JP3948671B2 - Inorganic film forming method and apparatus - Google Patents

Inorganic film forming method and apparatus Download PDF

Info

Publication number
JP3948671B2
JP3948671B2 JP2004109974A JP2004109974A JP3948671B2 JP 3948671 B2 JP3948671 B2 JP 3948671B2 JP 2004109974 A JP2004109974 A JP 2004109974A JP 2004109974 A JP2004109974 A JP 2004109974A JP 3948671 B2 JP3948671 B2 JP 3948671B2
Authority
JP
Japan
Prior art keywords
water
charged
inorganic
charged water
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004109974A
Other languages
Japanese (ja)
Other versions
JP2004351408A (en
Inventor
誠 本島
Original Assignee
有限会社エムズケーシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エムズケーシー filed Critical 有限会社エムズケーシー
Priority to JP2004109974A priority Critical patent/JP3948671B2/en
Priority to US10/592,400 priority patent/US20070272148A1/en
Priority to PCT/JP2004/016983 priority patent/WO2005099915A1/en
Priority to EP04821887A priority patent/EP1733806A4/en
Publication of JP2004351408A publication Critical patent/JP2004351408A/en
Application granted granted Critical
Publication of JP3948671B2 publication Critical patent/JP3948671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、自動車、鉄道車輌、船舶、航空機、家電製品などに用いられる鉄,アルミニウム、合成樹脂、ガラス、ゴムなどの表面およびそれらの塗装面を対象とした無機被膜形成方法およびその装置に関する。   TECHNICAL FIELD The present invention relates to a method and apparatus for forming an inorganic film for surfaces of iron, aluminum, synthetic resin, glass, rubber and the like used for automobiles, railway vehicles, ships, airplanes, home appliances, and the like, and painted surfaces thereof.

従来、自動車、鉄道車輌、船舶、航空機など屋外で用いられる装置の表面は、埃、煤塵、虫などが付着しやすく、常時清掃が必要であった。これら装置表面には、通常、ワックス、ポリマ加工など表面被膜で被覆、保護しているものの、それら材料は有機質精製品であるため環境汚染源となることが指摘されている。   Conventionally, the surfaces of devices used outdoors such as automobiles, railway vehicles, ships, and airplanes are liable to adhere to dust, dust, insects, etc., and have to be constantly cleaned. Although the surface of these devices is usually coated and protected with a surface coating such as wax or polymer processing, it has been pointed out that these materials are organic products and become environmental pollution sources.

また、これら保護被膜は、紫外線などによって風化の影響を受けやすく、塗膜の褪色、光沢の低下など外観や機能が低下する弱点があり、さらに保護被膜自体が軟質なため加傷を受けやすく、外観の保護は十分でなかった。このため、頻繁にワックスやポリマ加工を繰り返す必要があって、材料コスト、工数を要するという問題もあった。   In addition, these protective coatings are easily affected by weathering due to ultraviolet rays, etc., and have weaknesses such as fading and gloss deterioration of the coating and deterioration in appearance and function, and further, the protective coating itself is soft and easily damaged. Appearance protection was not enough. For this reason, it is necessary to frequently repeat the wax and polymer processing, and there is a problem that material costs and man-hours are required.

このような問題に対処するものとして、トルマリンの発生する電荷による電着作用でホウ酸シリカ被膜を形成させる手法が提案されている。(特許文献1を参照のこと)
しかし、この方法で得られる保護被膜は被膜耐久性の点で未だ十分とは言えなかった。
特開2000−192086号公報:「特許請求の範囲」段落(0009)、(0010)
In order to cope with such a problem, a method of forming a silica borate film by an electrodeposition action by an electric charge generated by tourmaline has been proposed. (See Patent Document 1)
However, the protective coating obtained by this method has not been sufficient in terms of coating durability.
Japanese Patent Laid-Open No. 2000-192086: “Claims” paragraphs (0009) and (0010)

本発明は、上記の問題点を解決するためになされたものであり、耐久性にすぐれ、低コストな無機被膜を実現して、従来のワックスやポリマ加工を不要にし、汚染抑制、環境保全に寄与することができる無機被膜形成方法およびその装置を提供する。さらには、汚染物質を自体を酸化分解して除去できる浄化機能を有する無機被膜形成方法およびその装置を提供するものである。   The present invention has been made in order to solve the above-mentioned problems, realizes an inorganic coating having excellent durability and low cost, eliminates the need for conventional wax and polymer processing, and suppresses contamination and protects the environment. Provided are an inorganic film forming method and apparatus capable of contributing. Furthermore, the present invention provides an inorganic film forming method and apparatus having a purification function capable of removing contaminants by oxidative decomposition.

上記の問題は、第1発明であるところの、 水と接触して少なくとも珪素、アルミニウムを溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を混合して含有するセラミック粒子またはそれら鉱石を被膜成分とした被膜を有するセラミック粒子と原水を接触させ、この原水に電荷を帯びた前記溶出成分を励起電流とともに溶出させて電荷水となし、この電荷水をワーク表面に噴射またはワークをこの電荷水に浸漬して接触させて、その表面に前記溶出成分の酸化物を主成分とする無機被膜を形成することを特徴とする無機被膜形成方法によって、解決することができる。
The above problem is that in the first aspect of the invention, one or more ores selected from quartz porphyry, tourmaline, and barley stone that can elute at least silicon and aluminum in contact with water are mixed. The ceramic particles having a coating containing these ore ores as coating components and raw water are brought into contact with the raw water, and the eluted components charged with the raw water are eluted together with the excitation current to form charged water. The problem is solved by an inorganic film forming method characterized by forming an inorganic film mainly composed of an oxide of the elution component on the surface by spraying or immersing the work in the charged water on the work surface. be able to.

