index of the difficulty of adhering dust and fouling substances to the paint surface and the ease of cleaning. According to this, the present invention similar to FIG. It is a graph comparing the treated surface and the wax-treated surface, and it can be seen that the adhesion of dust and the like by the coating of the present invention and the ease of cleaning are remarkably excellent.

さらに、塗装表面の耐久性の指標でもある表面硬度を鉛筆硬度で示す図6によれば、前記と同様な処理面の比較を行った結果を示したもので、この点においても顕著な相違が認められ、耐久性においても優れていることが理解される。   Furthermore, according to FIG. 6 showing the surface hardness, which is also an index of the durability of the paint surface, in pencil hardness, the result of comparison of the treated surfaces similar to the above is shown. It is recognized that it is excellent in durability.

また、図7は、溶出成分珪素、アルミニウム、チタニウムとした場合の無機被膜の光電子分析(ESCA)の結果であり、珪素、アルミニウム、チタニウムの各溶出成分の酸化物を主成分とし、それぞれの酸化物が結合したSiO−Al−TiO系のガラス状被膜が最大深さが約80nmになるNMレベルの被膜層として形成されていることが判明している。なお、図7においては、○はSi、△はTiに基づく光電子数/秒を示す。なお、Tiを含まない場合の被膜を●で示してある。 FIG. 7 shows the results of photoelectron analysis (ESCA) of the inorganic coating when the eluted components are silicon, aluminum, and titanium. The main components are oxides of the eluted components of silicon, aluminum, and titanium. It has been found that a SiO 2 —Al 2 O 3 —TiO 2 -based glass-like film bonded with an object is formed as a NM level coating layer having a maximum depth of about 80 nm. In FIG. 7, ◯ indicates the number of photoelectrons / second based on Si, and Δ indicates Ti. In addition, the film in the case of not containing Ti is indicated by ●.

なお、図8は、白色ガラス板に本発明の被膜形成を行い、その上に墨汁液を汚染物質として塗布し、屋外に暴露し退色していく状況を透明度(完全透明=100、不透明=0とした)で示したもので、○は本発明の場合、△はSiO−Al系被膜の場合、□は酸化チタン光触媒を塗布したケース、×は無処理のケースを示している。これによれば、本発明の場合(○)は、酸化チタン光触媒の場合(□)に匹敵する分解特性を持つことが分かっている。 FIG. 8 shows a state in which the coating film of the present invention is formed on a white glass plate, ink ink is applied as a contaminant on the white glass plate, is exposed to the outdoors and fades, and the transparency (completely transparent = 100, opaque = 0). ) Indicates the case of the present invention, Δ indicates the case of a SiO 2 —Al 2 O 3 based coating, □ indicates a case where a titanium oxide photocatalyst is applied, and × indicates a case where no treatment is performed. . According to this, in the case of this invention ((circle)), it turns out that it has a decomposition characteristic comparable to the case ((square)) of a titanium oxide photocatalyst.

図9は、磁界処理の効果を示すもので、形成被膜の代表的厚さについて磁界処理の有無の影響を示している。噴射圧力に関りなく、磁界処理を行った場合に被膜の厚さを約2倍、厚くすることができることが分かった。   FIG. 9 shows the effect of the magnetic field treatment, and shows the influence of the presence or absence of the magnetic field treatment on the representative thickness of the formed film. It has been found that the thickness of the coating can be increased by a factor of about 2 when the magnetic field treatment is performed regardless of the spray pressure.

次に、図10は、セラミック粒子中の鉄分と電荷水中の鉄分の関係を示すものである。
これによれば、電荷水中に存在する鉄分が、含有重金属の許容範囲(0.3mg/l以下)内であって、通常のミネラル成分として適切かつ有効な量として0.01〜0.3mg/l存在することが確認された。このように、セラミック材に含有される1〜9%の鉄分は、被膜の形成において生物生態系へのミネラル富化に極めて有効なのである。
Next, FIG. 10 shows the relationship between the iron content in the ceramic particles and the iron content in the charge water.
According to this, the iron content in the charged water is within the allowable range (0.3 mg / l or less) of the heavy metal contained, and 0.01 to 0.3 mg / kg as an appropriate and effective amount as a normal mineral component. l was confirmed to be present. Thus, 1 to 9% of iron contained in the ceramic material is extremely effective for mineral enrichment to the bio-ecological system in the formation of the coating.

