JPH06174955A - Production of optical wave guide - Google Patents

Production of optical wave guide

Info

Publication number
JPH06174955A
JPH06174955A JP32432492A JP32432492A JPH06174955A JP H06174955 A JPH06174955 A JP H06174955A JP 32432492 A JP32432492 A JP 32432492A JP 32432492 A JP32432492 A JP 32432492A JP H06174955 A JPH06174955 A JP H06174955A
Authority
JP
Japan
Prior art keywords
base material
waveguide
core layer
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32432492A
Other languages
Japanese (ja)
Inventor
Tsutomu Watanabe
勤 渡邉
Shinji Ishikawa
真二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32432492A priority Critical patent/JPH06174955A/en
Publication of JPH06174955A publication Critical patent/JPH06174955A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the production method of the optical wave guide which is easy to control the refractive index of a core layer and simple in production stages. CONSTITUTION:A clad layer member 6 and a core layer member 7 is heated and melted to produce the wave guide base material 8 having nearly circular shape whose structure of the vertical cross section in a longitudinal direction are similar figures, and the wave guide base material 8 is heated and stretched up to a prescribed core layer width in a longitudinal direction, and the stretched wave guide base material 8 is cutted in a prescribed thickness is right angle direction in the longitudinal direction or the outer periphery part of the base material is polished after cutting, and the clad layer is stuck on the two surfaces where the core layer is exposed at the cut surface of the cut base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、クラッド層とコア層
からなり、このコア層内に光を閉じ込めて導波させる光
導波路に関し、特にこの光導波路の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide comprising a clad layer and a core layer for confining and guiding light in the core layer, and more particularly to a method for manufacturing the optical waveguide.

【0002】[0002]

【従来の技術】図5は、例えば特開昭58−10511
1号公報に示された従来の光導波路の製造方法である。
2. Description of the Related Art FIG. 5 shows, for example, JP-A-58-10511.
This is the conventional method of manufacturing an optical waveguide shown in Japanese Patent Laid-Open No.

【0003】従来、コア層の形成方法としては例えば火
炎堆積法により同図(a)に示すように、ガラス微粒子
合成トーチ2からコア層(屈折率の異なるガラス膜)を
構成する材料を含むトーチを排気管3で排気しながらガ
ラス基板1上に吹き付け、コア層を形成するガラス層4
を焼結させるか、あるいはCVD(Chemical VaporDepo
tion)法により成膜していた。
Conventionally, as a method for forming a core layer, for example, a torch including a material for forming a core layer (a glass film having a different refractive index) from a glass fine particle synthetic torch 2 as shown in FIG. While being exhausted by the exhaust pipe 3, the glass layer 4 is sprayed onto the glass substrate 1 to form a core layer.
Or CVD (Chemical Vapor Depo
film was formed by the method.

【0004】そして、以上のように成膜されたコア層は
(同図(b))、反応性エッチングによりコア回路(導
波路部分)を形成した後(同図(c))、クラッド層に
相当する保護膜を成膜して(オーバークラッディングに
よるガラス層の埋め込み)光導波路を製作していた(同
図(d))。
The core layer formed as described above ((b) in the figure) is used as a clad layer after forming a core circuit (waveguide portion) by reactive etching ((c) in the figure). An optical waveguide was manufactured by forming a corresponding protective film (embedding a glass layer by overcladding) (FIG. 3D).

【0005】[0005]

【発明が解決しようとする課題】従来の光導波路の製造
方法は以上のように、ガラス基板上に形成する屈折率の
高いコア層に相当するガラス膜の成膜を火炎堆積法によ
り焼結させることで行う場合、このコア層に相当するガ
ラス膜のドーパント含有量が成膜時の基板温度に依存す
ることから、屈折率の制御ができないという課題があっ
た。
As described above, according to the conventional method for manufacturing an optical waveguide, the glass film corresponding to the core layer having a high refractive index formed on the glass substrate is sintered by the flame deposition method. When this is done, there is a problem that the refractive index cannot be controlled because the dopant content of the glass film corresponding to the core layer depends on the substrate temperature during film formation.