そして前記発明では、前記電荷水を電磁界内を通過させ誘導電流を発生させた後、前記被膜形成に供するようにした形態に好ましく具体化される。そして、この第1発明は、前記珪素、アルミニウムに加えてチタニウムを溶出成分として含むセラミック粒子を使用する形態に具体化することができる。 And wherein in the invention, after the pre-Symbol charge water to generate an induction current is passed through the electromagnetic field inside is preferably embodied in a form as subjected to the film formation. And this 1st invention can be embodied in the form which uses the ceramic particle | grains which contain titanium as an elution component in addition to the said silicon and aluminum.

また、上記の問題は、次の第2発明である無機被膜形成装置によっても解決できる。すなわち、第1発明の無機被膜形成方法を行うための無機被膜形成装置であって、原水供給口を備え、その内部には、水と接触して少なくとも珪素、アルミニウムを溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を少なくとも表面部分に含むセラミック粒子を、原水供給口から送入された原水が該セラミック粒子に接触しながら通過可能に装填するとともに、生成した電荷水を取り出すための電荷水取出し口を備えた電荷水生成槽、前記電荷水を送り込む電荷水送入口と磁界処理水を取り出す磁界処理水取出し口を備え、内部に電磁界を形成するS極およびN極とを配置し、その間に電荷水の通過水路を設けた磁界処理槽、および槽内に配置したワーク表面に磁界処理水を接触させる手段を備えた被膜形成槽とから構成されることを特徴とする無機被膜形成装置によって、解決することができる。   Moreover, said problem can be solved also by the inorganic film forming apparatus which is the following 2nd invention. That is, an inorganic film forming apparatus for carrying out the inorganic film forming method of the first invention, comprising a raw water supply port, and inside thereof, quartz porphyry that can elute at least silicon and aluminum in contact with water, Loading ceramic particles containing at least one or more kinds of ores selected from tourmaline and barleystone in the surface portion so that the raw water fed from the raw water supply port can pass while contacting the ceramic particles A charged water generation tank having a charged water outlet for taking out the generated charged water, a charged water inlet for feeding the charged water and a magnetically treated water outlet for taking out the magnetically treated water, and forming an electromagnetic field inside. And a film forming tank provided with means for bringing magnetically treated water into contact with the surface of a workpiece disposed in the tank, and a magnetic field treating tank in which an S water pole and an N pole are arranged, and a water passage for charged water is provided therebetween. An inorganic film forming apparatus characterized by being al structure, can be solved.

この発明も、前記珪素、アルミニウムに加えて、チタニウムを溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を少なくとも表面部分に含むセラミック粒子を装填するようにした形態に具体化される。   According to the present invention, in addition to silicon and aluminum, ceramic particles containing at least one or more kinds of ores selected from quartz porphyry, tourmaline and barleystone capable of eluting titanium at least on the surface portion are loaded. It is embodied in the form.

本発明の無機被膜形成方法およびその装置は、以上説明したように構成されていて、次の特徴的原理に基づいている。
すなわち、(1)本発明の無機被膜は、第1実施形態ではSiO−Al系、および第2実施形態形態ではSiO−Al−TiO系の鉱石(ストーン)被膜であり、(2)ナノメータ・レベルの超薄膜型メッキの性格を備えていて、(3)特定な手段によって実施される電気化学反応メッキである。
The inorganic film forming method and apparatus of the present invention are configured as described above and are based on the following characteristic principle.
That is, (1) the inorganic coating of the present invention is a SiO 2 —Al 2 O 3 -based ore (stone) coating in the first embodiment and a SiO 2 —Al 2 O 3 —TiO 2 -based in the second embodiment. (2) It has the characteristics of ultra-thin type plating at the nanometer level, and (3) is an electrochemical reaction plating performed by a specific means.

かくして、得られる無機被膜は、SiO−Al系被膜(第1実施形態)の場合、低コストと優れた耐久性を実現して、従来のワックスやポリマ加工を不要にし、汚染抑制、環境保全に寄与することができるという優れた効果がある。さらに、SiO−Al−TiO系被膜(第2実施形態)の場合、汚染物質を自体を分解して除去できるので、有機系の汚染抑制には特に適しているという効果がある。よって本発明は、従来の問題点を解消した無機被膜形成方法およびその装置として、実用的価値はきわめて大なるものがある。 Thus, in the case of the SiO 2 —Al 2 O 3 -based coating (first embodiment), the obtained inorganic coating realizes low cost and excellent durability, eliminates the need for conventional wax and polymer processing, and suppresses contamination. There is an excellent effect that it can contribute to environmental conservation. Furthermore, in the case of the SiO 2 —Al 2 O 3 —TiO 2 based coating (second embodiment), the contaminants can be decomposed and removed, which is particularly suitable for suppressing organic contamination. . Therefore, the present invention has an extremely large practical value as an inorganic film forming method and apparatus for solving the conventional problems.

次に、本発明の無機被膜形成方法およびその装置に係る実施形態について、図1〜8を参照しながら説明する。
(第1実施形態)
本発明の無機被膜形成方法の第1実施形態について、その無機被膜形成装置とともに説明すると、本発明の装置は図1に例示するような、電荷水生成槽1、磁界処理槽2、被膜形成槽3とから少なくとも構成される。
Next, an embodiment relating to an inorganic film forming method and an apparatus thereof according to the present invention will be described with reference to FIGS.
(First embodiment)
The first embodiment of the inorganic film forming method of the present invention will be described together with the inorganic film forming apparatus. The apparatus of the present invention is a charged water generating tank 1, a magnetic field processing tank 2, and a film forming tank as illustrated in FIG. 3 at least.

