JPH0862445A - Manufacture of optical waveguide - Google Patents

Manufacture of optical waveguide

Info

Publication number
JPH0862445A
JPH0862445A JP19977194A JP19977194A JPH0862445A JP H0862445 A JPH0862445 A JP H0862445A JP 19977194 A JP19977194 A JP 19977194A JP 19977194 A JP19977194 A JP 19977194A JP H0862445 A JPH0862445 A JP H0862445A
Authority
JP
Japan
Prior art keywords
quartz glass
film
core
refractive index
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19977194A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP19977194A priority Critical patent/JPH0862445A/en
Publication of JPH0862445A publication Critical patent/JPH0862445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE: To manufacture an optical waveguide in a single time at low cost with a simple method using no photolithography process. CONSTITUTION: A CO2 laser beam is emitted onto a quartz glass base l, the quartz glass base 1 is relatively moved to the CO2 laser beam, whereby a core pattern groove 2 is worked on the quartz glass base 1 upper surface. A core film 3 having a refractive index higher than the quartz glass base 1 is buried in the core pattern groove 2. The whole upper surface of the quartz glass base 1 having the core film 3 with high refractive index buried therein is covered with a clad film 4 having a refractive index lower than the core film 3. Thus, all metal film forming process, photolithography process, metal film patterning process, core layer dry etching process and metal film releasing process which were necessary in the past can be omitted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石英ガラス基板上に直
接コアパターンを形成して工程の簡略化を図った光導波
路の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical waveguide in which a core pattern is directly formed on a quartz glass substrate to simplify the process.

【0002】[0002]

【従来の技術】光ファイバ通信の高度化、多機能化、低
コスト化をめざして、光分波合波回路、光スターカプ
ラ、光フィルタなどの光信号処理回路を光導波路構造で
実現することが活発に行われるようになってきた。
2. Description of the Related Art Optical signal processing circuits such as an optical demultiplexing / multiplexing circuit, an optical star coupler, and an optical filter are realized with an optical waveguide structure for the purpose of sophistication, multi-functionality, and cost reduction of optical fiber communication. Has become active.

【0003】従来、上記光導波路は図6に示す方法によ
って作られていた。すなわち、Siまたはガラス基板上
に低屈折率のバッファ層を形成する工程31、その上に
高屈折率のコア層を形成する工程32、コア層上にマス
ク用のメタル膜を形成する工程33、メタル膜上にフォ
トレジスト膜を塗布し、フォトリソグラフィによりフォ
トレジスト膜をパターニングする工程34、フォトレジ
スト膜のパターンをマスクにしてメタル膜をドライエッ
チングによりパターニングする工程35、上記メタル膜
のパターンをマスクにしてコア層をドライエッチングに
よりエッチングする工程36、メタル膜を剥離する工程
37、上記パターン化したコア層全面を低屈折率のクラ
ッド層で覆う工程38からなる。
Conventionally, the above optical waveguide has been manufactured by the method shown in FIG. That is, a step 31 of forming a buffer layer having a low refractive index on a Si or glass substrate, a step 32 of forming a core layer having a high refractive index thereon, a step 33 of forming a metal film for a mask on the core layer, Step 34 of applying a photoresist film on the metal film and patterning the photoresist film by photolithography, Step 35 of patterning the metal film by dry etching using the photoresist film pattern as a mask, and masking the metal film pattern Then, a step 36 of etching the core layer by dry etching, a step 37 of removing the metal film, and a step 38 of covering the entire surface of the patterned core layer with a clad layer having a low refractive index are performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
光導波路の製造方法は工程数が多く、低コスト化が難し
い。特にフォトリソグラフィ工程で非常に高価なフォト
マスクを使わなければならず、この工程があるだけで費
用の低減は困難である。また作成し終えるまでに多くの
工程を経るために多大の時間を要する。
However, the conventional method for manufacturing an optical waveguide has a large number of steps, and it is difficult to reduce the cost. In particular, it is necessary to use a very expensive photomask in the photolithography process, and it is difficult to reduce the cost only by this process. Also, it takes a lot of time to go through many steps until it is completed.