【0006】また、CVD法により行う場合、膜厚や、
屈折率の再現性及び一様性は改善されるが、コア層に相
当するガラス膜の材料の種類によりガラス微粒子の組成
及び時間的にゆらぎが生じるため、ミクロなスケールで
見ると不均一になっているなどの課題があった。
When the CVD method is used, the film thickness and
Although the reproducibility and uniformity of the refractive index are improved, the composition of the glass particles and the temporal fluctuations occur depending on the type of material of the glass film that corresponds to the core layer, so that it becomes non-uniform on a microscopic scale. There was a problem such as that.

【0007】さらに、従来の製造方法では、コア層を形
成ためにエッチング処理を5〜20μmと深く行わなけ
ればならず、生産性が悪いなどの課題があった。
Further, in the conventional manufacturing method, the etching process must be deeply performed to 5 to 20 μm in order to form the core layer, and there is a problem that productivity is poor.

【0008】この発明は上記のような課題を解決するた
めになされたもので、コア層の屈折率制御が容易で、か
つ製造工程の簡単な光導波路の製造方法を提供すること
を目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide a method for manufacturing an optical waveguide in which the refractive index of the core layer can be easily controlled and the manufacturing process is simple. .

【0009】[0009]

【課題を解決するための手段】この発明に係る光導波路
の製造方法は、長手方向に対して垂直な断面の構造が相
似形となる略円形形状の導波路母材を製作し(導波路母
材製作工程)、この導波路母材を所定のコア層幅になる
まで長手方向に加熱延伸し(母材延伸工程)、延伸され
た導波路母材を長手方向に対して直交する方向に所定の
厚さで切断するか、あるいは切断後に母材外周部分を研
磨し(母材加工工程)、切断された母材の切断面であっ
て、コア層が露出している2面にクラッド層を接着する
(クラッド形成工程)ことを特徴としている。
According to the method of manufacturing an optical waveguide according to the present invention, a waveguide base material having a substantially circular shape in which a structure of a cross section perpendicular to the longitudinal direction has a similar shape is manufactured (waveguide matrix). Material manufacturing step), the waveguide base material is heated and stretched in the longitudinal direction until the core layer has a predetermined width (base material stretching step), and the stretched waveguide base material is oriented in a direction orthogonal to the longitudinal direction. Or cut the base material outer peripheral portion after the cutting (base material processing step) to form a clad layer on the two cut surfaces of the cut base material where the core layer is exposed. It is characterized by adhering (clad forming step).

【0010】また、この導波路母材は、クラッド層部材
及びコア層部材を加熱融着して製作するほか、屈折率を
低下させる元素をドーパントしたSiO2 で形成したク
ラッド層部材を、コア層に相当する部分を予め空間にし
て固定し、加熱融着して製作することを特徴としてい
る。
This waveguide base material is manufactured by heating and fusing the clad layer member and the core layer member, and the clad layer member formed of SiO 2 doped with an element that lowers the refractive index is used as the core layer. It is characterized in that the portion corresponding to is fixed in advance as a space, and is fixed by heating and manufactured by fusion.

【0011】[0011]

【作用】この発明における光導波路の製造方法は、予め
屈折率が均一な部材から導波路母材を構成し、同一母材
から複数のコア部分を形成するように構成したので、屈
折率が均一化する。
In the method of manufacturing an optical waveguide according to the present invention, since the waveguide base material is preliminarily formed from a member having a uniform refractive index and a plurality of core portions are formed from the same base material, the refractive index is uniform. Turn into.

【0012】また、フッ素をドーパントしたSiO2
形成したクラッド層部材を、コア層に相当する部分を予
め空間にして固定し加熱融着すると、対向しているクラ
ッド層部材の表面でフッ素が揮散するために空間となっ
ていた部分の中心付近ではフッ素含有濃度がほぼ0(Wt
/%)となり、この空間であった融着領域にコア層が形成
される。
Further, when a clad layer member formed of SiO 2 doped with fluorine is fixed in a space corresponding to the core layer in advance and heat fusion is performed, the fluorine is volatilized on the surface of the clad layer member facing the clad layer member. In the vicinity of the center of the space that was used for this purpose, the fluorine content concentration was almost 0 (Wt
/%), And the core layer is formed in the fusion-bonded region that was the space.