この電荷水生成槽1は、水道水や井水などの原水aを導入する原水供給口11と処理後の電荷水bを取り出す電荷水取出し口12を備え、その内部に水と接触して少なくとも珪素、アルミニウムを溶出するように溶出成分として少なくとも珪素、アルミニウムを含む無数のセラミック粒子14を装填したセラミック粒子装填部13から構成されている。   This charged water generation tank 1 is provided with a raw water supply port 11 for introducing raw water a such as tap water and well water, and a charged water outlet 12 for taking out treated water b, and is in contact with the water at least. The ceramic particle loading unit 13 is loaded with innumerable ceramic particles 14 containing at least silicon and aluminum as elution components so as to elute silicon and aluminum.

このセラミック粒子14は、SiO−Al系セラミックからなる粒径3〜10mmの略球形粒子が適当であるが、後記する電荷水の生成効率を高めるには、少なくとも珪素、アルミニウムを含む、石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を50%以上混合して含有させたセラミック粒子がより好ましく、または少なくとも珪素、アルミニウムを含む前記した1種または2種以上の鉱石を被膜成分として50%以上含む被膜を有するセラミック粒子がより好ましい。 The ceramic particles 14 are preferably substantially spherical particles having a particle diameter of 3 to 10 mm made of a SiO 2 —Al 2 O 3 based ceramic. However, in order to increase the generation efficiency of charged water described later, at least silicon and aluminum are included. More preferably, ceramic particles containing 50% or more of one or more ores selected from quartz porphyry, tourmaline, and barleystone, or at least one of the above-described one or more containing silicon and aluminum Ceramic particles having a coating containing 50% or more of two or more kinds of ores as coating components are more preferable.

そして、これらセラミック粒子は、原水供給口11から送入された原水aが該セラミック粒子14に接触しながら通過可能な状態にセラミック粒子装填部13に装填されている。例えば、原水aの水流によってセラミック粒子14が流動し撹拌され、セラミック粒子14と原水aとが十分に接触するのが好ましいので、セラミック粒子14は流動可能に装填されるのがよい。   These ceramic particles are loaded in the ceramic particle loading unit 13 so that the raw water a fed from the raw water supply port 11 can pass while contacting the ceramic particles 14. For example, since the ceramic particles 14 are flowed and stirred by the water flow of the raw water a, and the ceramic particles 14 and the raw water a are preferably in sufficient contact, the ceramic particles 14 are preferably loaded in a flowable manner.

この電荷水生成槽1では、原水aが前記したセラミック粒子14に接触すると瞬間的に水中に放電され、その励起電流とともに、セラミック粒子14から少なくとも珪素、アルミニウムの溶出成分が、電荷を帯びた状態で溶出して活性化した電荷水bが得られる。この励起電流は、前記セラミック粒子14から半永久的に得られるもので、本発明の無機被膜形成のための主要な起動力となっているのである。   In the charged water generation tank 1, when the raw water a comes into contact with the ceramic particles 14, the water is instantaneously discharged into the water, and at least the elution components of silicon and aluminum are charged from the ceramic particles 14 together with the excitation current. Charged water b which is activated by elution is obtained. This excitation current is obtained semipermanently from the ceramic particles 14 and is the main starting force for forming the inorganic coating of the present invention.

次ぎに、磁界処理槽2は、前記電荷水生成槽1で得られた電荷水bを送り込む電荷水送入口21と磁界処理水cを取り出す磁界処理水取出し口22を備え、内部に電磁界を形成するS極23aおよびN極23bとを配置し、その間に電荷水bの通過水路24を設けて構成される。   Next, the magnetic field treatment tank 2 includes a charged water inlet 21 through which the charged water b obtained in the charged water generation tank 1 is fed, and a magnetic field treated water outlet 22 through which the magnetic field treated water c is taken out. The S pole 23a and the N pole 23b to be formed are arranged, and a passage water passage 24 for the charged water b is provided between them.

この磁界処理槽2においては、電荷を帯びた前記電荷水bをS極23aとN極23bとで形成される電磁界内を通過させるので、ファラデーの法則によって所定の誘導電流が発生し、電荷水bはより活性化した磁界処理水cとして取り出される。この磁界処理の目的には、この電磁界の強度を0.10〜0.80mGに設定するのが好ましく、より好ましくは0.30〜0.80mGに設定するのがよい。   In the magnetic field treatment tank 2, the charged water b having a charge passes through the electromagnetic field formed by the S pole 23a and the N pole 23b, so that a predetermined induced current is generated according to Faraday's law. Water b is taken out as more activated magnetic field treated water c. For the purpose of this magnetic field treatment, the intensity of the electromagnetic field is preferably set to 0.10 to 0.80 mG, more preferably 0.30 to 0.80 mG.

本発明の無機被膜形成方法では、この磁界処理を行わなくてもある程度の無機被膜が得られるものの、磁界処理を行った場合は、特に被膜形成の安定性、形成被膜の耐久性などの点で好ましい結果が得られる。従って、本発明ではこの磁界処理を行うことがより好ましい方法である。   In the inorganic film forming method of the present invention, a certain amount of inorganic film can be obtained without performing this magnetic field treatment. However, when the magnetic field treatment is performed, particularly in terms of stability of film formation, durability of the formed film, and the like. Favorable results are obtained. Therefore, in the present invention, it is more preferable to perform this magnetic field treatment.

