JPH05283624A - Bimos semiconductor device - Google Patents

Bimos semiconductor device

Info

Publication number
JPH05283624A
JPH05283624A JP11086492A JP11086492A JPH05283624A JP H05283624 A JPH05283624 A JP H05283624A JP 11086492 A JP11086492 A JP 11086492A JP 11086492 A JP11086492 A JP 11086492A JP H05283624 A JPH05283624 A JP H05283624A
Authority
JP
Japan
Prior art keywords
layer
buried layer
bipolar
diffusion
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11086492A
Other languages
Japanese (ja)
Inventor
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11086492A priority Critical patent/JPH05283624A/en
Publication of JPH05283624A publication Critical patent/JPH05283624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve performance by reducing a collector series resistance of a bipolar part and also to improve reliability by preventing punch-through and soft error of an MOS part. CONSTITUTION:A thick buried layer 15 is formed in a bipolar part 12 in an interface between an Si substrate 11 and an epitaxial layer 21, and a thin buried layer 33 is formed in an NMOS part 14. A potential barrier is formed by an existance of a buried layer 33 and soft error resistance of an NMOS part 14 is high; however, since the buried layer 33 is thin, a punch through is hard to be generated between the buried layer 33 and a diffusion layer 37 even if the epitaxial layer 21 is thin. Meanwhile, the buried layer 15 of the bipolar part 12 can be made thick and the epitaxial layer 21 can be made thin as mentioned above. Therefore, a collector series resistance can be reduced by making the buried layer 15 a collector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バイポーラ部とMOS
部とを有するBiMOS半導体装置に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a bipolar portion and a MOS.
And a BiMOS semiconductor device having a section.

【0002】[0002]

【従来の技術】図3は、BiMOS半導体装置の一種で
あるBiCMOS−SRAMの第1従来例を示してい
る。この第1従来例では、P型のSi基板11の表面の
うちで、バイポーラ部12、PMOS部13及びNMO
S部14の夫々に、N+ 型、P+型及びN+ 型の埋込み
層15〜17が選択的に形成されている。
2. Description of the Related Art FIG. 3 shows a first conventional example of a BiCMOS-SRAM which is a kind of BiMOS semiconductor device. In the first conventional example, of the surface of the P-type Si substrate 11, the bipolar part 12, the PMOS part 13 and the NMO are formed.
N + type, P + type and N + type buried layers 15 to 17 are selectively formed in each of the S portions 14.

【0003】Si基板11上には、抵抗率が1Ωcm程
度で厚さが1.0〜1.5μm程度であるN型のエピタ
キシャル層21が積層されており、Si基板11とエピ
タキシャル層21とでSi基体22が構成されている。
そして、エピタキシャル層21のうちでNMOS部14
には、P型のウェル23が形成されている。
An N type epitaxial layer 21 having a resistivity of about 1 Ωcm and a thickness of about 1.0 to 1.5 μm is laminated on the Si substrate 11, and the Si substrate 11 and the epitaxial layer 21 are composed of the N type epitaxial layer 21. The Si base 22 is configured.
Then, in the epitaxial layer 21, the NMOS portion 14
A P-type well 23 is formed in the.

【0004】バイポーラ部12、PMOS部13及びN
MOS部14は、エピタキシャル層21の表面で素子分
離用のSiO2 膜24に囲まれており、更にバイポーラ
部12は、SiO2 膜24からエピタキシャル層21を
貫通してSi基板11にまで達する素子分離用のP型の
拡散層25に囲まれている。
Bipolar section 12, PMOS section 13 and N
The MOS portion 14 is surrounded by the SiO 2 film 24 for element isolation on the surface of the epitaxial layer 21, and the bipolar portion 12 penetrates the epitaxial layer 21 from the SiO 2 film 24 to reach the Si substrate 11. It is surrounded by a P-type diffusion layer 25 for separation.

【0005】図4は、BiCMOS−SRAMの第2従
来例を示している。この第2従来例は、PMOS部13
及びNMOS部14に、P+ 型及びN+ 型の埋込み層1
6、17が夫々形成されていないことを除いて、図3に
示した第1従来例と実質的に同様の構成を有している。
FIG. 4 shows a second conventional example of a BiCMOS-SRAM. In this second conventional example, the PMOS section 13
And the NMOS section 14 in the P + type and N + type buried layers 1
The structure is substantially the same as that of the first conventional example shown in FIG. 3, except that 6 and 17 are not formed.