【0013】[0013]

【実施例】以下、この発明の一実施例を図1乃至図4を
用いて説明する。なお、図中、同一部分には同一符号を
付して説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In the drawings, the same parts are designated by the same reference numerals and the description thereof will be omitted.

【0014】図1は、この発明に係る光導波路の製造方
法の第1の実施例を説明するための工程図である。この
図において、まず導波路母材制作工程(図1(a))で
はSiO2 を材料としたクラッド層部材6と、該SiO
2 にGeをドーパントして屈折率を大きくしたコア層部
材7(部材厚はL)とを加熱融着して導波路母材を制作
する。
FIG. 1 is a process chart for explaining a first embodiment of a method of manufacturing an optical waveguide according to the present invention. In this figure, first, in the waveguide base material manufacturing process (FIG. 1A), the cladding layer member 6 made of SiO 2 and the SiO 2
A waveguide base material is manufactured by heat-sealing a core layer member 7 (having a member thickness L) having a refractive index increased by doping Ge into 2 with Ge.

【0015】続いて、母材延伸工程(図1(b))にお
いて、この制作された導波路母材を長手方向(図中、矢
印の方向)に加熱しながら延伸していき、上記コア層部
材7の膜厚が所望の膜厚L´になるまで(ここで、膜厚
はL/L´=γ(>1)の関係を満たす)延伸する。
Subsequently, in the base material stretching step (FIG. 1 (b)), the produced waveguide base material is stretched while being heated in the longitudinal direction (the direction of the arrow in the figure), and the core layer is formed. Stretching is performed until the film thickness of the member 7 reaches a desired film thickness L ′ (here, the film thickness satisfies the relationship of L / L ′ = γ (> 1)).

【0016】そして、母材加工工程(図1(c))でこ
のように延伸された導波路母材を長手方向に対して垂直
方向に、厚さWで切断し、最後にクラッド形成工程(図
1(d))でこの厚さWに切断された母材8の断面であ
って、コア層が露出している2面にクラッド層6を図中
の矢印の方向から接着して図1(e)に示すような光導
波路を製造する。
Then, the waveguide base material thus stretched in the base material processing step (FIG. 1 (c)) is cut in a direction perpendicular to the longitudinal direction with a thickness W, and finally a clad forming step ( 1 (d)) is a cross section of the base material 8 cut to have the thickness W, and the cladding layer 6 is adhered to the two surfaces where the core layer is exposed from the direction of the arrow in the drawing. An optical waveguide as shown in (e) is manufactured.

【0017】次に、光導波路として光カプラの製造方法
(第2の実施例)について図2を用いて説明する。
Next, a method of manufacturing an optical coupler as an optical waveguide (second embodiment) will be described with reference to FIG.

【0018】この図において、まず導波路母材制作工程
(図2(a))では前述した第1の実施例と同様に、S
iO2 を材料としたクラッド層部材6と、該SiO2
Geをドーパントして屈折率を大きくしたコア層部材7
(部材厚はL)とをこのクラッド層部材6と同じ材料の
枠部材9で固定し、加熱融着して導波路母材を制作す
る。
In this figure, first, in the step of producing the waveguide base material (FIG. 2A), as in the first embodiment described above, S
A cladding layer member 6 made of io 2 and a core layer member 7 having a refractive index increased by doping Ge into SiO 2
(The member thickness is L) is fixed by a frame member 9 made of the same material as the clad layer member 6, and heat fusion is performed to produce a waveguide base material.