次ぎに、本発明における被膜形成槽3は、前記磁界処理槽2で得られた磁界処理水cを送り込む磁界処理水送入口31と処理排水dを取り出す処理排水取出し口32を備え、槽内に配置したワーク33の表面に磁界処理水cを接触させる手段として、図1の事例では、ワーク33表面に加圧した磁界処理水cを噴射するノズル34を備えている。   Next, the film formation tank 3 in the present invention includes a magnetic field treatment water inlet 31 for feeding the magnetic field treatment water c obtained in the magnetic field treatment tank 2 and a treatment waste water outlet 32 for taking out the treatment waste water d. As a means for bringing the magnetic field treated water c into contact with the surface of the workpiece 33 arranged, in the example of FIG. 1, a nozzle 34 that ejects the pressurized magnetic field treated water c to the surface of the workpiece 33 is provided.

この被膜形成槽3では、ワーク33表面に磁界処理水cが接触することにより、磁界処理水c中の少なくとも珪素、アルミニウムの溶出成分が、カソード還元析出に準じた電気化学的反応によって、ワーク33表面に無機被膜を形成するのである。なお、この無機被膜は、光電子分析(ESCA)の結果、珪素、アルミニウムの溶出成分の酸化物を主成分とし、それぞれの酸化物が結合したSiO−Al系のガラス状被膜であることが判明している。 In the coating film forming tank 3, when the magnetic field treated water c comes into contact with the surface of the work 33, at least the elution components of silicon and aluminum in the magnetic field treated water c are subjected to an electrochemical reaction in accordance with the cathode reduction deposition. An inorganic coating is formed on the surface. As a result of photoelectron analysis (ESCA), this inorganic coating is a SiO 2 —Al 2 O 3 based glassy coating composed mainly of oxides of elution components of silicon and aluminum, and bonded to the respective oxides. It has been found.

このような、被膜形成には、ワーク33を磁界処理水c中に浸漬するような方法ももちろん可能であるが、図1に例示するような噴射ノズルを用いて、ワーク33表面全体に加圧した磁界処理水cを噴射するのが好ましい。その理由は、ノズル34から噴射して衝撃を与えると、衝撃電流が発生し、被膜形成の効率を向上させるからである。   For such film formation, a method of immersing the work 33 in the magnetic field treated water c is of course possible, but the entire surface of the work 33 is pressurized using an injection nozzle as illustrated in FIG. It is preferable to spray the magnetic field treated water c. The reason is that when an impact is applied by spraying from the nozzle 34, an impact current is generated and the efficiency of film formation is improved.

本発明においては、前記した励起電流、誘導電流、衝撃電流の総和を0.05〜0.07mAに保持するのが好ましい。その理由は、後述のような耐久性にすぐれた無機被膜が確実に形成されるからである。   In the present invention, the sum of the excitation current, the induction current, and the impact current described above is preferably maintained at 0.05 to 0.07 mA. The reason is that an inorganic coating having excellent durability as described later is reliably formed.

また、本発明における前記噴射圧力と得られる被膜の厚さの関係は、図2に例示する通りであり、10〜500N/cmの圧力範囲において膜厚は10〜60nmの範囲で安定して得られることが分った。(図中の〇印は条件を変えて行った結果を示す。以下、同様) In addition, the relationship between the spray pressure and the thickness of the coating obtained in the present invention is as illustrated in FIG. 2, and the film thickness is stable in the range of 10 to 60 nm in the pressure range of 10 to 500 N / cm 2. I found that it was obtained. (The circles in the figure indicate the results of changing the conditions. The same applies hereinafter.)

また、本発明の被膜形成槽3の処理時間と得られる被膜の厚さの関係は、図3に例示する通りであり、瞬間的な1秒前後でも厚さ10〜100nmの被膜は得られるが、10〜60nmの安定な被膜を得るには10秒以上が好ましく、なお、60秒以上は経済的でなく不要である。また、前記電荷水を前記被膜形成に供するに際し本発明の被膜形成槽3における、処理液の温度を30〜50℃に保持するが好ましい。その理由は、この範囲の温度において、電気化学反応が促進され、前記した短時間で被膜が形成されるからである。   Moreover, the relationship between the processing time of the film formation tank 3 of the present invention and the thickness of the obtained film is as illustrated in FIG. 3, and a film having a thickness of 10 to 100 nm can be obtained even for about 1 second instantaneously. In order to obtain a stable film of 10 to 60 nm, 10 seconds or more is preferable, and 60 seconds or more is not economical and unnecessary. In addition, when the charged water is used for the film formation, the temperature of the treatment liquid in the film formation tank 3 of the present invention is preferably maintained at 30 to 50 ° C. This is because the electrochemical reaction is promoted at a temperature in this range, and the coating film is formed in the above-mentioned short time.

なお、本発明の処理対象には、自動車、鉄道車輌、船舶、航空機、家電製品などの構成部材として用いられる鉄、アルミニウム、合成樹脂、ガラス、ゴムなどの多品種の部材が対象とされ得る。そして、これらワークの表面性状は、素材露出面および樹脂塗料などの塗装面のいずれであっても、支障なく適用できるが、塗装面を対象とした方が部材表面の保護の観点から好ましいものである。   It should be noted that a variety of members such as iron, aluminum, synthetic resin, glass, and rubber used as components of automobiles, railway vehicles, ships, airplanes, home appliances, and the like can be targeted for processing of the present invention. The surface properties of these workpieces can be applied without any problem on either the exposed material surface or the painted surface such as resin paint, but the coated surface is preferable from the viewpoint of protecting the surface of the member. is there.