【0006】[0006]

【発明が解決しようとする課題】ところが、図3に示し
た第1従来例の様にNMOS部14にN+ 型の埋込み層
17が形成されていると、拡散係数の小さな例えばSb
を用いて埋込み層17を形成したとしても、埋込み層1
7の不純物濃度が高いので、埋込み層17で0.5μm
程度の上方拡散が生じる。
However, when the N + type buried layer 17 is formed in the NMOS section 14 as in the first conventional example shown in FIG. 3, the diffusion coefficient is small, for example, Sb.
Even if the buried layer 17 is formed by using
7 has a high impurity concentration, the buried layer 17 has a thickness of 0.5 μm.
A degree of upward diffusion occurs.

【0007】しかも、SRAMのメモリセルを構成する
NMOS部14では、ゲート電極である多結晶Si膜
(図示せず)とソース・ドレインである拡散層(図1の
37)とを埋込みコンタクトで接続する場合が多いが、
この埋込みコンタクト部でエピタキシャル層21が0.
1〜0.2μm程度だけ掘れる。
Moreover, in the NMOS portion 14 which constitutes the memory cell of the SRAM, the polycrystalline Si film (not shown) which is the gate electrode and the diffusion layer (37 in FIG. 1) which is the source / drain are connected by the buried contact. I often do
In this buried contact portion, the epitaxial layer 21 has a thickness of 0.
Only 1 to 0.2 μm can be dug.

【0008】一方、設計ルールが0.8μm以降のBi
CMOS−SRAMでは、バイポーラ部12の性能を向
上させるために、上述の様に1.5μm以下と薄いエピ
タキシャル層21が要求されている。従って、NMOS
部14のソース・ドレインと埋込み層17との間の距離
が短く、これらの間でパンチスルーが生じ易い。
On the other hand, Bi whose design rule is 0.8 μm or later
In the CMOS-SRAM, in order to improve the performance of the bipolar part 12, the thin epitaxial layer 21 of 1.5 μm or less is required as described above. Therefore, NMOS
The distance between the source / drain of the portion 14 and the buried layer 17 is short, and punch-through easily occurs between them.

【0009】これに対して、図4に示した第2従来例の
様にNMOS部14にN+ 型の埋込み層17が形成され
ていなければ、上述の様なパンチスルーは生じない。し
かし、埋込み層17が形成されていないと、α線によっ
てSi基板11で発生した電子・正孔対のうちの電子が
メモリセルの記憶ノードに到達するので、ソフトエラー
耐性が低い。
On the other hand, if the N + type buried layer 17 is not formed in the NMOS portion 14 as in the second conventional example shown in FIG. 4, the punch through described above does not occur. However, if the buried layer 17 is not formed, the electrons of the electron-hole pairs generated in the Si substrate 11 due to the α rays reach the storage node of the memory cell, so that the soft error resistance is low.

【0010】つまり、図3、4に示した第1及び第2従
来例の何れにおいても、エピタキシャル層21を薄くし
てバイポーラ部12の性能を高めつつ、NMOS部14
のパンチスルーを防止し且つソフトエラー耐性を向上さ
せて信頼性を高めるということができなかった。
That is, in both the first and second conventional examples shown in FIGS. 3 and 4, the epitaxial layer 21 is thinned to improve the performance of the bipolar portion 12, while the NMOS portion 14 is
It was not possible to prevent punch through and improve soft error resistance to improve reliability.

【0011】[0011]

【課題を解決するための手段】請求項1のBiMOS半
導体装置では、第1の半導体層11とこの第1の半導体
層11上に積層されている第2の半導体層21とで半導
体基体22が構成されており、前記第1及び第2の半導
体層11、21同士の界面に拡散層15、33が形成さ
れており、前記拡散層15、33の厚さがバイポーラ部
12では相対的に厚く、MOS部13、14では相対的
に薄い。
According to another aspect of the present invention, there is provided a BiMOS semiconductor device in which a semiconductor substrate 22 is composed of a first semiconductor layer 11 and a second semiconductor layer 21 laminated on the first semiconductor layer 11. The diffusion layers 15 and 33 are formed at the interfaces between the first and second semiconductor layers 11 and 21, and the diffusion layers 15 and 33 are relatively thick in the bipolar portion 12. , The MOS portions 13 and 14 are relatively thin.