次に、本発明によって実現された無機被膜の表面の改質(光沢性、親水性、防曇性、除菌性など)の状況を図11〜14、表1を参照して説明する。
ここで、セラミック粒子に用いる選択された鉱石の化学成分を次の2種類に区分して、実施例に相当する高Si−Al−Ti系:珪素50〜80%、アルミニウム10〜50%、チタニウム1〜10%、鉄1〜9%の場合の被膜(各図では○で表示)と、比較例に相当する低Si−Al−Ti系:珪素50%未満、アルミニウム20%未満、チタニウム1%未満の場合の被膜(黒点付き○で表示)との各被膜について比較を行った。参考に、ワックス処理は□、ポリマーコートは△で表示した。
Next, the state of the surface modification (glossiness, hydrophilicity, antifogging property, sterilization property, etc.) of the inorganic coating realized by the present invention will be described with reference to FIGS.
Here, the chemical composition of the selected ore used for the ceramic particles is divided into the following two types, and the high Si-Al-Ti system corresponding to the examples: silicon 50-80%, aluminum 10-50%, titanium 1 to 10%, iron 1 to 9% film (indicated by ○ in each figure) and low Si-Al-Ti system corresponding to the comparative example: silicon less than 50%, aluminum less than 20%, titanium 1% Comparison was made with respect to each film with a film (indicated by a circle with a black dot) in the case of less than. For reference, the wax treatment is indicated by □ and the polymer coat is indicated by Δ.

図11は、屋外曝露期間に対応した光沢度の変化で被膜の優劣を表示したものであり、実施例の場合が最も劣化が少なく屋外耐久性においても優れていることが分かる。また、図12は、珪素、アルミニウムの組成が光沢度(図面中の数値が光沢度%を示す)に及ぼす影響を示すものであり、実施例のものは、比較例の低Si−Al−Ti系(低珪素、低アルミニウム)の場合より優れた光沢度の被膜が得られることが示されている。   FIG. 11 shows the superiority or inferiority of the coating by the change in glossiness corresponding to the outdoor exposure period, and it can be seen that the example has the least deterioration and is excellent in outdoor durability. FIG. 12 shows the influence of the composition of silicon and aluminum on the glossiness (the numerical value in the drawing indicates% glossiness), and the examples are those of the low Si—Al—Ti of the comparative example. It has been shown that a film with a glossiness superior to that of the system (low silicon, low aluminum) can be obtained.

車両ボデー塗装面における洗浄水の接触角(2θ)は、実施例が13°、比較例が18°、ワックス処理面が40°であり、実施例が最も親水性が高い。さらに、図13は、実施例と比較例の親水性の変化を示すものであり、超音波照射によって活性酸素を発生させた場合でも、接触角の低下傾向は実施例の場合が最も顕著であり、親水性に優れていることが分かる。   The contact angle (2θ) of the cleaning water on the vehicle body painted surface is 13 ° in the example, 18 ° in the comparative example, and 40 ° in the wax-treated surface, and the example has the highest hydrophilicity. Furthermore, FIG. 13 shows the change in hydrophilicity between the example and the comparative example. Even when active oxygen is generated by ultrasonic irradiation, the tendency of decrease in the contact angle is most remarkable in the example. It can be seen that the hydrophilicity is excellent.