次ぎに、本発明によって得られる無機被膜のいくつかの利点を図4〜6によって説明する。
先ず、図4は、塗装表面の肌荒れ、退色あるいは光沢劣化を示す指標となる鏡面反射率について、本発明の1回処理面f、2回処理面g、5回処理面hと、ワックス処理面e(以下、図5、6も同様)のそれぞれを比較したグラフであり、これによっても、本発明の被膜による下地の塗装表面に対する保護効果が大であることが分る。
Next, several advantages of the inorganic coating obtained by the present invention will be described with reference to FIGS.
First, FIG. 4 shows a specular reflectance that serves as an indicator of rough surface, fading or gloss deterioration of the coating surface, and the once-treated surface f, the twice-treated surface g, the five-time treated surface h, and the wax-treated surface of the present invention. e (hereinafter, the same applies to FIGS. 5 and 6) are graphs comparing each other, and it can be seen that the protective effect of the coating of the present invention on the coating surface of the base is also great.

図5は、塗装表面への塵埃や汚損物の付着し難さおよび清掃のし易さの指標である摩擦係数(動摩擦)について、図4と同様な本発明処理面とワックス処理面とを比較したグラフであり、これによっても、本発明の被膜による塵埃などの付着し難さや清掃のし易さが格段に優れていることが分る。   FIG. 5 shows a comparison between the treated surface of the present invention and the wax-treated surface in the same manner as in FIG. 4 with respect to the coefficient of friction (dynamic friction), which is an index of the difficulty of adhering dust and dirt to the painted surface and the ease of cleaning. This graph also shows that the adhesion of dust and the like by the coating of the present invention and the ease of cleaning are remarkably excellent.

さらに、図6は、塗装表面の耐久性の指標でもある表面硬度を鉛筆硬度について、前記と同様な処理面の比較を行った結果を示したもので、この点においても顕著な相違が認められ、耐久性においても優れていることが理解される。   Further, FIG. 6 shows the result of comparing the surface hardness, which is also an index of durability of the paint surface, with respect to the pencil hardness, and the same treatment surface as described above. It is understood that the durability is excellent.

本発明の第1実施形態によって得られる無機被膜は、以上説明したようにワックスやそれに類似するポリマ加工に比較して優れた性能を発揮するうえ、前記したように、本発明の無機被膜形成方法およびその装置は、消耗品がほとんど必要なく、また運転動力なども僅かで済むので装置の運転費用がごく軽微であり、メンテナンスも容易なところから、その経済性は特に優れているものである。   As described above, the inorganic coating obtained by the first embodiment of the present invention exhibits superior performance compared to wax and polymer processing similar thereto, and as described above, the inorganic coating forming method of the present invention. In addition, since the apparatus requires almost no consumables and requires only a small amount of driving power, the operating cost of the apparatus is very low and the maintenance is easy, so that its economic efficiency is particularly excellent.

(第2実施形態)
次ぎに本発明の無機被膜形成方法の第2実施形態について、図7、8を補足して説明すると、図1に例示するようなに、電荷水生成槽1、磁界処理槽2、被膜形成槽3とから構成され形成装置を用いる点は第1実施形態と同様である。そしてその相違点は、電荷水生成槽1のセラミック粒子装填部13には、水と接触して少なくとも珪素、アルミニウム、チタニウムを溶出するように溶出成分として珪素、アルミニウム、チタニウムを含む無数のセラミック粒子14が装填される点にある。
(Second Embodiment)
Next, a second embodiment of the inorganic film forming method of the present invention will be described with reference to FIGS. 7 and 8. As illustrated in FIG. 1, a charged water generation tank 1, a magnetic field treatment tank 2, and a film formation tank. 3 is the same as the first embodiment in that a forming apparatus is used. The difference is that the ceramic particle loading part 13 of the charged water generation tank 1 has innumerable ceramic particles containing silicon, aluminum, and titanium as elution components so as to elute at least silicon, aluminum, and titanium in contact with water. 14 is at the point of loading.

この第2実施形態のセラミック粒子14は、SiO−Al−TiO系セラミックからなり、珪素、アルミニウム、チタニウムを含む、石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を50%以上混合して含有させたセラミック粒子がより好ましく、または前記した1種または2種以上の鉱石を被膜成分として50%以上含む被膜を有するセラミック粒子がより好ましい。そして、前記鉱石にはチタニウムを酸化チタンに換算して0.20〜3.0%含むものが好ましく利用できる。 The ceramic particles 14 of the second embodiment are made of SiO 2 —Al 2 O 3 —TiO 2 ceramic, and include one kind selected from quartz porphyry, tourmaline, and barley stone, including silicon, aluminum, and titanium. Ceramic particles containing 50% or more of two or more kinds of ores are more preferable, or ceramic particles having a coating containing 50% or more of the one or more ores as coating components are more preferable. And as for the said ore, what contains 0.20 to 3.0% of titanium in conversion to a titanium oxide can be utilized preferably.

この第2実施形態でも、電荷水生成槽1におけるセラミック粒子の装填状態や、原水aとセラミック粒子14との挙動は先の場合に同じく、セラミック粒子14から少なくとも珪素、アルミニウム、チタニウムの溶出成分が、電荷を帯びた状態で溶出して活性化した電荷水bが得られるのである。   Also in the second embodiment, the loaded state of the ceramic particles in the charged water generation tank 1 and the behavior of the raw water a and the ceramic particles 14 are the same as in the previous case, and at least the elution components of silicon, aluminum, and titanium are extracted from the ceramic particles 14. Thus, the charged water b that is eluted and activated in a charged state is obtained.