【0005】そこで、本発明の目的は、前記した従来技
術の欠点を解消し、簡易な方法で、単時間に低コストで
光導波路を製造する方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a method for manufacturing an optical waveguide in a simple method at a low cost in a single time.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、従来の
製造方法の中で、メタル膜の形成工程、フォトリソグラ
フィ工程、メタル膜のパターニング工程、コア層のドラ
イエッチング工程、メタル膜の剥離工程のない光導波路
を製造する方法である。
The gist of the present invention is that, in the conventional manufacturing method, a metal film forming step, a photolithography step, a metal film patterning step, a core layer dry etching step, and a metal film peeling step. It is a method of manufacturing an optical waveguide without steps.

【0007】すなわち、石英ガラス基板上にCO2 レー
ザービームを照射し、上記石英ガラス基板をCO2 レー
ザビームに対して相対移動させることによって、上記石
英ガラス基板上面にコアパターン溝を加工する工程と、
該コアパターン溝内に上記石英ガラス基板よりも高屈折
率のコア膜を埋め込む工程と、該高屈折率のコア膜を埋
め込んだ石英ガラス基板の上面全体を上記コア膜よりも
低屈折率のクラッド膜で覆う工程とを備えた光導波路の
製造方法である。
Namely, by irradiating a CO 2 laser beam on a quartz glass substrate by relative movement of the quartz glass substrate with respect to CO 2 laser beam, a step of processing the core pattern groove in the quartz glass substrate top surface ,
A step of embedding a core film having a higher refractive index than the quartz glass substrate in the core pattern groove, and a step of filling the whole upper surface of the quartz glass substrate having the high refractive index core film with a cladding having a lower refractive index than the core film. And a step of covering with a film.

【0008】[0008]

【作用】コアのパターニング工程をCO2 レーザビーム
光で行うことにより、従来のメタル膜を形成する工程、
フォトリソグラフィ工程、メタル膜及びコア層のドライ
エッチング工程、メタル膜の剥離工程が不用となる。
[Operation] A step of forming a conventional metal film by performing the core patterning step with CO 2 laser beam light,
The photolithography process, the dry etching process of the metal film and the core layer, and the peeling process of the metal film are unnecessary.

【0009】本発明の光導波路を実現するのに、基板材
料として、石英系ガラス基板を用いたのは、CO2 レー
ザビームで溝が容易に加工でき、かつ、加工中及び加工
後に基板にクラックが入ったり、割れたりせず、非常に
安定な材料であるためである。
In order to realize the optical waveguide of the present invention, a quartz glass substrate is used as a substrate material because the groove can be easily processed by a CO 2 laser beam and the substrate is cracked during and after processing. This is because it is a very stable material that does not enter or crack.

【0010】CO2 レーザビームによるコアパターン溝
の加工は非常に短時間で、かつクリーンな雰囲気で行う
ことができる。また、加工した溝の内壁面は非常に滑ら
かな面であるので、光散乱損失の極めて低い光導波路を
実現することができる。
The core pattern groove can be processed with a CO 2 laser beam in a very short time and in a clean atmosphere. Moreover, since the inner wall surface of the processed groove is a very smooth surface, an optical waveguide with extremely low light scattering loss can be realized.

【0011】CO2 レーザによる溝の加工時間は、たと
えば、CO2 レーザパワーが70Wのものを用いれば、
1〜2mm/secの速度で加工できるので、非常に短時間
(従来の1/10以下)である。またコアパターン溝の
加工寸法精度は、パルスモータ駆動の数値制御機構を用
いたXY駆動装置を使用することによりμmオーダのパ
ターン加工精度を得ることができる。
The processing time of the groove with the CO 2 laser is, for example, if the CO 2 laser power is 70 W,
Since it can be processed at a speed of 1 to 2 mm / sec, it is a very short time (1/10 or less of the conventional one). With respect to the machining dimension accuracy of the core pattern groove, it is possible to obtain a pattern machining accuracy of the order of μm by using an XY drive device using a pulse motor driven numerical control mechanism.