【0012】請求項2のBiMOS半導体装置では、前
記拡散層15、33の不純物濃度が前記バイポーラ部1
2よりも前記MOS部13、14において低い。
According to another aspect of the BiMOS semiconductor device of the present invention, the impurity concentration of the diffusion layers 15 and 33 is the bipolar portion 1.
It is lower than that in the MOS parts 13 and 14 than 2.

【0013】[0013]

【作用】請求項1のBiMOS半導体装置では、MOS
部13、14における第1及び第2の半導体層11、2
1同士の界面に拡散層33が形成されているので、ポテ
ンシャル障壁が形成されてソフトエラー耐性が高いが、
この拡散層33の厚さは相対的に薄いので、第2の半導
体層21の厚さが薄くても、この拡散層33とソース・
ドレイン37との間でパンチスルーが生じにくい。
In the BiMOS semiconductor device according to the first aspect, the MOS
First and second semiconductor layers 11, 2 in parts 13, 14
Since the diffusion layer 33 is formed at the interface between the ones, a potential barrier is formed and the soft error resistance is high.
Since the thickness of the diffusion layer 33 is relatively thin, even if the thickness of the second semiconductor layer 21 is thin, the diffusion layer 33 and the source.
Punch through does not easily occur between the drain 37.

【0014】一方、バイポーラ部12の拡散層15の厚
さは相対的に厚く、しかも上述の様に第2の半導体層2
1の厚さを薄くすることができるので、この拡散層15
を埋込みコレクタにすると、コレクタ直列抵抗を低減さ
せることができる。
On the other hand, the diffusion layer 15 of the bipolar portion 12 is relatively thick, and as described above, the second semiconductor layer 2 is formed.
Since the thickness of 1 can be made thin, this diffusion layer 15
Is a buried collector, the collector series resistance can be reduced.

【0015】請求項2のBiMOS半導体装置では、拡
散層15、33の不純物濃度がバイポーラ部12よりも
MOS部13、14において低いが、この様にMOS部
13、14における拡散層33の不純物濃度が低いと、
MOS部13、14における拡散層33の拡散が少な
い。
In the BiMOS semiconductor device according to the second aspect, the impurity concentration of the diffusion layers 15 and 33 is lower in the MOS portions 13 and 14 than in the bipolar portion 12, but the impurity concentration of the diffusion layer 33 in the MOS portions 13 and 14 is as described above. Is low,
The diffusion of the diffusion layer 33 in the MOS portions 13 and 14 is small.

【0016】[0016]

【実施例】以下、BiCMOS−SRAMに適用した本
発明の一実施例を、図1、2を参照しながら説明する。
なお、図3、4に示した第1及び第2従来例と同一の構
成部分には、同一の符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to a BiCMOS-SRAM will be described below with reference to FIGS.
The same components as those of the first and second conventional examples shown in FIGS. 3 and 4 are designated by the same reference numerals.

【0017】図1が、本実施例を示しており、図2が、
その製造工程を示している。本実施例を製造するために
は、図2(a)に示す様に、P型のSi基板11上に
0.3〜0.5μm程度の膜厚のSiO2 膜26をまず
成長させ、埋込み層15に対応するパターンの開口27
をSiO2 膜26に形成する。そして、開口27を介し
て、固層拡散かまたはイオン注入で、1×1015〜1×
1016cm-2程度のドーズ量でSb31をSi基板11
に導入する。
FIG. 1 shows this embodiment, and FIG. 2 shows
The manufacturing process is shown. In order to manufacture this embodiment, as shown in FIG. 2A, a SiO 2 film 26 having a film thickness of about 0.3 to 0.5 μm is first grown on a P-type Si substrate 11 and embedded. Openings 27 in a pattern corresponding to layer 15
Is formed on the SiO 2 film 26. Then, through the opening 27, 1 × 10 15 to 1 × is obtained by solid layer diffusion or ion implantation.
Sb31 was added to the Si substrate 11 at a dose of about 10 16 cm -2.
To introduce.

