JPH01191804A - Optical waveguide and its manufacture - Google Patents

Optical waveguide and its manufacture

Info

Publication number
JPH01191804A
JPH01191804A JP1761388A JP1761388A JPH01191804A JP H01191804 A JPH01191804 A JP H01191804A JP 1761388 A JP1761388 A JP 1761388A JP 1761388 A JP1761388 A JP 1761388A JP H01191804 A JPH01191804 A JP H01191804A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
glass
groove
paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1761388A
Other languages
Japanese (ja)
Inventor
Masayuki Togawa
雅之 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Teijin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co Ltd filed Critical Teijin Seiki Co Ltd
Priority to JP1761388A priority Critical patent/JPH01191804A/en
Publication of JPH01191804A publication Critical patent/JPH01191804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a shape failure of the reflecting surface of an optical waveguide and to decrease a transfer loss by pouring a transparent substance whose melting point is lower than that of a substrate into a groove provided on the substrate, and fixing and forming it. CONSTITUTION:A paraffin layer 2 is formed by applying uniformly paraffin which has been melted by a solvent, by spin coating onto a substrate for forming an optical waveguide of a plate of quartz glass, and solidifying it. Subsequently, a mask 3 which has cut out a pattern 31 of the optical waveguide in a plate of Cu, etc., is placed on the layer 2, and next, a groove 4 corresponding to the pattern is engraved by pouring a solution of hydrogen fluoride, the paraffin is melted and the mask 3 is removed and washed, and low alkali glass 5 whose melting point is lower than that of the substrate 1 is heated and melted, and poured into the groove 4. Subsequently, by slow cooling, the glass 5 is solidified and an optical waveguide is formed. The surface of an optical waveguide 7 which has been formed in such a way is extremely smooth by surface tension of molten glass at the time of casting of the glass 5, and accordingly, a transfer loss of light is decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信用部材としての基板上に光導波路を形
成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of forming an optical waveguide on a substrate as an optical communication member.

(従来の技術〕 従来の光導波路はSiO□の基板上にフォトレジストを
塗布し、光導波路パターンの描かれたマスクの上から紫
外線で露光し、光導波路パターンを焼付けて行う。露光
済のフォトレジストを水洗現像すると光の当らなかった
光導波路パターン部分のみが流失し、光導波路部分の溝
が残る。次に低アルカリガラスをスパッタリング法等に
て基板の上から付着堆積させた後、フォトレジストを溶
剤にて除去すると溝の中で直接基板に付着堆積した低ア
ルカリガラス部分のみが残留し、他の部分はフォトレジ
ストと共に剥離するので、結果的に溝のパターンに相当
する低アルカリガラスによる光導波路が基板上に形成さ
れることになる。
(Prior art) Conventional optical waveguides are manufactured by coating a photoresist on a SiO□ substrate, exposing the mask with ultraviolet rays on which the optical waveguide pattern is drawn, and baking the optical waveguide pattern. When the resist is washed and developed with water, only the part of the optical waveguide pattern that was not exposed to light is washed away, leaving a groove in the optical waveguide part.Next, low alkali glass is deposited on the substrate by sputtering method, etc., and then the photoresist is When removed with a solvent, only the part of the low-alkali glass deposited directly on the substrate remains in the groove, and the other parts are peeled off together with the photoresist.As a result, the light guide by the low-alkali glass corresponding to the pattern of the groove remains. A wave path will be formed on the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の方法によると、スパッ
タリングの時間が長くかかり、厚みが10μ−以上の大
きな光導波路を形成するには非常な長時間を要するため
極めて作業効率が悪いという問題があった。
However, according to such conventional methods, sputtering takes a long time, and it takes a very long time to form a large optical waveguide with a thickness of 10 μm or more, resulting in extremely low working efficiency.

本発明は、そのような問題点を解決し、短時間で大きな
厚みの光導波路を形成することを目的とするものである
It is an object of the present invention to solve such problems and form an optical waveguide with a large thickness in a short time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、光導波路部材の基板上に形成した溝の中に直
接低融点ガラスを流し込むことにより、短時間で大きな
光導波路を形成するものである。
The present invention forms a large optical waveguide in a short time by directly pouring low-melting glass into a groove formed on a substrate of an optical waveguide member.

〔実 施 例〕〔Example〕

以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

第1図は本発明の光導波路の製造4程説明図である。FIG. 1 is an explanatory diagram of the fourth manufacturing process of the optical waveguide of the present invention.

(1)1は、例えば石英ガラスの平板よりなる光導波路
形成用の基板で、その上に溶剤に溶かしたパラフィンを
スピンコーティングにより均一に塗布しこれを固化させ
てパラフィンの層2を形成する〔第1図(a)参照〕。
(1) 1 is a substrate for forming an optical waveguide made of, for example, a flat plate of quartz glass, on which paraffin dissolved in a solvent is applied uniformly by spin coating and solidified to form a paraffin layer 2 [ See Figure 1(a)].