【0012】CO2 レーザビームのスポット径は、通常
50μm程度であるので、マルチモード伝送用光導波路
の製造方法には極めて好適である。
Since the spot diameter of the CO 2 laser beam is usually about 50 μm, it is very suitable for a method of manufacturing an optical waveguide for multimode transmission.

【0013】[0013]

【実施例】図1に本発明の光導波路の製造方法の実施例
を示す。まず(a)に示すように石英ガラス基板1を用
意する。次いで(b)に示すように、石英ガラス基板1
の上面にCO2 レーザビームを照射してコアパターン溝
2を形成する。ここで、コアパターン溝2の幅Wは数十
μmから百数十μmの範囲、深さTは数μmから百数十
μmの範囲が好ましい。
EXAMPLE FIG. 1 shows an example of a method for manufacturing an optical waveguide of the present invention. First, a quartz glass substrate 1 is prepared as shown in (a). Then, as shown in (b), the quartz glass substrate 1
The core pattern groove 2 is formed by irradiating the upper surface of the substrate with a CO 2 laser beam. Here, the width W of the core pattern groove 2 is preferably in the range of several tens μm to hundreds of tens μm, and the depth T is preferably in the range of several μm to hundreds of tens μm.

【0014】幅WはCO2 レーザビームのビームスポッ
ト径によって決まる。深さTはCO2 レーザビームを石
英ガラス基板1の上面に照射する際の石英ガラス基板1
の移動速度V、CO2 レーザビームのパワーPに依存す
る。すなわち、速度Vが大きければ深さTは小さく、パ
ワーPが大きければ深さTは大きくなる。これらの逆は
反対の傾向を示す。
The width W is determined by the beam spot diameter of the CO 2 laser beam. The depth T is the quartz glass substrate 1 when the CO 2 laser beam is applied to the upper surface of the quartz glass substrate 1.
Of the CO 2 laser beam and the power P of the CO 2 laser beam. That is, if the speed V is large, the depth T is small, and if the power P is large, the depth T is large. The opposites show the opposite trend.

【0015】次に、(c)に示すように、溝2を形成し
た面に高屈折率のコア膜3を成膜する。このコア膜3は
石英ガラス基板1の屈折率よりも高い値の屈折率を有す
るコア膜、たとえば、SiO2 にTi,Ge,P,A
l,Zn,Zr,Ta,Na,Kなどの屈折率制御用添
加物を少なくとも1種含んだ酸化膜か、ポリメタクリル
酸メチル、ポリフッ化ビニリデン、ポリスチレン、ポリ
イミド、ポリカーボネートなどの高分子膜を用いる。特
に、高分子膜の場合には、液状のものが容易に得られる
ので、上記溝2を形成した面上に均一に、かつ溝内に一
様に埋め込むことができる点で有利である。
Next, as shown in (c), a core film 3 having a high refractive index is formed on the surface where the groove 2 is formed. The core film 3 has a refractive index higher than that of the quartz glass substrate 1, for example, SiO 2 , Ti, Ge, P, A.
An oxide film containing at least one additive for controlling the refractive index such as 1, Zn, Zr, Ta, Na or K, or a polymer film such as polymethylmethacrylate, polyvinylidene fluoride, polystyrene, polyimide or polycarbonate is used. . Particularly, in the case of a polymer film, a liquid film can be easily obtained, which is advantageous in that it can be uniformly embedded on the surface on which the groove 2 is formed and even in the groove.

【0016】液状膜の場合は、塗布後、加熱して硬化さ
せることによってコア膜3を形成することができる。酸
化膜の場合には、プラズマCVD法、電子ビーム蒸着
法、減圧CVD法、火炎堆積法などの方法によって形成
することができる。
In the case of a liquid film, the core film 3 can be formed by heating after application and curing. In the case of an oxide film, it can be formed by a method such as a plasma CVD method, an electron beam evaporation method, a low pressure CVD method, or a flame deposition method.