次ぎに、先に説明したのと同様な構成と機能を有する磁界処理槽2によって、電荷水bはより活性化した磁界処理水cとして取り出される。好ましい磁界強度も同様である。
また、第2実施形態の無機被膜形成方法では、この磁界処理を行わなくてもある程度の無機被膜が得られるものの、磁界処理を行う方が好ましい点も先の場合と同様である。
Next, the charged water b is taken out as more activated magnetic field treated water c by the magnetic field treatment tank 2 having the same configuration and function as described above. The preferable magnetic field strength is the same.
Further, in the inorganic film forming method of the second embodiment, although a certain amount of inorganic film can be obtained without performing this magnetic field treatment, it is preferable to perform the magnetic field treatment as in the previous case.

次ぎに被膜形成槽3において被膜を形成させるのであるが、ここにおける機器構成、操作なども先の第1実施形態の場合と同様である。第2実施形態では、磁界処理水c中の珪素、アルミニウム、チタニウムの溶出成分が、カソード還元析出に準じた電気化学的反応によって、ワーク33表面に無機被膜を形成するのである。   Next, a coating film is formed in the coating film forming tank 3, and the equipment configuration, operation, and the like here are the same as those in the first embodiment. In the second embodiment, the elution components of silicon, aluminum, and titanium in the magnetically treated water c form an inorganic coating on the surface of the work 33 by an electrochemical reaction according to cathode reduction deposition.

また、この無機被膜は、図7に示すように、光電子分析(ESCA)の結果、珪素、アルミニウム、チタニウムの溶出成分の酸化物を主成分とし、それぞれの酸化物が結合したSiO−Al−TiO系のガラス状被膜が最大深さが約80nmになるNMレベルの被膜層として形成されていることが判明している。なお、図7においては、○はSi、△はTiに基づく光電子数/秒を示す。(参考までに、第1実施形態の場合を●で示してある。) In addition, as shown in FIG. 7, this inorganic coating has SiO 2 -Al 2 in which oxides of elution components of silicon, aluminum, and titanium are the main components and bonded to each other as a result of photoelectron analysis (ESCA). It has been found that the O 3 —TiO 2 -based glassy film is formed as a NM level film layer having a maximum depth of about 80 nm. In FIG. 7, ◯ indicates the number of photoelectrons / second based on Si, and Δ indicates Ti. (For reference, the case of the first embodiment is indicated by ●.)

さらに、第2実施形態においても、被膜形成には、図1に例示するような噴射ノズルを用いて、ワーク33表面全体に加圧した磁界処理水cを噴射するのが好ましい。また、励起電流、誘導電流、衝撃電流の総和を0.05〜0.07mAに保持するのが後記の酸化分解機能の点からも好ましい。   Furthermore, also in the second embodiment, it is preferable to spray the pressurized magnetic field treated water c on the entire surface of the work 33 by using a spray nozzle as illustrated in FIG. Moreover, it is preferable also from the point of the oxidative decomposition function mentioned later to hold | maintain the sum total of an excitation current, an induced current, and an impact current at 0.05-0.07 mA.

また、この第2実施形態においても、第1実施形態に同じく、自動車、鉄道車輌、船舶、航空機、家電製品などの構成部材として用いられる鉄,アルミニウム、合成樹脂、ガラス、ゴムなどの多品種の部材が処理対象とされ得る。そして図4、5、6に例示した被膜の機能も同様に発揮するうえ、図8に示す通り、第2実施形態の被膜(図中の○印)では、墨汁で例示されるような有機性汚染物質を屋外暴露中において分解除去する浄化機能を持つ点に格別の特徴を有する。   Also in the second embodiment, as in the first embodiment, a wide variety of products such as iron, aluminum, synthetic resin, glass, rubber, etc. used as components of automobiles, railway vehicles, ships, aircraft, home appliances, etc. A member may be a processing target. And the function of the film illustrated in FIGS. 4, 5, and 6 is exhibited similarly, and as shown in FIG. 8, the film of the second embodiment (circle mark in the figure) is organic as exemplified by ink. It has a special feature in that it has a purification function to decompose and remove pollutants during outdoor exposure.

なお、図8のグラフは、白色ガラス板に本発明の被膜形成を行い、その上に墨汁液を汚染物質として塗布し、屋外に暴露し退色していく状況を透明度(完全透明=100、不透明=0とした)で表したものであり、○は本発明の第2実施形態の場合、△は第1実施形態、□は、酸化チタン光触媒を塗布したケース、×は無処理のケースを示している。これによれば、第2実施形態の皮膜は、酸化チタン光触媒に匹敵する分解特性を持つことが分かった。   The graph of FIG. 8 shows a state in which the coating film of the present invention is formed on a white glass plate, the ink liquor is applied as a contaminant on the white glass plate, is exposed to the outdoors, and fades. The transparency (completely transparent = 100, opaque) = 0 indicates the case of the second embodiment of the present invention, Δ indicates the first embodiment, □ indicates a case where a titanium oxide photocatalyst is applied, and X indicates an untreated case. ing. According to this, it turned out that the membrane | film | coat of 2nd Embodiment has a decomposition characteristic comparable to a titanium oxide photocatalyst.