(2)次に、このパラフィンN2の上に銅又はステンレ
スの板に光導波路のパターン31を切り抜いたマスク3
を乗せ、溶剤をかけてマスクの切り抜いた部分のパラフ
ィンを溶融除去する〔第1図ら)参照〕。
(2) Next, on this paraffin N2, a mask 3 with an optical waveguide pattern 31 cut out on a copper or stainless steel plate
Place the mask on the mask and apply a solvent to melt and remove the paraffin from the cut-out part of the mask (see Figure 1, etc.).

したがって、石英ガラス基板1は、光導波路を形成する
部分だけが露出し、他はパラフィン層2で覆われた状態
となる。
Therefore, in the quartz glass substrate 1, only the portion forming the optical waveguide is exposed, and the rest is covered with the paraffin layer 2.

(3)そこで、弗化水素の溶液を上からかけることによ
り、露出しているガラス面は熔かされてマスクの切抜き
パターンに対応した溝4が刻まれる。〔第1図(C)参
照〕。
(3) Then, by pouring a hydrogen fluoride solution on top, the exposed glass surface is melted and grooves 4 corresponding to the cutout pattern of the mask are carved. [See Figure 1 (C)].

(4)適当な有a溶剤でパラフィンを溶解し、マスクを
外して洗浄し、この溝4に石英ガラス基板lよりも低い
融点を有する低アルカリガラス5を加熱熔融して流し込
む。
(4) The paraffin is dissolved with a suitable alkaline solvent, the mask is removed and washed, and low alkali glass 5 having a melting point lower than that of the quartz glass substrate 1 is heated and melted and poured into the groove 4.

この時、基板1となるガラス板は、それ自体が溶けない
程度の高温に加熱されていることが望ましい。
At this time, it is desirable that the glass plate serving as the substrate 1 be heated to a high temperature that does not melt itself.

(5)その後、ゆっくりと冷却し、低融点ガラス5を固
化させることにより低融点ガラス部分を光導波路として
形成することが出来るのである。
(5) Thereafter, by slowly cooling and solidifying the low melting point glass 5, the low melting point glass portion can be formed as an optical waveguide.

〔第1図(d)参照〕。[See Figure 1(d)].

第2図は、そのようにして形成した光導波路の部分拡大
断面図である。基板lのマスク溝4内に工 形成された光導波路7の表面は、々程4における低融点
ガラス流し込み時の溶融ガラスの表面張力により極めて
滑らかになっている。
FIG. 2 is a partially enlarged sectional view of the optical waveguide formed in this manner. The surface of the optical waveguide 7 formed in the mask groove 4 of the substrate 1 is extremely smooth due to the surface tension of the molten glass when the low melting point glass is poured in step 4.

したがって、光導波路の光伝達ロスの最大の原因である
光導波路表面の形状の乱れがないので、光の伝達ロスが
小さくなると共に比較的に大きな光導波路を簡単な工程
で短時間に形成できる。
Therefore, since there is no disturbance in the shape of the optical waveguide surface, which is the biggest cause of optical transmission loss in the optical waveguide, the optical transmission loss is reduced and a relatively large optical waveguide can be formed in a short time using simple steps.

第3図は、他の実施例で、基板上に刻まれたマスク溝に
、先の実施例において低融点ガラス5を加熱溶融して流
し込む代りに低融点ガラスの粉末8を入れた後、例えば
ガスバーナー等の加熱手段を用いて低融点ガラス粉末の
みを溶融した後、徐冷してこれを固化し、光導波路を得
るものである。
FIG. 3 shows another embodiment in which, instead of melting and pouring the low melting point glass 5 in the previous embodiment, a low melting point glass powder 8 is poured into the mask groove carved on the substrate, and then, for example, An optical waveguide is obtained by melting only the low-melting point glass powder using a heating means such as a gas burner and then slowly cooling it to solidify it.

第4図は、本発明により形成した光導波路中の気泡除去
方法に関する説明図である。
FIG. 4 is an explanatory diagram regarding a method for removing bubbles in an optical waveguide formed according to the present invention.

一般に光導波路は、光伝達ロスを少なくするため、掻刃
光導波路中の異物の混入を避けて製造されるが、特に光
導波路中の気泡による光の散乱。
Generally, optical waveguides are manufactured by avoiding contamination of foreign matter in the scratched optical waveguide in order to reduce optical transmission loss, but in particular light scattering due to air bubbles in the optical waveguide.

吸収等によるロスは大きく、これらの気泡は光導波路に
とって大きな障害となっている。
Loss due to absorption and the like is large, and these bubbles pose a major obstacle to optical waveguides.