【0017】次に(d)に示すように、石英ガラス基板
1の上面の溝2以外に成膜された高屈折率のコア膜3を
研磨、エッチングなどの方法によって取り除く。最後
に、(e)に示すように、低屈折率のクラッド膜4を形
成して完了する。ここで、この低屈折率のクラッド膜4
としては、SiO2 、またはSiO2 にB,Fなどの屈
折率制御物を少なくとも1種含んだもの、あるいは上述
した高分子膜などを用いることができる。そして、この
低屈折率のクラッド膜4の屈折率は高屈折率のコア膜3
のそれよりも低い値のものを用いる。
Next, as shown in (d), the high-refractive-index core film 3 formed on the upper surface of the quartz glass substrate 1 other than the groove 2 is removed by a method such as polishing or etching. Finally, as shown in (e), the cladding film 4 having a low refractive index is formed and completed. Here, this low refractive index clad film 4
As the material, SiO 2 or SiO 2 containing at least one kind of refractive index control material such as B or F, or the polymer film described above can be used. Then, the refractive index of the clad film 4 having a low refractive index is equal to that of the core film 3 having a high refractive index.
Use a value lower than that of.

【0018】図2に本実施例の溝加工装置の概略図を示
す。これは図1の(b)のプロセスを実現するための装
置である。石英ガラス基板1は基板固定台11の上に固
定される。基板固定台11はXY駆動装置9によってX
方向12及びY方向13へコンピュータ数値制御によっ
て移動できるようになっている。XY駆動装置9は、パ
ルスモータ駆動の数値制御機構が組み込まれ、μmオー
ダのパターン加工精度が得られる。基板固定台11には
CO2 レーザ光が石英ガラス基板1を貫通できるように
溝14を掘ってある。CO2 レーザ光源5からのレーザ
ビーム8はハーフミラー6、集光レンズ7を介して石英
ガラス基板1の上面に焦点を結ぶように照射される。
FIG. 2 shows a schematic view of the groove processing apparatus of this embodiment. This is an apparatus for realizing the process of FIG. The quartz glass substrate 1 is fixed on a substrate fixing base 11. The board fixing base 11 is moved by the XY drive unit 9 to X.
It can be moved in the direction 12 and the Y direction 13 by computer numerical control. The XY drive device 9 incorporates a numerical control mechanism driven by a pulse motor, and obtains pattern processing accuracy on the order of μm. A groove 14 is formed in the substrate fixing base 11 so that CO 2 laser light can penetrate the quartz glass substrate 1. A laser beam 8 from a CO 2 laser light source 5 is irradiated through a half mirror 6 and a condenser lens 7 so as to focus on the upper surface of the quartz glass substrate 1.

【0019】石英ガラス基板1上にCO2 レーザービー
ム8を照射し、XY駆動装置9を動かし、石英ガラス基
板1をCO2 レーザビーム8に対して移動させることに
よって、石英ガラス基板1上面に任意の形状のコアパタ
ーン溝を加工することができる。
[0019] irradiated with CO 2 laser beam 8 on the quartz glass substrate 1, move the XY drive device 9, any quartz glass substrate 1 by moving relative to the CO 2 laser beam 8, a quartz glass substrate 1 top The core pattern groove having the shape of can be processed.

【0020】図3は本実施例の光導波路の製造方法によ
って製造された直線導波路の例を示したものである。S
iO2 基板1の表面にCO2 レーザ加工でコアパターン
溝2を形成し、溝内に高屈折率コア膜3を埋め込み、そ
の上に低屈折率クラッド膜4を形成したものである。コ
アパターン溝2の形状は直線である。
FIG. 3 shows an example of a linear waveguide manufactured by the method for manufacturing an optical waveguide of this embodiment. S
A core pattern groove 2 is formed on the surface of an iO 2 substrate 1 by CO 2 laser processing, a high refractive index core film 3 is buried in the groove, and a low refractive index clad film 4 is formed on the core pattern groove 3. The shape of the core pattern groove 2 is a straight line.