本発明を説明するための主要な装置の模式的ブロック図。The typical block diagram of the main apparatuses for demonstrating this invention. 本発明の噴射圧力と被膜厚さの関係を示すグラフ。The graph which shows the relationship between the injection pressure of this invention, and a film thickness. 本発明の処理時間と被膜厚さの関係を示すグラフ。The graph which shows the relationship between the processing time of this invention, and a film thickness. 本発明の処理面の反射率を示すグラフ。The graph which shows the reflectance of the process surface of this invention. 本発明の処理面の摩擦係数を示すグラフ。The graph which shows the friction coefficient of the process surface of this invention. 本発明の処理面の表面硬度を示すグラフ。The graph which shows the surface hardness of the process surface of this invention. 本発明の処理面の光電子分析(ESCA)結果を示すグラフ。The graph which shows the photoelectron analysis (ESCA) result of the processing surface of this invention. 第2実施形態の汚染分解性を示すグラフ。The graph which shows the pollution decomposability | degradability of 2nd Embodiment.

符号の説明Explanation of symbols

1 電荷水生成槽、11 原水供給口、12 電荷水取出し口、13 セラミック粒子装填部、14 セラミック粒子、2 磁界処理槽、21 電荷水送入口、22 磁界処理水取出し口、23a S極、23b N極、24 通過水路、3 被膜形成槽、31 磁界処理水送入口、32 処理排水取出し口、33 ワーク、34 ノズル、a 原水、b 電荷水、c 磁界処理水、d 処理排水。 DESCRIPTION OF SYMBOLS 1 Charge water production tank, 11 Raw water supply port, 12 Charge water extraction port, 13 Ceramic particle loading part, 14 Ceramic particle, 2 Magnetic field treatment tank, 21 Charge water supply port, 22 Magnetic field treatment water extraction port, 23a S pole, 23b N pole, 24 passage water channel, 3 film formation tank, 31 magnetic field treated water inlet, 32 treated drain outlet, 33 work, 34 nozzle, a raw water, b charged water, c magnetically treated water, d treated waste water.

Claims (9)

水と接触して少なくとも珪素、アルミニウムを溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を混合して含有するセラミック粒子またはそれら鉱石を被膜成分とした被膜を有するセラミック粒子と原水を接触させ、この原水に電荷を帯びた前記溶出成分を励起電流とともに溶出させて電荷水となし、この電荷水をワーク表面に噴射またはワークをこの電荷水に浸漬して接触させて、その表面に前記溶出成分の酸化物を主成分とする無機被膜を形成することを特徴とする無機被膜形成方法。 Ceramic particles containing a mixture of one or more ores selected from quartz porphyry, tourmaline, and barley stone that can elute at least silicon and aluminum in contact with water, or these ores as coating components The ceramic particles having a coating are brought into contact with the raw water, and the elution component charged with the raw water is eluted together with the excitation current to form the charged water, and the charged water is sprayed on the work surface or the work is immersed in the charged water. And forming an inorganic coating mainly composed of the oxide of the elution component on the surface thereof. 前記電荷水を電磁界内を通過させ誘導電流を発生させた後、前記被膜形成に供するようにした請求項1に記載の無機被膜形成方法。The inorganic film forming method according to claim 1, wherein the charged water is passed through an electromagnetic field to generate an induced current, and then used for forming the film. 前記電荷水を前記被膜形成に供するに際して、前記電荷水を10〜500N/cmWhen the charged water is used for forming the film, the charged water is 10 to 500 N / cm. 2 の圧力に調整してノズルから噴射して衝撃を与え、衝撃電流を発生させる請求項2に記載の無機被膜形成方法。The inorganic coating film forming method according to claim 2, wherein the impact current is generated by applying an impact by spraying from a nozzle while adjusting the pressure of the ink. 前記電荷水を前記被膜形成に供するに際して、液温を10〜50℃に保持する請求項1〜3のいずれかに記載の無機被膜形成方法。The inorganic film forming method according to any one of claims 1 to 3, wherein a liquid temperature is maintained at 10 to 50 ° C when the charged water is used for forming the film. 前記電荷水をワークに接触させる時間を1〜60秒とし、形成させる無機被膜の厚さを10〜100nmとする請求項1〜4のいずれかに記載の無機被膜形成方法。The method for forming an inorganic coating film according to any one of claims 1 to 4, wherein the time for contacting the charged water with the workpiece is 1 to 60 seconds, and the thickness of the inorganic coating film to be formed is 10 to 100 nm. 前記珪素、アルミニウムに加えてチタニウムを溶出成分として含むセラミック粒子を使用する請求項1〜5にいずれかに記載の無機被膜形成方法。The inorganic film forming method according to any one of claims 1 to 5, wherein ceramic particles containing titanium as an eluting component in addition to silicon and aluminum are used. 請求項1〜5に記載の無機被膜形成方法を行うための無機被膜形成装置であって、原水供給口を備え、その内部には、水と接触して少なくとも珪素、アルミニウムを溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を少なくとも表面部分に含むセラミック粒子を、原水供給口から送入された原水が該セラミック粒子に接触しながら通過可能に装填するとともに、生成した電荷水を取り出すための電荷水取出し口を備えた電荷水生成槽、前記電荷水を送り込む電荷水送入口と磁界処理水を取り出す磁界処理水取出し口を備え、内部に電磁界を形成するS極およびN極とを配置し、その間に電荷水の通過水路を設けた磁界処理槽、および槽内に配置したワーク表面に磁界処理水を接触させる手段を備えた被膜形成槽とから構成されることを特徴とする無機被膜形成装置。An inorganic coating film forming apparatus for performing the inorganic coating film forming method according to claim 1, comprising a raw water supply port, and a quartz spot capable of eluting at least silicon and aluminum in contact with water. Loaded with ceramic particles containing at least one or more kinds of ores selected from rock, tourmaline, and barley stone in the surface portion so that the raw water fed from the raw water supply port can pass while contacting the ceramic particles In addition, a charged water generating tank provided with a charged water outlet for taking out the generated charged water, a charged water inlet for feeding the charged water, and a magnetically treated water outlet for taking out the magnetically treated water are provided. A film forming tank provided with a means for bringing magnetically treated water into contact with the surface of a workpiece disposed in the tank, and a magnetic field treating tank in which a water passage for charged water is provided therebetween Inorganic coating forming apparatus characterized by being al configuration. 前記被膜形成槽内に配置したワーク表面に磁界処理水を噴射するノズルを備えた請求項7に記載の無機被膜形成装置。The inorganic film formation apparatus of Claim 7 provided with the nozzle which injects a magnetic field process water on the workpiece | work surface arrange | positioned in the said film formation tank. 前記珪素、アルミニウムに加えて、チタニウムを溶出し得る石英斑岩、電気石、麦飯石から選ばれた1種または2種以上の鉱石を少なくとも表面部分に含むセラミック粒子を装填するようにした請求項7または8に記載の無機被膜形成装置。In addition to the silicon and aluminum, ceramic particles containing at least one or more kinds of ores selected from quartz porphyry, tourmaline, and barley stone capable of eluting titanium are loaded at least in a surface portion. The inorganic film forming apparatus according to 7 or 8.
JP2004109974A 2003-05-02 2004-04-02 Inorganic film forming method and apparatus Expired - Lifetime JP3948671B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004109974A JP3948671B2 (en) 2003-05-02 2004-04-02 Inorganic film forming method and apparatus
US10/592,400 US20070272148A1 (en) 2004-04-02 2004-11-16 Method Of Forming Inorganic Film And Apparatus Therefor
PCT/JP2004/016983 WO2005099915A1 (en) 2004-04-02 2004-11-16 Inorganic film forming process and system
EP04821887A EP1733806A4 (en) 2004-04-02 2004-11-16 Inorganic film forming process and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003126889 2003-05-02
JP2004109974A JP3948671B2 (en) 2003-05-02 2004-04-02 Inorganic film forming method and apparatus