【0019】続いて、母材延伸工程(図2(b))にお
いて、この制作された導波路母材を長手方向(図中、矢
印の方向)に加熱しながら延伸していき、上記コア層部
材7の膜厚が所望の膜厚L´になるまで(ここで、膜厚
はL/L´=γ(>1)の関係を満たす)延伸する。
Subsequently, in the base material stretching step (FIG. 2 (b)), the produced waveguide base material is stretched while being heated in the longitudinal direction (the direction of the arrow in the figure), and the core layer is formed. Stretching is performed until the film thickness of the member 7 reaches a desired film thickness L ′ (here, the film thickness satisfies the relationship of L / L ′ = γ (> 1)).

【0020】そして、母材加工工程(図2(c))でこ
のように延伸された導波路母材を長手方向に対して垂直
方向に、厚さWで切断した後、枠部材9に相当する延伸
された導波路母材の外周部分を研削し、最後にクラッド
形成工程(図2(d))でこの厚さWに切断された母材
8の断面であって、コア層が露出している2面にクラッ
ド層6を図中の矢印の方向から接着して図2(e)に示
すような光導波路を製造する。
Then, the waveguide base material thus stretched in the base material processing step (FIG. 2C) is cut in a thickness W in the direction perpendicular to the longitudinal direction, and then, the frame member 9 is obtained. The outer peripheral portion of the stretched waveguide base material is ground, and finally the core layer is exposed in the cross section of the base material 8 cut to the thickness W in the clad forming step (FIG. 2D). The cladding layer 6 is adhered to the two surfaces in the direction indicated by the arrow in the drawing to manufacture an optical waveguide as shown in FIG.

【0021】なお、厚さWで切断された導波路母材8
は、切断後に枠部材9に相当する母材8の外周部分を研
削するようにしてもよく、このように制作された光カプ
ラは図2(f)に示すように、そのコア層に相当する部
分を光ファイバ10の各端面と接合して使用される。
The waveguide base material 8 cut to the thickness W is used.
After cutting, the outer peripheral portion of the base material 8 corresponding to the frame member 9 may be ground, and the optical coupler manufactured in this way corresponds to the core layer thereof as shown in FIG. 2 (f). The portion is used by being joined to each end face of the optical fiber 10.

【0022】次に、光導波路として光分岐モジュールの
製造方法(第3の実施例)について図3及び図4を用い
て説明する。
Next, a method of manufacturing an optical branching module as an optical waveguide (third embodiment) will be described with reference to FIGS. 3 and 4.

【0023】この図において、まず導波路母材制作工程
(図3(a))では屈折率を低下させる元素として、例
えばF(フッ素)をSiO2 にドーパントして屈折率を
小さくした材料をクラッド層部材11として用い、これ
らクラッド層部材11を枠部材9で固定して、部材間に
空間(隙間)12を有する状態で加熱融着させて導波路
母材を制作する。
In this figure, first, in the step of producing the waveguide base material (FIG. 3A), SiO 2 is doped with, for example, F (fluorine) as an element for lowering the refractive index, and a material whose refractive index is reduced is clad. Used as the layer member 11, the clad layer member 11 is fixed by the frame member 9 and heat-fused with a space (gap) 12 between the members to produce a waveguide base material.

【0024】このように、クラッド層部材11に空間を
設けると、加熱融着する際、部材表面のFが空気中に揮
散するため、図4に示すようにこれらクラッド層部材1
1と比較して屈折率が大きな(F濃度が小さい)融着領
域ができ、結果的のこの約5μm程度の融着領域(図中
斜線で示す部分)がコア層になる。
When a space is provided in the clad layer member 11 as described above, F on the surface of the clad layer is volatilized into the air during heat fusion, so that the clad layer member 1 as shown in FIG.
A fused region having a larger refractive index (smaller F concentration) than that of No. 1 is formed, and as a result, this fused region of about 5 μm (portion indicated by hatching in the figure) becomes the core layer.