【0021】図4は本実施例で製造した光導波路型Y分
岐回路の例を示したものである。この例では、基板には
SiO2 にBとNaが微少量含まれた高珪酸ガラス(商
品名バイコールガラス、米国コーニングガラス社製)基
板15を用いている。コアパターン溝2の形状はY型で
ある。このY分岐回路16は入力部へ入射した矢印20
で示す光信号を2つの出力部へ等分配して矢印21及び
22のごとく光信号を出力させる光回路である。上記回
路16を縦続接続していけば1入力n出力(n≧4)の
光スターカプラを実現することが可能である。
FIG. 4 shows an example of the optical waveguide type Y branch circuit manufactured in this embodiment. In this example, a high silicate glass (trade name: Vycor glass, manufactured by Corning Glass, Inc.) substrate 15 containing a small amount of B and Na in SiO 2 is used as the substrate. The shape of the core pattern groove 2 is Y-shaped. This Y branch circuit 16 has an arrow 20 which is incident on the input section.
Is an optical circuit that equally distributes the optical signal indicated by 2 to the two output sections and outputs the optical signal as indicated by arrows 21 and 22. If the circuits 16 are connected in series, it is possible to realize an optical star coupler having one input and n outputs (n ≧ 4).

【0022】図5は本実施例で製造した光導波路型方向
性結合回路の例を示したものである。この例では、基板
にSi基板17を用い、そのSi基板17の上にSiO
2 膜18が形成され、このSiO2 膜18にコアパター
ン溝2が加工されている。コアパターン溝2の形状は、
直線と曲線の組み合わせた形状である。方向性結合回路
19は光信号を分配、合流したり、波長選択機能をもた
せたりすることができる。
FIG. 5 shows an example of the optical waveguide type directional coupling circuit manufactured in this embodiment. In this example, a Si substrate 17 is used as a substrate, and SiO 2 is formed on the Si substrate 17.
The two film 18 is formed, and the core pattern groove 2 is processed in the SiO 2 film 18. The shape of the core pattern groove 2 is
It is a combination of straight and curved lines. The directional coupling circuit 19 can distribute and merge optical signals, and can have a wavelength selection function.

【0023】なお、その他の光導波路として、直線、曲
線の溝状パターンを組合せたリング共振回路、交差回路
などを構成することができる。また、導波路の特性を向
上するために、石英ガラス基板の代わりに、上記B,N
aの他に、Ti,Ge,F,P,Alなどの屈折率制御
用添加物を少なくとも1種含んだ石英ガラス基板を用い
てもよい。
As other optical waveguides, a ring resonant circuit, a crossing circuit, etc., in which straight and curved groove patterns are combined can be constructed. Further, in order to improve the characteristics of the waveguide, the above B and N are used instead of the quartz glass substrate.
In addition to a, a quartz glass substrate containing at least one kind of refractive index controlling additive such as Ti, Ge, F, P and Al may be used.

【0024】[0024]

【発明の効果】本発明によれば、石英ガラス基板上にC
2 レーザ光を照射することによってコアパターン溝を
形成し、その溝内に高屈折率のコア膜を埋め込み、最後
に基板上面全体を低屈折率の膜で覆って光導波路を製造
するようにしたので、フォトリソグラフィ及びエッチン
グ技術を用いていた従来のものに比して、非常に簡単
に、短時間に、低コストで作ることができる。またCO
2 レーザビームによる溝加工はクリーンな雰囲気で、非
常に滑らかな面を形成することができるので、光散乱損
失の極めて低い光導波路を実現することができる。
According to the present invention, C is formed on a quartz glass substrate.
A core pattern groove is formed by irradiating an O 2 laser beam, a high refractive index core film is embedded in the groove, and finally the entire upper surface of the substrate is covered with a low refractive index film to manufacture an optical waveguide. Therefore, it can be manufactured very easily, in a short time, and at low cost, as compared with the conventional one using photolithography and etching techniques. Also CO
(2) Grooving with a laser beam can form a very smooth surface in a clean atmosphere, so that an optical waveguide with extremely low light scattering loss can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光導波路の製造方法の実施例を示す工
程図。
FIG. 1 is a process drawing showing an embodiment of a method for manufacturing an optical waveguide of the present invention.