以下に、本発明により形成し逅光導波路の気泡除去手段
につき説明する。
Below, the means for removing bubbles in the optical waveguide formed according to the present invention will be explained.

7は石英等のガラス基板1の上のマスクパターン溝の中
に本発明により形成された光導波路であって、11はガ
スバーナ等の加熱手段である。
7 is an optical waveguide formed according to the present invention in a mask pattern groove on a glass substrate 1 made of quartz or the like, and 11 is a heating means such as a gas burner.

光導波路7中の気泡10,10.10を除去するには、
基板lの下方から小さな炎のガスバーナ11で光導波路
7を加熱する。すると低融点ガラスより成る光導波路7
の一部は部分的に溶融液化しくこの液化部分を符号9で
表わすことにする)。
To remove the bubbles 10, 10.10 in the optical waveguide 7,
The optical waveguide 7 is heated from below the substrate 1 using a gas burner 11 with a small flame. Then, the optical waveguide 7 made of low melting point glass
(This liquefied portion is designated by 9).

その液化部分9中に含まれている気泡の一部は表面から
大気中に出てゆく。
Some of the bubbles contained in the liquefied portion 9 escape into the atmosphere from the surface.

そこで、ガスバーナ等の加熱手段11を矢印の方向に移
動させることにより、液化部分9も矢印方向に移動し、
順次その後方から固化してゆくと共に表面から大気中に
逃げなかった残りの気泡はバーナの移動に伴って液化部
分と共に移動する。
Therefore, by moving the heating means 11 such as a gas burner in the direction of the arrow, the liquefied portion 9 also moves in the direction of the arrow.
The remaining air bubbles that did not escape from the surface into the atmosphere move together with the liquefied portion as the burner moves.

したがって、最後には光導波路中の気泡はバーナの移動
終局端部に集まることになるので、基板と共に光導波路
の端の気泡集中部分を切断することにより光導波路中の
気泡は完全に除去されると共に光導波路の表面も加熱溶
融中の低融点ガラスの表面張力に゛より滑らかになるの
で光導波路の表面形状不良による光伝達ロスもなくなり
、極めて良好な光導波路を得ることができる。
Therefore, the bubbles in the optical waveguide will eventually gather at the final end of the burner movement, so by cutting the part where the bubbles are concentrated at the end of the optical waveguide together with the substrate, the bubbles in the optical waveguide can be completely removed. At the same time, the surface of the optical waveguide becomes smoother due to the surface tension of the low-melting glass during heating and melting, so there is no optical transmission loss due to poor surface shape of the optical waveguide, and an extremely good optical waveguide can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は、ガラス基板上に刻んだ溝の中に透明な低融点
物質を充填し、溶融固化させることにより光導波路を形
成するので、簡単な行程で短時間に大きな光導波路を形
成できると共に光導波路の表面が溶融固化する時に晃導
波路形成材料の表面張力により自動的に極めて滑らかな
表面反射壁を形成するので、光導波路の反射表面の形状
不良による光の伝達ロスが少なくなる。
In the present invention, an optical waveguide is formed by filling a transparent low-melting substance into a groove cut on a glass substrate and melting and solidifying it. Therefore, a large optical waveguide can be formed in a short time with a simple process, and an optical waveguide can be formed. When the surface of the waveguide is melted and solidified, the surface tension of the optical waveguide forming material automatically forms an extremely smooth reflective wall, which reduces light transmission loss due to poor shape of the reflective surface of the optical waveguide.

また、バーナ等の簡単な加熱手段により一度形成した光
導波路に対し、幾度でも繰り返して気泡除去操作を行う
ことができるので、光伝達効果を必要に応じて高めるこ
とが出来ると共に極めて容易に光導波路の傷や歪の修正
が行えるので、製品の最終不良率も著るしく低減できる
という効果も有する。
In addition, the bubble removal operation can be repeated as many times as necessary for the optical waveguide once formed using a simple heating means such as a burner, so the light transmission effect can be increased as needed and the optical waveguide can be formed very easily. Since scratches and distortions can be corrected, the final defective rate of the product can also be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