Publications (2)

Publication Number Publication Date
JP2004351408A JP2004351408A (en) 2004-12-16
JP3948671B2 true JP3948671B2 (en) 2007-07-25

Family

ID=34066943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109974A Expired - Lifetime JP3948671B2 (en) 2003-05-02 2004-04-02 Inorganic film forming method and apparatus

Country Status (1)

Country Link
JP (1) JP3948671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120010A (en) * 2008-10-22 2010-06-03 Emuzu Kc:Kk Method for forming inorganic coating film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126956A (en) * 2010-12-15 2012-07-05 Univ Of Fukui Method and device for modifying surface by applying inorganic material to base material
JP2013184544A (en) * 2012-03-07 2013-09-19 Todoroki Industry Co Ltd Anti-fouling coating apparatus and anti-fouling coating method for railroad vehicle
WO2017149741A1 (en) * 2016-03-04 2017-09-08 神田 智一 Coating liquid preparing device and coating device
JP2019005753A (en) * 2018-10-03 2019-01-17 神田 智一 Coating method
KR102402038B1 (en) * 2018-12-17 2022-05-24 도모카즈 간다 Equipment management system and equipment management method
JP6801135B2 (en) * 2020-04-20 2020-12-16 神田 智一 Equipment management system and equipment management method
CN111606493A (en) * 2020-06-04 2020-09-01 成都恩承科技股份有限公司 Method for zero-emission treatment of high-salinity wastewater through electric steam energy evaporation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120010A (en) * 2008-10-22 2010-06-03 Emuzu Kc:Kk Method for forming inorganic coating film

Also Published As

Publication number Publication date
JP2004351408A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
CN101068897B (en) Method for treating and sticking work pieces made of metal or a metal alloy comprising a hydrated oxide and/or hydroxide layer
JP3948671B2 (en) Inorganic film forming method and apparatus
Utech A guide to high-performance powder coating
CN108081151B (en) Nondestructive physical cleaning method for surface of metal part
JP4782214B2 (en) Plastic flexible composition for polishing and coating of surface protective material
TW201908130A (en) Housing and method of manufacturing the same
CA2339815C (en) Environmental wipe solvent compositions and processes
WO2005099915A1 (en) Inorganic film forming process and system
JPH09313948A (en) Resin having photocatalyst surface, resin coating material and its production
CN105132872B (en) A kind of improved vacuum splashing and plating surface treatment method
Liberto User's guide to powder coating
US6989359B2 (en) Environmental wipe solvent compositions and processes
Kozhukharov Advanced Multifunctional Corrosion Protective Coating Systems for Light-Weight Aircraft Alloys-Actual Trends and Challenges
Pedeferri et al. Corrosion Prevention by Coatings
JP2010120010A (en) Method for forming inorganic coating film
CN111283556A (en) Metal material surface treatment process
KR20210096654A (en) Processed Particles and Substrates
JP3644377B2 (en) Rust stabilization treatment agent for steel and rust stabilization treatment steel
CN117583222A (en) Spraying processing method
Possart et al. The state of metal surfaces after blasting treatment Part I: Technical aluminium
JP3013831U (en) Base material coating structure
CN117160825A (en) Glue process machine coating method for multifunctional PET coating film
Fleming et al. Surface preparation: Practices, equipment, and standards through 25 years
JP2023155780A (en) Method and apparatus for depositing photocatalyst nano inorganic film
Neškudla et al. Determining the Suitability of Various Surface Treatment Methods with the Control of Blasting Time with Respect to the Quality of Powder Coating

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Ref document number: 3948671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160427

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250