【図2】本発明の石英系ガラス基板上への溝加工装置の
実施例を示す構成図。
FIG. 2 is a configuration diagram showing an embodiment of a groove processing device on a quartz glass substrate of the present invention.

【図3】本発明により製造される光導波路の実施例を示
す側面図及び平面図。
FIG. 3 is a side view and a plan view showing an embodiment of an optical waveguide manufactured according to the present invention.

【図4】本発明により製造される光導波路型Y分岐回路
の実施例を示す側面図及び平面図。
FIG. 4 is a side view and a plan view showing an embodiment of an optical waveguide type Y branch circuit manufactured according to the present invention.

【図5】本発明により製造される光導波路型方向性結合
回路の実施例を示す側面図及び平面図。
FIG. 5 is a side view and a plan view showing an embodiment of an optical waveguide type directional coupling circuit manufactured according to the present invention.

【図6】従来の光導波路の製造方法の工程図。FIG. 6 is a process drawing of a conventional method for manufacturing an optical waveguide.

【符号の説明】[Explanation of symbols]

1 石英ガラス基板 2 コアパターン溝 3 高屈折率のコア膜 4 低屈折率のクラッド膜 1 Quartz glass substrate 2 Core pattern groove 3 Core film with high refractive index 4 Clad film with low refractive index

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】石英ガラス基板上にCO2 レーザービーム
を照射し、上記石英ガラス基板をCO2 レーザビームに
対して相対移動させることによって、上記石英ガラス基
板上面にコアパターン溝を加工する工程と、該コアパタ
ーン溝内に上記石英ガラス基板よりも高屈折率のコア膜
を埋め込む工程と、該高屈折率のコア膜を埋め込んだ石
英ガラス基板の上面全体を上記コア膜よりも低屈折率の
クラッド膜で覆う工程とを備えた光導波路の製造方法。
[Claim 1] was irradiated with CO 2 laser beam on a quartz glass substrate by relative movement of the quartz glass substrate with respect to CO 2 laser beam, a step of processing the core pattern groove in the quartz glass substrate top surface A step of embedding a core film having a higher refractive index than the quartz glass substrate in the core pattern groove, and a step of embedding the entire upper surface of the silica glass substrate having the core film having a higher refractive index lower than that of the quartz film. A method of manufacturing an optical waveguide, comprising a step of covering with a clad film.
【請求項2】請求項1に記載の光導波路の製造方法にお
いて、上記コアパターン溝を加工する工程は、該コアパ
ターン溝が直線、曲線、あるいはそれらの組合せからな
り、方向性結合回路、Y分岐回路、リング共振回路、交
差回路などのパターンを少なくとも一つ加工する工程で
ある光導波路の製造方法。
2. The method of manufacturing an optical waveguide according to claim 1, wherein in the step of processing the core pattern groove, the core pattern groove is composed of a straight line, a curved line, or a combination thereof. A method for manufacturing an optical waveguide, which is a step of processing at least one pattern such as a branch circuit, a ring resonant circuit, and a cross circuit.
【請求項3】請求項1または2に記載の光導波路の製造
方法において、上記高屈折率のコア膜及び低屈折率のク
ラッド膜として、酸化膜、高分子膜のいずれかを用いた
光導波路の製造方法。
3. The optical waveguide according to claim 1, wherein the core film having a high refractive index and the clad film having a low refractive index are oxide films or polymer films. Manufacturing method.
【請求項4】請求項1ないし3のいずれかに記載の光導
波路の製造方法において、上記石英ガラス基板の代わり
に、B,Ti,Ge,F,P,Na,Alなどの屈折率
制御用添加物を少なくも1種含んだ石英ガラス基板を用
いた光導波路の製造方法。
4. The method for manufacturing an optical waveguide according to claim 1, which is for controlling the refractive index of B, Ti, Ge, F, P, Na, Al or the like instead of the quartz glass substrate. A method for manufacturing an optical waveguide using a quartz glass substrate containing at least one kind of additive.
JP19977194A 1994-08-24 1994-08-24 Manufacture of optical waveguide Pending JPH0862445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19977194A JPH0862445A (en) 1994-08-24 1994-08-24 Manufacture of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19977194A JPH0862445A (en) 1994-08-24 1994-08-24 Manufacture of optical waveguide

