JPH01192131A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01192131A
JPH01192131A JP1778188A JP1778188A JPH01192131A JP H01192131 A JPH01192131 A JP H01192131A JP 1778188 A JP1778188 A JP 1778188A JP 1778188 A JP1778188 A JP 1778188A JP H01192131 A JPH01192131 A JP H01192131A
Authority
JP
Japan
Prior art keywords
layer
buried
concentration
type
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1778188A
Other languages
Japanese (ja)
Inventor
Masahide Inuishi
犬石 昌秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1778188A priority Critical patent/JPH01192131A/en
Publication of JPH01192131A publication Critical patent/JPH01192131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable a semiconductor device to be highly integrated while preventing any erroneous operation due to day as well as a latch up in a MOS element from occurring by a method wherein impurities are ion-implanted with high energy capable of reaching from the surface of a semiconductor substrate to the position to form buried layers. CONSTITUTION:A buried collector 2 comprising bipolar element and a low resistance well layer 3 comprising PMOS element are respectively formed as buried layers below a medium concentration n type region 8 by selectively ion-implanting a high concentration n type impurity at accelerating voltage with high energy exceeding 1MeV using resist 23 as masks. Successively, an isolating layer 4 which PN junction isolates the buried electrode 2 and the low resistance well layer 3 is formed to reach an inversion preventive implanted layer 11 below the medium concentration n type region 8 corresponding to boundary part between the bipolar element and PMOS element by selectively ion-implanting a high concentration p type impurity at accelerating voltage exceeding 1MeV using resist 24 as masks while another low resistance well layer 5 as a buried layer is formed in a part to reach inversion preventing implanted layer formed on the region 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は埋込層を有する半導体装置の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device having a buried layer.

〔従来の技術〕[Conventional technology]

第4図(a)〜(k)はこの種の半導体装置の製造方法
の従来例(日経[マイクロデバイスJ 1986年11
月号に掲a)を示す断面図であり、以下の工程によって
行われる。
FIGS. 4(a) to 4(k) show a conventional example of the manufacturing method of this type of semiconductor device (Nikkei [Microdevice J, November 1986).
It is a sectional view showing a) listed in the monthly issue, and is performed by the following steps.

この従来の製造方法は、互いに隣接し合うバイポーラ素
子と0MO8とを有する集積半導体装置を製造する場合
についてのものであって、まずレジストをマスクとして
p型半導体基板1の表面からp型の不純物を選択的にイ
オン注入することにより、バイポーラ素子の埋込コレク
タとなる注入層2aおよび0MO8のうちのPMO8素
子の低抵抗ウェル層となる注入層3aが形成され、同様
にp型の不純物を選択的にイオン注入することにより、
バイポーラ素子の埋込コレクタ(n型領域)とこれに隣
接するPMO8素子の低抵抗ウェル層(n型領域)とを
PN接合分離する分離層となる注入14aおよび0MO
8のうちのNMO8素子の低抵抗ウェル層となる注入層
5aが形成される(第4図(a))。
This conventional manufacturing method is for manufacturing an integrated semiconductor device having a bipolar element and an MO8 adjacent to each other. First, p-type impurities are removed from the surface of a p-type semiconductor substrate 1 using a resist as a mask. By selectively implanting ions, an implantation layer 2a that will become the buried collector of the bipolar element and an implantation layer 3a that will become the low resistance well layer of the PMO8 element among the 0MO8 elements are formed, and p-type impurities are similarly selectively implanted. By implanting ions into
Implantation 14a and 0MO to serve as a separation layer for PN junction isolation between the buried collector (n-type region) of the bipolar element and the low-resistance well layer (n-type region) of the PMO8 element adjacent thereto.
An injection layer 5a which becomes a low-resistance well layer of the NMO8 element among the NMO8 elements is formed (FIG. 4(a)).