【0018】次に、図2(b)に示す様に、SiO2
26を除去してから、1×1012〜1×1013cm-2
度のドーズ量でPhos32をSi基板11の全面にイ
オン注入する。なお、Phos32のイオン注入は、S
iO2 膜26の成長前つまりSb31の導入前に行って
もよい。
Next, as shown in FIG. 2B, after removing the SiO 2 film 26, Phos 32 is applied to the entire surface of the Si substrate 11 with a dose amount of about 1 × 10 12 to 1 × 10 13 cm -2. Ion implantation. In addition, the ion implantation of Phos32 is S
It may be performed before the growth of the iO 2 film 26, that is, before the introduction of Sb31.

【0019】その後、酸化性雰囲気中で熱処理を行っ
て、Si基板11の表面にSiO2 膜(図示せず)を形
成し、このSiO2 膜をウエットエッチングで除去す
る。これは、Phos32のイオン注入で損傷を受けた
層をSiO2 膜にし、このSiO2 膜を除去することに
よって損傷層を除去すると共に、Phos32を下方へ
拡散させるためである。
[0019] Then, by heat treatment in an oxidizing atmosphere to form an SiO 2 film (not shown) on the surface of the Si substrate 11, removing the SiO 2 film by wet etching. This is because the layer damaged by the ion implantation of Phos 32 is made into a SiO 2 film, and the damaged layer is removed by removing this SiO 2 film, and Phos 32 is diffused downward.

【0020】次に、図2(c)に示す様に、抵抗率が1
Ωcm程度で厚さが1.0〜1.3μm程度であるN型
のエピタキシャル層21をSi基板11上に成長させ、
Si基板11とエピタキシャル層21とでSi基体22
を構成する。
Next, as shown in FIG. 2C, the resistivity is 1
An N-type epitaxial layer 21 having a thickness of about 1.0 to 1.3 μm and a thickness of about Ωcm is grown on the Si substrate 11;
The Si substrate 11 and the epitaxial layer 21 form the Si substrate 22.
Make up.

【0021】この時、Sb31が拡散して不純物濃度が
1×1020cm-3程度であるN+ 型の埋込み層15が形
成され、Phos32が拡散して不純物濃度が1×10
16〜1×1018cm-3程度であるN型の埋込み層33が
形成される。なお、Phos32はSb31よりも拡散
係数が大きいが、既述の様に1×1012〜1×1013
-2程度とPhos32のドーズ量が少なければ、埋込
み層33の上方拡散は0.2μm程度に収まる。
At this time, Sb31 diffuses to form an N + type buried layer 15 having an impurity concentration of about 1 × 10 20 cm -3 , and Phos 32 diffuses to have an impurity concentration of 1 × 10.
An N type buried layer 33 having a size of about 16 to 1 × 10 18 cm −3 is formed. Although Phos32 has a larger diffusion coefficient than Sb31, it is 1 × 10 12 to 1 × 10 13 c as described above.
If the dose amount of Phos 32 is small at about m −2, the upward diffusion of the buried layer 33 is about 0.2 μm.

【0022】次に、図2(d)に示す様に、バイポーラ
部12、PMOS部13及びNMOS部14を囲む素子
分離用のSiO2 膜24をLOCOS法でエピタキシャ
ル層21の表面に形成する。その後、ボロン等をイオン
注入して、P型でリトログレード型のウェル23をNM
OS部14に形成する。
Next, as shown in FIG. 2D, a SiO 2 film 24 for element isolation surrounding the bipolar portion 12, the PMOS portion 13 and the NMOS portion 14 is formed on the surface of the epitaxial layer 21 by the LOCOS method. After that, boron or the like is ion-implanted to form the P-type and retrograde-type well 23 in the NM.
It is formed in the OS section 14.

【0023】そして更に、投影飛程を2段階に設定して
高エネルギでボロンをイオン注入し、SiO2 膜24か
らエピタキシャル層21及び埋込み層33を貫通してS
i基板11にまで達する素子分離用のP型の拡散層25
を形成して、この拡散層25でバイポーラ部12を囲
む。この時、埋込み層33の不純物濃度が低く且つ厚さ
が薄いので、拡散層25の形成に際して埋込み層33が
補償され易く、拡散層25が埋込み層33を貫通し易
い。
Further, the projection range is set to two stages, and boron is ion-implanted with high energy to penetrate the epitaxial layer 21 and the burying layer 33 from the SiO 2 film 24 to S.
P-type diffusion layer 25 for element isolation reaching the i-substrate 11
And the diffusion layer 25 surrounds the bipolar portion 12. At this time, since the buried layer 33 has a low impurity concentration and a small thickness, the buried layer 33 is easily compensated when the diffusion layer 25 is formed, and the diffusion layer 25 easily penetrates the buried layer 33.