工 第1図は本発明の光導波路の製造行程説明図、第2図は
本発明方法により形成した光導波路の部分拡大断面図、
第3図は他の実施例による光導波路の形成行程説明図、
第4図は本発明により形成された光導波路の気泡除去方
法の説明図である。 1・・・基板 4・・・溝 5・・・低融点透明物質 7・・・光導波路 11・・・加熱手段 特許出願人  帝人製機株式会社 (a) (b) (C) \ (d)6 第2図 第3図
Fig. 1 is an explanatory diagram of the manufacturing process of the optical waveguide of the present invention, Fig. 2 is a partially enlarged sectional view of the optical waveguide formed by the method of the present invention,
FIG. 3 is an explanatory diagram of the process of forming an optical waveguide according to another embodiment,
FIG. 4 is an explanatory diagram of a method for removing bubbles from an optical waveguide formed according to the present invention. 1... Substrate 4... Groove 5... Low melting point transparent material 7... Optical waveguide 11... Heating means patent applicant Teijin Seiki Co., Ltd. (a) (b) (C) \ (d )6 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に設けた溝の中に、基板よりも低い融点を
有する透明な物質を流し込んで固化形成することを特徴
とする光導波路の製造方法。
(1) A method for manufacturing an optical waveguide, which comprises pouring a transparent substance having a melting point lower than that of the substrate into a groove provided on the substrate and solidifying the substance.
(2)請求項第1記載の方法により形成した光導波路に
沿って該光導波路を部分的に加熱再溶融しながら移動し
て光導波路中の気泡を除去することを特徴とする光導波
路の気泡除去方法。
(2) Air bubbles in an optical waveguide are removed by moving along the optical waveguide formed by the method according to claim 1 while partially heating and remelting the optical waveguide. Removal method.
(3)請求項第1又は第2記載の方法により製造した光
導波路。
(3) An optical waveguide manufactured by the method according to claim 1 or 2.
JP1761388A 1988-01-28 1988-01-28 Optical waveguide and its manufacture Pending JPH01191804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1761388A JPH01191804A (en) 1988-01-28 1988-01-28 Optical waveguide and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1761388A JPH01191804A (en) 1988-01-28 1988-01-28 Optical waveguide and its manufacture

Publications (1)

Publication Number Publication Date
JPH01191804A true JPH01191804A (en) 1989-08-01

Family

ID=11948731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1761388A Pending JPH01191804A (en) 1988-01-28 1988-01-28 Optical waveguide and its manufacture

Country Status (1)

Country Link
JP (1) JPH01191804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1435533A1 (en) * 2002-12-30 2004-07-07 STMicroelectronics S.r.l. Waveguide manufacturing method and waveguide
US20140023320A1 (en) * 2011-03-25 2014-01-23 Seo Young Lee Lightwave Circuit and Method for Manufacturing Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370839A (en) * 1976-12-07 1978-06-23 Fujitsu Ltd Production of optical wave guide circuit
JPS5565910A (en) * 1978-11-10 1980-05-17 Komatsu Denshi Kinzoku Kk Production of optical branching and coupling device
JPS6037505A (en) * 1983-08-11 1985-02-26 Nippon Telegr & Teleph Corp <Ntt> Preparation of light guide made of organic crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370839A (en) * 1976-12-07 1978-06-23 Fujitsu Ltd Production of optical wave guide circuit
JPS5565910A (en) * 1978-11-10 1980-05-17 Komatsu Denshi Kinzoku Kk Production of optical branching and coupling device
JPS6037505A (en) * 1983-08-11 1985-02-26 Nippon Telegr & Teleph Corp <Ntt> Preparation of light guide made of organic crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1435533A1 (en) * 2002-12-30 2004-07-07 STMicroelectronics S.r.l. Waveguide manufacturing method and waveguide
US20140023320A1 (en) * 2011-03-25 2014-01-23 Seo Young Lee Lightwave Circuit and Method for Manufacturing Same
US9031373B2 (en) * 2011-03-25 2015-05-12 Seo Young Lee Lightwave circuit and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6393180B1 (en) Providing a refractive index change in an ion diffused material
EP0467579B1 (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
KR920013811A (en) Manufacturing method of flat optical waveguide
JPH01191804A (en) Optical waveguide and its manufacture
US3748246A (en) Dielectric circuit forming process
JPH0862445A (en) Manufacture of optical waveguide
JP3112572B2 (en) Optical fiber tip processing method
JPH08334641A (en) Production of optical waveguide
JPH06174955A (en) Production of optical wave guide
JPS59171907A (en) Production of optical guide
JP2570822B2 (en) Manufacturing method of optical waveguide
JPS59202407A (en) Manufacture of light guide
JPS5565910A (en) Production of optical branching and coupling device
JP2001080938A (en) Formation of pattern on glassware
JPH05178633A (en) Preparation of optical waveguide body on substrate
JPH03291605A (en) Forming of optical waveguide
SU1446579A1 (en) Method of making microlense raster screens
JPH05249332A (en) Production of star coupler
JPH06183783A (en) Production of glass waveguide
JPH03284703A (en) Optical glass member for generating prescribed phase difference and production thereof
JPS61172106A (en) Production of optical waveguide
JPH08304652A (en) Production of optical waveguide
JPS63175808A (en) Production of optical waveguide
JPH08320421A (en) Production of optical wave guide
JPS62172306A (en) Method for forming film on end surface of optical fiber