つぎに上記半導体基板1の表面に、1014〜1017
/co+3のn型不純物を含む半導体層6をエピタキシ
ャル成長させることにより、上記した各注入層2a、3
a、4a、5aはそれぞれp型半導体基板1と半導体層
6の境界部に介在するバイポーラ素子の埋込コレクタ2
9分離層4.CMO8の低抵抗ウェル層3,5などの埋
込層とされる(第4図(b))。
Next, on the surface of the semiconductor substrate 1, 1014 to 1017
By epitaxially growing a semiconductor layer 6 containing an n-type impurity of /co+3, each of the above-mentioned injection layers 2a, 3
a, 4a, and 5a are buried collectors 2 of bipolar elements interposed at the boundary between the p-type semiconductor substrate 1 and the semiconductor layer 6, respectively.
9 separation layer 4. It is used as a buried layer such as the low resistance well layers 3 and 5 of CMO8 (FIG. 4(b)).

続いてレジストをマスクとして、上記半導体層6の表面
のうち、埋込コレクタ2.低抵抗ウェル層3に対応する
領域からn型不純物をイオン注入し熱処理して半導体層
6内にn型不純物を拡散させることにより、埋込コレク
タ2の上にバイポーラ素子の中濃度n型領域8aが、低
抵抗ウェル層3の上にPMO8素子の中濃度n型領域8
bがそれぞれ形成され、同様にn型不純物を半導体層6
の表面のうち分離層4.低抵抗ウェル層5に対応する領
域からイオン注入し熱処理して半導体M6内にn型不純
物を拡散させることにより、前記した分離層4の上にこ
の分離層4に達しバイポーラ素子の中濃度n型領域8a
とPMO8素子の中濃度n型領域8bとをPN接合分離
する分離領域9が、また、低抵抗ウェル層5の上にNM
O8素子の中濃度n型領域10がそれぞれ形成される(
第4図(C))。
Subsequently, using a resist as a mask, the buried collector 2 . By ion-implanting n-type impurities from a region corresponding to the low-resistance well layer 3 and performing heat treatment to diffuse the n-type impurities into the semiconductor layer 6, a medium concentration n-type region 8a of the bipolar element is formed on the buried collector 2. However, the medium concentration n-type region 8 of the PMO8 element is placed on the low resistance well layer 3.
Similarly, n-type impurities are added to the semiconductor layer 6.
Separation layer 4. By implanting ions from a region corresponding to the low-resistance well layer 5 and performing heat treatment to diffuse n-type impurities into the semiconductor M6, the medium-concentration n-type impurities reach the above-described isolation layer 4 and form a medium-concentration n-type impurity of the bipolar element. Area 8a
An isolation region 9 for separating the medium-concentration n-type region 8b of the PMO8 element by a PN junction is also provided on the low-resistance well layer 5.
Medium concentration n-type regions 10 of O8 elements are formed (
Figure 4(C)).

ついで上記した分離領域9および中濃度n型領域10の
一部にn型不純物を選択的に注入して反転防止用注入層
11がそれぞれ形成され(第4図(d))、さらにこれ
ら注入層11およびバイポーラ素子の中濃度n型領域8
aの一部の上に酸化工程によって厚い絶縁膜12が選択
的に形成される(第4図(e))。
Next, an n-type impurity is selectively implanted into a portion of the isolation region 9 and medium concentration n-type region 10 to form an inversion prevention implantation layer 11 (FIG. 4(d)), and these implantation layers 11 and medium concentration n-type region 8 of bipolar element
A thick insulating film 12 is selectively formed on a portion of a by an oxidation process (FIG. 4(e)).

つぎにバイポーラ素子の中濃度n型領域8aに形成され
た絶縁膜12をマスクとして、中濃度n型頭1ii!8
aの表面からn型不純物を選択的にイオン注入し熱拡散
処理を行うことにより、埋込コレクタ2に届くn型不純
物層からなるコレクタ13が形成される(第4図(f)
)。
Next, using the insulating film 12 formed in the medium concentration n-type region 8a of the bipolar element as a mask, the medium concentration n-type head 1ii! 8
By selectively ion-implanting n-type impurities from the surface of a and performing a thermal diffusion process, a collector 13 made of an n-type impurity layer that reaches the buried collector 2 is formed (FIG. 4(f)).
).