【0024】次に、図1に示した様に、コレクタ電極取
出し領域であるN型の拡散層34等をバイポーラ部12
に形成して、バイポーラトランジスタ35を作成する。
また、ソース・ドレインであるP+ 型の拡散層36やN
+ 型の拡散層37等をPMOS部13とNMOS部14
とに形成して、PMOSトランジスタ41とNMOSト
ランジスタ42とを作成する。
Next, as shown in FIG. 1, the N-type diffusion layer 34, which is a collector electrode extraction region, is formed in the bipolar portion 12.
Then, the bipolar transistor 35 is formed.
In addition, the source / drain P + type diffusion layers 36 and N
The + type diffusion layer 37 and the like are connected to the PMOS section 13 and the NMOS section 14.
Then, the PMOS transistor 41 and the NMOS transistor 42 are formed.

【0025】以上の様な本実施例では、SRAMのメモ
リセルを構成するNMOS部14に埋込み層33が設け
られているので、不純物濃度が低いために埋込み層33
が空乏化していたとしても、ポテンシャル障壁は形成さ
れている。このため、α線によってSi基板11で発生
した電子・正孔対のうちの電子がメモリセルの記憶ノー
ドに到達しにくく、ソフトエラー耐性が高い。
In this embodiment as described above, since the buried layer 33 is provided in the NMOS section 14 which constitutes the memory cell of the SRAM, the buried layer 33 has a low impurity concentration.
Even if is depleted, the potential barrier is formed. For this reason, the electrons of the electron-hole pairs generated in the Si substrate 11 due to the α rays hardly reach the storage node of the memory cell, and the soft error resistance is high.

【0026】しかも、埋込み層33はSi基板11の全
面にPhos32をイオン注入することによって形成し
ているので、この埋込み層33を形成しても、マスク工
程は増加していない。
Moreover, since the buried layer 33 is formed by ion-implanting Phos 32 over the entire surface of the Si substrate 11, even if the buried layer 33 is formed, the mask process does not increase.

【0027】なお、埋込み層33の厚さを埋込み層15
よりも薄くするために、本実施例では埋込み層33の不
純物濃度を埋込み層15よりも低くしているが、埋込み
層15よりも埋込み層33で拡散係数の小さな不純物を
用いることによって、埋込み層33の厚さを埋込み層1
5より薄くしてもよい。
The thickness of the embedding layer 33 is set to the embedding layer 15
In this embodiment, the buried layer 33 has an impurity concentration lower than that of the buried layer 15 in order to make the buried layer 33 thinner. However, by using an impurity having a diffusion coefficient smaller than that of the buried layer 15, the buried layer 33 has a smaller diffusion coefficient. Embedding layer 1 with a thickness of 33
It may be thinner than 5.

【0028】また、本実施例ではウェル23と埋込み層
33とが互いに逆導電型であるが、同一導電型でも不純
物の濃度差があればある程度のポテンシャル障壁が形成
されるので、ウェル23と埋込み層33とが必ずしも互
いに逆導電型である必要はない。
Further, in the present embodiment, the well 23 and the buried layer 33 have opposite conductivity types, but even if the well conductivity type is the same conductivity type, a potential barrier is formed to some extent if there is a difference in impurity concentration. The layer 33 and the layer 33 do not necessarily have to have opposite conductivity types.

【0029】[0029]

【発明の効果】請求項1のBiMOS半導体装置では、
バイポーラ部のコレクタ直列抵抗を低減させることがで
きるので、性能を高めることができるにも拘らず、MO
S部における第1及び第2の半導体層同士の界面の拡散
層とソース・ドレインとの間でパンチスルーが生じにく
く且つソフトエラー耐性が高いので、信頼性も高い。
According to the BiMOS semiconductor device of the first aspect,
Since the collector series resistance of the bipolar part can be reduced, the performance can be improved, but the MO
Since the punch-through hardly occurs between the source / drain and the diffusion layer at the interface between the first and second semiconductor layers in the S portion and the soft error resistance is high, the reliability is also high.