図14は、被膜の防曇性に関するもので、実施例の場合は比較例に較べて活性酸素が多く発生していることが分かる。この活性酸素は前述のように被膜表面の親水性向上に寄与するので、曇り止め効果(防曇性)が得られることが理解される。
この場合、超音波照射は、本発明の成分効果にもならず、超音波照射との相乗効果も存在することを意味する処置である。
FIG. 14 relates to the antifogging property of the coating, and it can be seen that more active oxygen is generated in the example than in the comparative example. Since this active oxygen contributes to the improvement of the hydrophilicity of the coating surface as described above, it is understood that an antifogging effect (antifogging property) can be obtained.
In this case, the ultrasonic irradiation is a treatment which means that not only the component effect of the present invention but also a synergistic effect with the ultrasonic irradiation exists.

次に、実施例の除菌性について、表2に示す。これは、東京食品技術研究所で行った試験結果の要約であり、それぞれの被膜に接した通常の飲料水が24時間経過後、有害菌がどのようになるかを調査したもので、通常のポリ容器の場合には、大腸菌は大増殖、ブドウ球菌は微減であるのに、実施例被膜の容器では、大幅な除菌効果あることが立証された。特に、銀を含む場合には、除菌効果が顕著であることが分かる。   Next, it shows in Table 2 about the microbe elimination property of an Example. This is a summary of the test results conducted at the Tokyo Food Technology Research Institute, which investigated how harmful bacteria would become after 24 hours of normal drinking water in contact with each film. In the case of the polycontainer, Escherichia coli was proliferated and staphylococci were slightly reduced. However, the container of the example coating proved to have a significant sterilizing effect. In particular, when silver is contained, it turns out that the disinfection effect is remarkable.

Figure 2010120010
Figure 2010120010

なお、本発明の処理水について水質試験を厚生労働大臣登録検査機関にて行い、次の結果を得た。一般細菌:0、大腸菌:不検出、重金属(カドミウム、水銀、鉛、砒素、6価クロム、亜鉛、鉄、銅、マンガン):基準の0.1以下、その他(シアン、硝酸窒素、フッ素、塩素イオンなど):基準の0.1以下などの通り、食品衛生法水質基準に適合するものであった。   In addition, the water quality test was done in the inspection organization registered by the Minister of Health, Labor and Welfare for the treated water of the present invention, and the following results were obtained. General bacteria: 0, Escherichia coli: not detected, heavy metals (cadmium, mercury, lead, arsenic, hexavalent chromium, zinc, iron, copper, manganese): 0.1 or less of standard, others (cyanide, nitrogen nitrate, fluorine, chlorine) Ion etc.): Conforms to the water quality standards of the Food Sanitation Act as 0.1 or less of the standard.

本発明によって得られる無機被膜は、以上説明したようにワックスやそれに類似するポリマ加工に比較して優れた性能を発揮するうえ、前記したように、本発明の無機被膜形成方法では、消耗品がほとんど必要なく、また運転動力なども僅かで済むので装置の運転費用がごく軽微であり、メンテナンスも容易なところから、その経済性は特に優れているものである。そして、ひいては公害防止、環境改善、地球温暖化抑制などにも寄与、貢献できることが期待される。   As described above, the inorganic coating obtained by the present invention exhibits superior performance compared to wax and polymer processing similar thereto, and, as described above, in the inorganic coating forming method of the present invention, there is no consumable. Since it is almost unnecessary and requires only a small amount of driving power, the operating cost of the apparatus is very small, and the maintenance is easy, so its economic efficiency is particularly excellent. As a result, it is expected to contribute and contribute to pollution prevention, environmental improvement, and global warming control.

なお、本発明の処理対象には、自動車、鉄道車輌、船舶、航空機、家電製品などの構成部材として用いられる鉄、アルミニウム、合成樹脂、ガラス、ゴムなどの多品種の部材が対象とされ得る。そして、これらワークの表面性状は、素材露出面および樹脂塗料などの塗装面のいずれであっても、支障なく適用できるが、塗装面を対象とした方が部材表面の保護の観点から好ましいものである。   It should be noted that a variety of members such as iron, aluminum, synthetic resin, glass, and rubber used as components of automobiles, railway vehicles, ships, airplanes, home appliances, and the like can be targeted for processing of the present invention. The surface properties of these workpieces can be applied without any problem on either the exposed material surface or the painted surface such as resin paint, but the coated surface is preferable from the viewpoint of protecting the surface of the member. is there.