続いてPMO8素子のしきい値電圧を高く、NMO8素
子のしきい値電圧を低く設定する目的で、中濃度n型領
域8bおよび中濃度n型領域10にn型不純物をイオン
注入して注入層(図示せず)が形成されたあと、中濃度
のn型領域8bおよび中濃度n型領域10の表面にPM
O8素子およびNMO8素子のゲートとなる絶縁膜14
.n型半導体層15がそれぞれ堆積形成され、さらに中
濃度p型頭110に対しては高濃度のn型不純物を選択
的にイオン注入し熱拡散処理することにより、高濃度n
型領域であるソース・ドレイン領域16が形成され、こ
れにより0MO8側ではNMO3素子が形成される(第
4図(g))。
Next, in order to set the threshold voltage of the PMO8 elements high and the NMO8 elements low, n-type impurity ions are implanted into the medium concentration n-type region 8b and the medium concentration n-type region 10 to form an implanted layer. (not shown), PM is formed on the surfaces of the medium concentration n-type region 8b and the medium concentration n-type region 10.
Insulating film 14 serving as the gate of the O8 element and the NMO8 element
.. N-type semiconductor layers 15 are deposited, and high-concentration n-type impurities are selectively ion-implanted into the medium-concentration p-type head 110 and subjected to thermal diffusion treatment to form high-concentration n-type impurities.
A source/drain region 16, which is a type region, is formed, and thereby an NMO3 element is formed on the 0MO8 side (FIG. 4(g)).

つぎにバイポーラ素子の中濃度n型領域8aに対して中
濃度のn型不純物を選択的にイオン注入することにより
ベース領域17が形成され(第4図(h))、このベー
ス領域17の一部と0MO8側の中濃度n型領域8bに
対して高IIaのn型不純物を選択的にイオン注入し熱
処理することにより、高濃度ベース領域17aと高濃度
p型頭域であるソース・ドレイン領域18が形成され、
これにより0MO8側ではPMO8素子が形成される(
第4図(i))。
Next, a base region 17 is formed by selectively ion-implanting a medium concentration n-type impurity into the medium concentration n-type region 8a of the bipolar element (FIG. 4(h)). By selectively ion-implanting a high IIa n-type impurity into the middle-concentration n-type region 8b on the MO8 side and performing heat treatment, a high-concentration base region 17a and a source/drain region which is a high-concentration p-type head region are formed. 18 was formed,
As a result, a PMO8 element is formed on the 0MO8 side (
Figure 4(i)).

続いて半導体基板全面に薄い酸化1119が形成され、
このあとバイポーラ素子のベース領域17に対応する上
記酸化膜19の一部を除去してベース領域17に届く高
濃度n型半導体層からなるエミッタ領域20がパターン
形成される(第4図(j))。
Subsequently, a thin oxide 1119 is formed on the entire surface of the semiconductor substrate,
After that, a part of the oxide film 19 corresponding to the base region 17 of the bipolar element is removed, and an emitter region 20 made of a highly doped n-type semiconductor layer reaching the base region 17 is patterned (FIG. 4(j)). ).

最後に半導体基板全面に層間絶縁11121が形成され
、この層間絶縁膜21に選択的に形成される開孔より各
素子にコンタクトする配線22が形成される(第4図(
k))。
Finally, interlayer insulation 11121 is formed on the entire surface of the semiconductor substrate, and wiring 22 that contacts each element is formed through openings selectively formed in this interlayer insulation film 21 (see FIG. 4).
k)).