【0030】請求項2のBiMOS半導体装置では、M
OS部における第1及び第2の半導体層同士の界面の拡
散層の拡散が少ないので、拡散層の厚さがバイポーラ部
では相対的に厚く、MOS部では相対的に薄い請求項1
のBiMOS半導体装置を容易に作成することができ
る。
In the BiMOS semiconductor device according to claim 2, M
The thickness of the diffusion layer is relatively thick in the bipolar portion and relatively thin in the MOS portion because the diffusion layer at the interface between the first and second semiconductor layers in the OS portion is less diffused.
The BiMOS semiconductor device can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の側断面図である。FIG. 1 is a side sectional view of an embodiment of the present invention.

【図2】本発明の一実施例の製造工程を順次に示す側断
面図である。
FIG. 2 is a side sectional view sequentially showing a manufacturing process of an embodiment of the present invention.

【図3】本発明の第1従来例の側断面図である。FIG. 3 is a side sectional view of a first conventional example of the present invention.

【図4】本発明の第2従来例の側断面図である。FIG. 4 is a side sectional view of a second conventional example of the present invention.

【符号の説明】[Explanation of symbols]

11 Si基板 12 バイポーラ部 13 PMOS部 14 NMOS部 15 埋込み層 21 エピタキシャル層 22 Si基体 33 埋込み層 11 Si Substrate 12 Bipolar Section 13 PMOS Section 14 NMOS Section 15 Buried Layer 21 Epitaxial Layer 22 Si Substrate 33 Buried Layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の半導体層とこの第1の半導体層上
に積層されている第2の半導体層とで半導体基体が構成
されており、 前記第1及び第2の半導体層同士の界面に拡散層が形成
されており、 前記拡散層の厚さがバイポーラ部では相対的に厚く、M
OS部では相対的に薄いBiMOS半導体装置。
1. A semiconductor substrate is composed of a first semiconductor layer and a second semiconductor layer laminated on the first semiconductor layer, and an interface between the first and second semiconductor layers. A diffusion layer is formed on the bipolar layer, and the diffusion layer has a relatively large thickness in the bipolar portion.
BiMOS semiconductor device that is relatively thin in the OS section.
【請求項2】 前記拡散層の不純物濃度が前記バイポー
ラ部よりも前記MOS部において低い請求項1記載のB
iMOS半導体装置。
2. The B according to claim 1, wherein the impurity concentration of the diffusion layer is lower in the MOS portion than in the bipolar portion.
iMOS semiconductor device.
JP11086492A 1992-04-03 1992-04-03 Bimos semiconductor device Pending JPH05283624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11086492A JPH05283624A (en) 1992-04-03 1992-04-03 Bimos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11086492A JPH05283624A (en) 1992-04-03 1992-04-03 Bimos semiconductor device

Publications (1)

Publication Number Publication Date
JPH05283624A true JPH05283624A (en) 1993-10-29

Family

ID=14546621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11086492A Pending JPH05283624A (en) 1992-04-03 1992-04-03 Bimos semiconductor device

Country Status (1)

Country Link
JP (1) JPH05283624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202050A (en) * 1993-12-30 1995-08-04 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202050A (en) * 1993-12-30 1995-08-04 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2746499B2 (en) Semiconductor device and manufacturing method thereof
US5480816A (en) Method of fabricating a bipolar transistor having a link base
US6057209A (en) Semiconductor device having a nitrogen bearing isolation region
JPH05283624A (en) Bimos semiconductor device
JP2586395B2 (en) Method for manufacturing semiconductor device
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
JPH0638478B2 (en) Semiconductor device
EP0994511A1 (en) Semiconductor device and manufacturing method of the same
US6337252B1 (en) Semiconductor device manufacturing method
JP2611450B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP2595799B2 (en) Semiconductor device and manufacturing method thereof
JP2508218B2 (en) Complementary MIS integrated circuit
JP3057692B2 (en) Method for manufacturing semiconductor device
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JP2889246B2 (en) Semiconductor device
JP3138356B2 (en) I.2 L-structure semiconductor device and method of manufacturing the same
JPH01192131A (en) Manufacture of semiconductor device
JPS6072271A (en) Manufacture of semiconductor device
JPS617664A (en) Semiconductor device and manufacture thereof
JPH10289961A (en) Method of manufacturing semiconductor device
JPH0527264B2 (en)
JPS641933B2 (en)
JPH03157972A (en) Manufacture of semiconductor device
JPH09223746A (en) Semiconductor device
JPH0834214B2 (en) Method for manufacturing semiconductor device