1 電荷水生成槽、11 原水供給口、12 電荷水取出し口、13 セラミック粒子装填部、14 セラミック粒子
2 磁界処理槽、21 電荷水送入口、22 磁界処理水取出し口、23a S極、23b N極、24 通過水路
3 被膜形成槽、31 磁界処理水送入口、32 処理排水取出し口、33 ワーク、34 ノズル
a 原水、b 電荷水、c 磁界処理水、d 処理排水
DESCRIPTION OF SYMBOLS 1 Charge water production tank, 11 Raw water supply port, 12 Charge water extraction port, 13 Ceramic particle loading part, 14 Ceramic particle 2 Magnetic field treatment tank, 21 Charge water inlet, 22 Magnetic field treatment water extraction port, 23a S pole, 23b N Pole, 24 Passage channel 3 Film formation tank, 31 Magnetic field treated water inlet, 32 Treated wastewater outlet, 33 Workpiece, 34 Nozzle a Raw water, b Charged water, c Magnetically treated water, d Treated wastewater

Claims (3)

水と接触して珪素成分とアルミニウム成分を溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の選択された鉱石を素材としてなり、化学組成として珪素50〜80%(質量%、以下同様)、アルミニウム10〜50%、チタニウム1.0〜10%、鉄1.0〜9.0%を含むセラミック材の粒子またはそれらセラミック材を表層成分とした表層を有する粒子に原水を接触させ、この原水に電荷を帯びた前記化学成分を励起電流とともに溶出させて電荷水となし、次いでその電荷水を電磁界内に導入、通過させ誘導電流を発生させた後、その磁界処理を行った電荷水をワーク表面に噴射またはワークをこの電荷水に浸漬して接触させて、そのワーク表面に前記溶出成分の酸化物を主成分とする無機被膜を形成することを特徴とする無機被膜形成方法。   One or two or more selected ores selected from quartz porphyry, tourmaline, and barley stone, which can elute silicon components and aluminum components in contact with water, are used as materials, and silicon 50-80 as chemical composition % (Mass%, the same applies hereinafter), aluminum particles 10 to 50%, titanium particles 1.0 to 10%, iron particles 1.0 to 9.0%, or a surface layer containing these ceramic materials as surface layer components The raw water is brought into contact with the particles, and the chemical component charged with the raw water is eluted together with an excitation current to form charged water, and then the charged water is introduced into and passed through the electromagnetic field to generate an induced current. It is characterized in that the charged water subjected to the magnetic field treatment is sprayed on the surface of the workpiece or the workpiece is immersed in the charged water and brought into contact with the workpiece surface to form an inorganic coating mainly composed of the oxide of the eluted component on the surface of the workpiece. Inorganic coating forming method according to. 前記セラミック材が銀を0.01〜0.5%含むことを特徴とする請求項1記載の無機被膜形成方法。   2. The inorganic film forming method according to claim 1, wherein the ceramic material contains 0.01 to 0.5% of silver. 前記銀が方鉛鉱、輝銀鉱、およびまたは、角銀鉱から精錬、抽出したものである請求項2記載の無機被膜形成方法。   The inorganic film forming method according to claim 2, wherein the silver is refined and extracted from galena, bright silver ore, and / or square silver ore.
JP2009226204A 2008-10-22 2009-09-30 Method for forming inorganic coating film Pending JP2010120010A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009226204A JP2010120010A (en) 2008-10-22 2009-09-30 Method for forming inorganic coating film
CN200910208273A CN101722141A (en) 2008-10-22 2009-10-22 Method for forming inorganic film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008271821 2008-10-22
JP2009226204A JP2010120010A (en) 2008-10-22 2009-09-30 Method for forming inorganic coating film

Publications (1)

Publication Number Publication Date
JP2010120010A true JP2010120010A (en) 2010-06-03

Family

ID=42321818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226204A Pending JP2010120010A (en) 2008-10-22 2009-09-30 Method for forming inorganic coating film

Country Status (2)