(発明が解決しようとする課題) 従来の半導体装置の製造方法は上記の工程により行われ
るため、バイポーラの埋込コレクタ2゜0MO8の低抵
抗ウェル層3.5などの高濃度埋込層が、第4図(b)
に示す高温(950〜1100℃)下でのエピタキシャ
ル成長や第4図(C)に示す高温・長時間の熱拡散処理
のさいに横方向に拡がってしまい、このとき設計寸法が
小さいと例えば埋込コレクタ2(n型領域)と分離層4
(p型頭域)とが接してこれらの間の接合容量が増大し
PN接合耐圧が劣化することになり、このため高集積化
を図れないという問題点があった。
(Problems to be Solved by the Invention) Since the conventional manufacturing method of a semiconductor device is performed by the above steps, a high concentration buried layer such as a low resistance well layer 3.5 of a bipolar buried collector 2°0 MO8 is Figure 4(b)
During epitaxial growth at high temperatures (950 to 1,100°C) as shown in Figure 4 (C) and thermal diffusion treatment at high temperatures and for a long time as shown in Figure 4 (C), it spreads laterally. Collector 2 (n-type region) and separation layer 4
(p-type head region), the junction capacitance between them increases and the PN junction withstand voltage deteriorates, resulting in a problem that high integration cannot be achieved.

また上記したエピタキシャル成長や熱拡散処理のさい、
埋込コレクタ2.低抵抗ウェル113.5は深さ方向に
も拡散するので、その拡散によって0MO8のしきい値
電圧などの電気特性に影響が及ばないようにエピタキシ
ャル層の膜厚を十分厚く形成しなければならないなど製
造上の制約を受けるだけでなく、低抵抗ウェル3,5の
不純物分布の拡がりによって、α線に伴い生成する少数
キャリアに対するこれら低抵抗ウェル層3.5のポテン
シャルバリア効果も減殺されてしまうなどの問題点もあ
った。
Also, during the epitaxial growth and thermal diffusion treatment mentioned above,
Embedded collector 2. Since the low resistance well 113.5 also diffuses in the depth direction, the epitaxial layer must be formed sufficiently thick so that the diffusion does not affect the electrical characteristics such as the threshold voltage of 0MO8. In addition to being subject to manufacturing constraints, the spread of the impurity distribution in the low resistance wells 3 and 5 also reduces the potential barrier effect of these low resistance well layers 3 and 5 against minority carriers generated with α rays. There were also problems.

この発明は、このような問題点を解消するためになされ
たもので、高集積化が可能でα線に起因する誤動作やM
O8素子におけるラッチアップの防止にも有効な半導体
装置の製造方法を得ることを目的とする。
This invention was made to solve these problems, and it enables high integration and prevents malfunctions caused by alpha rays and M
An object of the present invention is to obtain a method for manufacturing a semiconductor device that is also effective in preventing latch-up in O8 elements.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、半導体基板の
表面から、埋込層を形成すべき位置まで到達可能な島エ
ネルギーで不純物をイオン注入することにより埋込層を
形成するものである。
A method for manufacturing a semiconductor device according to the present invention forms a buried layer by implanting impurity ions from the surface of a semiconductor substrate with an island energy that can reach the position where the buried layer is to be formed.

〔作用〕[Effect]

この発明においては、高エネルギーのイオン注入により
埋込層が形成されるので、その侵に高温かつ長時間の熱
処理を受けることがなく、埋込層の横方向への拡散が抑
えられ、また深さ方向への拡散も抑えられるので、α線
による誤動作やラッチアップの防止に有効な埋込層の形
成が可能となる。
In this invention, since the buried layer is formed by high-energy ion implantation, there is no need for high-temperature and long-term heat treatment during the ion implantation, and lateral diffusion of the buried layer is suppressed, and deep Since diffusion in the horizontal direction is also suppressed, it is possible to form a buried layer that is effective in preventing malfunctions and latch-ups caused by alpha rays.

〔実施例〕〔Example〕

第1図(a)〜(d)はこの発明による半導体装置の製
造方法の一実施例の一部工程を示す断面図であり、以下
の工程によって行われる。
FIGS. 1(a) to 1(d) are cross-sectional views showing some steps of an embodiment of the method for manufacturing a semiconductor device according to the present invention, which is performed by the following steps.