Publications (1)

Publication Number Publication Date
JPH0862445A true JPH0862445A (en) 1996-03-08

Family

ID=16413346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19977194A Pending JPH0862445A (en) 1994-08-24 1994-08-24 Manufacture of optical waveguide

Country Status (1)

Country Link
JP (1) JPH0862445A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007512B2 (en) * 2000-11-17 2006-03-07 National Institute Of Advanced Industrial Science And Technology Method for machining glass substrate
US7494923B2 (en) 2004-06-14 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of wiring substrate and semiconductor device
US7585783B2 (en) * 2003-04-25 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Drop discharge apparatus, method for forming pattern and method for manufacturing semiconductor device
US7812355B2 (en) 2004-03-03 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, liquid crystal television, and EL television
US7939888B2 (en) 2004-01-26 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device and television device using the same
US8222636B2 (en) 2004-03-24 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Method for forming pattern, thin film transistor, display device, method for manufacturing thereof, and television apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007512B2 (en) * 2000-11-17 2006-03-07 National Institute Of Advanced Industrial Science And Technology Method for machining glass substrate
US7585783B2 (en) * 2003-04-25 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Drop discharge apparatus, method for forming pattern and method for manufacturing semiconductor device
US7939888B2 (en) 2004-01-26 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device and television device using the same
US8518760B2 (en) 2004-01-26 2013-08-27 Semiconductor Energy Co., Ltd. Display device, method for manufacturing thereof, and television device
US7812355B2 (en) 2004-03-03 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, liquid crystal television, and EL television
US8222636B2 (en) 2004-03-24 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Method for forming pattern, thin film transistor, display device, method for manufacturing thereof, and television apparatus
US7494923B2 (en) 2004-06-14 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of wiring substrate and semiconductor device
US8102005B2 (en) 2004-06-14 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Wiring substrate, semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Bogaerts et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology
EP1542045B1 (en) Method of manufacturing an optical waveguide
KR100872244B1 (en) Process for producing filmy optical waveguide
KR100976671B1 (en) Process for producing optical waveguide
JP3079401B2 (en) Method for forming end mirror of optical waveguide
US6309803B1 (en) On-substrate cleaving of sol-gel waveguide
JPH0862445A (en) Manufacture of optical waveguide
US4842405A (en) Process for producing a grating on an optical fiber
JP3921556B2 (en) Method for forming microlens on end face of optical fiber
JPH09297235A (en) Optical waveguide and its production as well as optical waveguide module using the same
JP2002228867A (en) Method for manufacturing optical waveguide
JP3969320B2 (en) Waveguide type optical components
JP2002228868A (en) Method for manufacturing photonic crystal waveguide
JPS635310A (en) Production of optical connecting circuit
JP2003222747A (en) Optical circuit board
KR100400367B1 (en) Method of fabricating polymer optical waveguide and method of fabricating hybrid integrated device using the same
JP2570822B2 (en) Manufacturing method of optical waveguide
JP3900921B2 (en) Manufacturing method of optical waveguide coupling plate
JPH0720336A (en) Structure of optical waveguide and its production
JPS5848006A (en) Optical branching circuit and its production
JP2001235646A (en) Fine pattern forming method, method for manufacturing optical element, optical element and optical transmission device
JP2000158532A (en) Method for transferring fine pattern and manufacture of optical component
JP2001296441A (en) Combined waveguide having core different in refractive index and its manufacturing method
JP2003329822A (en) Light converging type optical splitter and method for manufacturing the same
JPH10293221A (en) Manufacture of light guide