Country Link
JP (1) JP2010120010A (en)
CN (1) CN101722141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601469A (en) * 2013-11-21 2014-02-26 太原市伦嘉生态健康家居科技有限公司 Environmental health-care functional material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192760A (en) * 1988-01-28 1989-08-02 Tokin Corp Ag2o3-containing oxide superconductor and production thereof
JP2006045346A (en) * 2004-08-04 2006-02-16 Sosenji Plastic product
JP3948671B2 (en) * 2003-05-02 2007-07-25 有限会社エムズケーシー Inorganic film forming method and apparatus
JP2008127372A (en) * 2006-11-24 2008-06-05 Nitto Boseki Co Ltd Antibacterial processing method and product of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1733806A4 (en) * 2004-04-02 2008-08-27 M Skc Ltd Inorganic film forming process and system
CN2786146Y (en) * 2004-07-16 2006-06-07 姜培齐 Surface anti-bacterial and wearable product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192760A (en) * 1988-01-28 1989-08-02 Tokin Corp Ag2o3-containing oxide superconductor and production thereof
JP3948671B2 (en) * 2003-05-02 2007-07-25 有限会社エムズケーシー Inorganic film forming method and apparatus
JP2006045346A (en) * 2004-08-04 2006-02-16 Sosenji Plastic product
JP2008127372A (en) * 2006-11-24 2008-06-05 Nitto Boseki Co Ltd Antibacterial processing method and product of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601469A (en) * 2013-11-21 2014-02-26 太原市伦嘉生态健康家居科技有限公司 Environmental health-care functional material and preparation method thereof

Also Published As

Publication number Publication date
CN101722141A (en) 2010-06-09

Similar Documents

Publication Publication Date Title
TWI230186B (en) Antifouling material and process for producing the same, and coating composition for said material
US10266702B2 (en) Self-cleaning coatings and methods for making same
JP2015199063A5 (en)
Jia et al. Manganese oxide coated river sand for Mn (II) removal from groundwater
JP2010120010A (en) Method for forming inorganic coating film
JP3948671B2 (en) Inorganic film forming method and apparatus
WO2008143655A3 (en) Suspensions of surface treated titanium (iv) oxides and processes for making them
KR101728751B1 (en) Eco-friendly ceramic high performance coating
KR101580682B1 (en) Anti-Fouling Coating Layer for Water Supply Facilities and Preparation Method Thereof
TW201509810A (en) Anti-fouling metal oxides encased with silicon dioxide
JP2023155780A (en) Method and apparatus for depositing photocatalyst nano inorganic film
JP2022043065A (en) Coating process
KR20090105604A (en) Mixture Repressing Growth of Algae, Contamination-Resistant Paint and Watermark Using the Same
Kozhukharov Advanced Multifunctional Corrosion Protective Coating Systems for Light-Weight Aircraft Alloys-Actual Trends and Challenges
KR101701443B1 (en) Anti fouling and waterproof and water repellency ceramic eco paint
JP5512854B2 (en) Blasting material and blasting method
Yin et al. Removal of Cr (VI) from aqueous solution by nanoscale zero-valent iron
JP2011032548A (en) Method of manufacturing aluminum member
DE50108613D1 (en) METHOD FOR PRODUCING A LAYERED MATERIAL AND LAYERED LAYERING MATERIAL THEREFOR
Vancea et al. INERTIZATION IN VITREOUS MATRIX OF EXHAUSTED REACTIVE MIXTURES RESULTED FROM THE REMOVAL OF Cr (VI) WITH Fe 0 IN CONTINUOUS-FLOW SYSTEM.
KR102513395B1 (en) Coating composition for lighing device
WO2005099915A1 (en) Inorganic film forming process and system
Yeganeh et al. Smart coatings in anti-corrosion applications: types and corrosion protection mechanisms
KR100803920B1 (en) Paint composition emitting anion and precoated metalsheet coated the same
KR101368190B1 (en) Method for antibacterial treatment of metallic furniture and anibacterial metallic furniuture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Effective date: 20120907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108