この実施例の製造方法は、先述した従来例と同様に互い
に隣接し合うバイポーラ素子と0MO8とを有する集積
半導体装置を製造する場合についてのものであって、ま
ずp型半導体基板1の表面からn型の不純物およびp型
の不純物を選択的にイオン注入し拡散させることにより
、バイポーラ素子と、0MO8のうちのPMO8素子の
形成が予定される部分とに中濃度n型領域8が、また0
MO8のうちNMO8素子の形成が予定される部分に中
濃度n型領域10がそれぞれ形成される(第1図(a)
)。
The manufacturing method of this embodiment is for manufacturing an integrated semiconductor device having bipolar elements and 0MO8 adjacent to each other as in the conventional example described above. By selectively ion-implanting and diffusing p-type impurities and p-type impurities, a medium concentration n-type region 8 is also formed in the bipolar element and the part where the PMO8 element of the 0MO8 is planned to be formed.
Medium concentration n-type regions 10 are formed in the portions of MO8 where NMO8 elements are planned to be formed (see FIG. 1(a)).
).

つぎに上記した中濃度のn型領域8および中濃度n型領
域10の一部に対し選択的に、p型の不純物を低エネル
ギーの加速電圧でイオン注入することにより、反転防止
用注入層11がそれぞれ形成され、続いてこれら注入層
11およびバイポーラ素子側の中濃度n型領域8の一部
の上に酸化工程によって厚い絶縁ll112が選択的に
形成される(第1図(b))。
Next, a p-type impurity is ion-implanted into a part of the medium-concentration n-type region 8 and medium-concentration n-type region 10 using a low-energy accelerating voltage, thereby forming the inversion prevention implantation layer 11. are formed respectively, and then a thick insulating layer 112 is selectively formed on these injection layers 11 and a part of the medium concentration n-type region 8 on the bipolar element side by an oxidation process (FIG. 1(b)).

ついでレジスト23をマスクとして、1Mev以上の高
エネルギーの加速電圧で高濃度のn型不純物を選択的に
イオン注入することにより、バイポーラ素子およびPM
O8素子の形成が予定される中濃度n型頭1i18の下
(半導体基板1の表面から1μm以上深い領域)に、バ
イポーラ素子の埋込コレクタ2およびPMO8素子の低
抵抗ウェル層3が埋込層としてそれぞれ形成される(第
1図(C))。
Next, using the resist 23 as a mask, high concentration n-type impurities are selectively ion-implanted at a high-energy acceleration voltage of 1 Mev or more, thereby forming bipolar elements and PM.
A buried collector 2 of the bipolar element and a low resistance well layer 3 of the PMO8 element are buried under the medium concentration n-type head 1i18 where the O8 element is planned to be formed (a region deeper than 1 μm from the surface of the semiconductor substrate 1). (Fig. 1(C)).

続いて同様にレジスト24をマスクとして、1MeV以
上の加速電圧で高濃度のn型不純物を選択的にイオン注
入することにより、バイポーラ素子とPMO8素子の境
界部に相当する中濃度n型領域8の下の部分に上記した
埋込コレクタ2(n型頭[)と低抵抗ウェル層3(n型
領域)をPN接合分離する分m層4が、その上に形成さ
れた反転防止用注入層11に届くように形成されるとと
もに、NMO8素子の形成が予定される中濃度p型頭t
aioの下の部分には低抵抗ウェル層5が埋込層として
形成される(第1図(d))。そして、上記分離層4の
形成により、中濃度n型領域8はバイポーラ素子側の領
域8aとPMO8素子側の領域8bとに分離される。
Subsequently, using the resist 24 as a mask, a high concentration n-type impurity is selectively ion-implanted at an accelerating voltage of 1 MeV or higher to form a medium-concentration n-type region 8 corresponding to the boundary between the bipolar element and the PMO8 element. The m layer 4 for separating the buried collector 2 (n-type head [) and the low-resistance well layer 3 (n-type region) by PN junction] is formed in the lower part, and an injection layer 11 for preventing inversion is formed thereon. The medium concentration p-type head t, in which the NMO8 element is planned to be formed, will be formed to reach the
A low resistance well layer 5 is formed as a buried layer under the aio (FIG. 1(d)). By forming the separation layer 4, the medium concentration n-type region 8 is separated into a region 8a on the bipolar element side and a region 8b on the PMO8 element side.

以後は従来の製造方法を示す第3図における(f)〜(
k)と同様の工程に従うことにより、バイポーラ素子と
0MO8とを有する集積半導体装置が得られる。
From now on, (f) to ( in FIG. 3 showing the conventional manufacturing method) will be explained.
By following the same steps as k), an integrated semiconductor device having a bipolar element and 0MO8 can be obtained.

このような製造方法によれば、エピタキシャル層の形成
時のような高温かつ長時間の熱処理が省略できるため、
埋込層の拡散が有効に防止される。
According to such a manufacturing method, it is possible to omit high-temperature and long-term heat treatment such as when forming an epitaxial layer.
Diffusion of the buried layer is effectively prevented.

また、埋込層形成後にある程度の熱処理を受けても、埋
込層の拡散はほとんどない(下記実験例参照)。さらに
、高エネルギーのイオン打込みを用いた場合には、半導
体基板1を形成する単結晶シリコン内での欠陥の生成も
比較的少ない。
Further, even if the buried layer is subjected to a certain degree of heat treatment after formation, there is almost no diffusion of the buried layer (see experimental example below). Furthermore, when high-energy ion implantation is used, relatively few defects are generated in the single crystal silicon forming the semiconductor substrate 1.

第2図は加速電圧1.2MeVでドース量1X1013
/C1112のボロンをシリコン基板にイオン注入した
ときの深さ方向についての不純物濃度分布を示し、第3
図は同じ条件でボロンをシリコン基板にイオン注入した
あと、1000℃、100分の熱処理を行ったときの深
さ方向についての不純物濃度分布を示す。
Figure 2 shows an acceleration voltage of 1.2 MeV and a dose of 1X1013.
This shows the impurity concentration distribution in the depth direction when boron of /C1112 is ion-implanted into a silicon substrate.
The figure shows the impurity concentration distribution in the depth direction when boron ions were implanted into a silicon substrate under the same conditions and then heat treatment was performed at 1000° C. for 100 minutes.

第2図に示す不純物濃度分布から明らかなように、第1
図(c)、(d)で示す工程での高エネルギー下のイオ
ン注入による埋込コレクタ2、低抵抗ウェル層3,5、
分離層4の形成において、これらの埋°込層は十分深い
領域に高濃度で急な濃度勾配をなして形成されているこ
とがわかる。したがって、これら埋込層の形成のさいに
、不純物がp型半導体基板1の表層部に影響を及ぼすこ
とはない。
As is clear from the impurity concentration distribution shown in Figure 2, the first
A buried collector 2, low resistance well layers 3, 5, by ion implantation under high energy in the steps shown in FIGS. (c) and (d),
It can be seen that in forming the separation layer 4, these buried layers are formed in a sufficiently deep region with high concentration and a steep concentration gradient. Therefore, during the formation of these buried layers, impurities do not affect the surface layer portion of p-type semiconductor substrate 1.

また第3図に示す不純物濃度分布は、高エネルギー下の
イオン注入により形成される埋込層が、その活性化のた
めに熱処理を加えた程度ではあまり影響を受けないこと
を示している。
Further, the impurity concentration distribution shown in FIG. 3 shows that the buried layer formed by ion implantation under high energy is not significantly affected by heat treatment for activation.

(発明の効果) この発明は以上説明したとおり、高エネルギーのイオン
注入によって埋込層を急な濃度勾配で形成できるので、
高温かつ長時間の熱処理を省略可能であり、埋込層の横
方向および深さ方向への拡散が抑えられ、半導体装置の
高集積化が可能になるとともに、MO8素子のα線によ
り生じる少数キャリヤによる誤動作やラッチアップを確
実に防止できる効果がある。
(Effects of the Invention) As explained above, the present invention can form a buried layer with a steep concentration gradient by high-energy ion implantation.
High-temperature and long-term heat treatment can be omitted, diffusion of the buried layer in the lateral and depth directions can be suppressed, and high integration of semiconductor devices can be achieved. This has the effect of reliably preventing malfunctions and latch-ups due to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)はこの発明による半導体装置の製
造方法の一実施例の一部工程を示す断面図、第2図およ
び第3図は高エネルギー下でのイオン注入による不純物
濃度分布を示すグラフ、第4図(a)〜(k)は従来の
半導体装置の製造方法を示す断面図である。 図において、1はp型半導体基板、2は埋込コレクタ(
埋込層)、3.5は低抵抗ウェル層(埋込層)、4は分
離層(埋込層)である。 なお、各図中同一符号は同一または相当部分を示す。
FIGS. 1(a) to (d) are cross-sectional views showing some steps of an embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIGS. 2 and 3 show impurity concentration by ion implantation under high energy. Graphs showing the distribution and FIGS. 4(a) to 4(k) are cross-sectional views showing a conventional method of manufacturing a semiconductor device. In the figure, 1 is a p-type semiconductor substrate, 2 is a buried collector (
3.5 is a low resistance well layer (buried layer), and 4 is a separation layer (buried layer). Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)埋込層を有する半導体装置の製造方法において、
半導体基板の表面から前記埋込層を形成すべき位置にま
で到達可能な高エネルギーで不純物をイオン注入するこ
とにより前記埋込層を形成することを特徴とする半導体
装置の製造方法。
(1) In a method for manufacturing a semiconductor device having a buried layer,
A method for manufacturing a semiconductor device, characterized in that the buried layer is formed by implanting impurity ions with high energy that can reach the position where the buried layer is to be formed from the surface of the semiconductor substrate.
JP1778188A 1988-01-27 1988-01-27 Manufacture of semiconductor device Pending JPH01192131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1778188A JPH01192131A (en) 1988-01-27 1988-01-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1778188A JPH01192131A (en) 1988-01-27 1988-01-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01192131A true JPH01192131A (en) 1989-08-02

Family

ID=11953261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1778188A Pending JPH01192131A (en) 1988-01-27 1988-01-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01192131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871215A1 (en) * 1997-04-08 1998-10-14 Matsushita Electronics Corporation Method of fabricating a semiconductor integrated circuit device
US5889315A (en) * 1994-08-18 1999-03-30 National Semiconductor Corporation Semiconductor structure having two levels of buried regions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889315A (en) * 1994-08-18 1999-03-30 National Semiconductor Corporation Semiconductor structure having two levels of buried regions
EP0871215A1 (en) * 1997-04-08 1998-10-14 Matsushita Electronics Corporation Method of fabricating a semiconductor integrated circuit device
US6093591A (en) * 1997-04-08 2000-07-25 Matsushita Electronics Corporation Method of fabricating a semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
JP2004221543A (en) System and method to isolate silicon germanium dislocation region by using strained silicon cmos
JP2002501673A (en) Method of controlling dopant concentration using transient enhanced diffusion before gate formation in device
JPH09232332A (en) Semiconductor device
JPH04363046A (en) Manufacture of semiconductor device
JPH0817841A (en) Manufacture of semiconductor substrate and semiconductor device
SU773793A1 (en) Method of manufacturing semiconductor integrated bipolar circuits
JP4951872B2 (en) Manufacturing method of semiconductor device
JPH01192131A (en) Manufacture of semiconductor device
JP3252898B2 (en) Method for manufacturing semiconductor device
JP2817247B2 (en) Semiconductor device
JPS624339A (en) Semiconductor device and manufacture thereof
JP2001093985A (en) Silicon carbide semiconductor device and its manufacturing method
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JPH01220438A (en) Manufacture of semiconductor device
JPH024134B2 (en)
JP3035915B2 (en) Semiconductor device and manufacturing method thereof
JPS633448A (en) Compllementary mos device and manufacture thereof
JPS6351627A (en) Impurity diffusing method
JPS63144567A (en) Manufacture of semiconductor device
JPH05283624A (en) Bimos semiconductor device
JPH0415950A (en) Complementary field-effect semiconductor device and manufacture thereof
JPH06296019A (en) Semiconductor device and manufacture thereof
JPH0629306A (en) Semiconductor device and manufacture thereof
JPH025429A (en) Manufacture of lateral pnp transistor
JPS61139057A (en) Manufacture of semiconductor integrated circuit device