【0025】続いて、母材延伸工程(図3(b))にお
いて、この制作された導波路母材を長手方向(図3
(b)中、矢印の方向)に加熱しながら延伸していき、
上記コア層部材7の膜厚が所望の膜厚L´になるまで延
伸する。
Subsequently, in the base material drawing step (FIG. 3 (b)), the produced waveguide base material is lengthwise (FIG. 3).
Stretching while heating in (b), the direction of the arrow),
The core layer member 7 is stretched until it has a desired film thickness L '.

【0026】そして、母材加工工程(図3(c))でこ
のように延伸された導波路母材を長手方向に対して垂直
方向に、厚さWで切断し、最後にクラッド形成工程(図
3(d))でこの厚さWに切断された母材8の断面であ
って、コア層が露出している2面にクラッド層6を図中
の矢印の方向から接着して図3(e)に示すような光導
波路を製造する。
Then, the waveguide base material thus stretched in the base material processing step (FIG. 3 (c)) is cut in a direction perpendicular to the longitudinal direction to a thickness W, and finally a clad forming step ( 3 (d)) is a cross-section of the base material 8 cut to this thickness W, and the cladding layer 6 is adhered to the two surfaces where the core layer is exposed from the direction of the arrow in the drawing. An optical waveguide as shown in (e) is manufactured.

【0027】なお、厚さWで切断された導波路母材8
は、切断後に枠部材9に相当する母材8の外周部分を研
削するようにしてもよい。
The waveguide base material 8 cut to the thickness W is used.
After cutting, the outer peripheral portion of the base material 8 corresponding to the frame member 9 may be ground.

【0028】[0028]

【発明の効果】以上のようにこの発明によれば、長手方
向に対して垂直な断面の構造が相似形となる略円形形状
の導波路母材を製作し(導波路母材製作工程)、この導
波路母材を所定のコア層幅になるまで長手方向に加熱延
伸し(母材延伸工程)、延伸された導波路母材を長手方
向に対して直交する方向に所定の厚さで切断するか、あ
るいは切断後に研磨し(母材加工工程)、切断された母
材の切断面であって、コア層が露出している2面にクラ
ッド層を接着する(クラッド形成工程)ので、同一母材
から複数のコア部分を形成することにより屈折率が均一
化できるため、屈折率の制御が容易になるとともに、従
来の製造方法で必要であったエッチング工程が不要にな
るなどの効果がある。
As described above, according to the present invention, a substantially circular waveguide base material having a similar structure in a cross section perpendicular to the longitudinal direction is manufactured (waveguide base material manufacturing step), This waveguide base material is heated and stretched in the longitudinal direction until it has a predetermined core layer width (base material stretching step), and the stretched waveguide base material is cut at a predetermined thickness in a direction orthogonal to the longitudinal direction. Or, after cutting, polishing (base material processing step) and adhering the clad layer to the two cut surfaces of the cut base material where the core layer is exposed (clad forming step), the same Since the refractive index can be made uniform by forming a plurality of core parts from the base material, it is easy to control the refractive index, and there is an effect that the etching step required in the conventional manufacturing method becomes unnecessary. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る光導波路の製造方法の第1の実
施例を説明するための工程図である。
FIG. 1 is a process drawing for explaining a first embodiment of a method of manufacturing an optical waveguide according to the present invention.

【図2】この発明に係る光導波路の製造方法の第2の実
施例を説明するための工程図である。
FIG. 2 is a process drawing for explaining the second embodiment of the method of manufacturing an optical waveguide according to the present invention.

【図3】この発明に係る光導波路の製造方法の第3の実
施例を説明するための工程図である。
FIG. 3 is a process drawing for explaining the third embodiment of the method of manufacturing an optical waveguide according to the present invention.

【図4】この発明に係る光導波路の製造方法の第3の実
施例におけるコア層の状態を説明するための図である。
FIG. 4 is a drawing for explaining the state of the core layer in the third embodiment of the method of manufacturing an optical waveguide according to the present invention.

【図5】従来の光導波路の製造方法を説明するための工
程図である。
FIG. 5 is a process chart for explaining a conventional method for manufacturing an optical waveguide.

【符号の説明】[Explanation of symbols]

6、11…クラッド層部材、7…コア層部材、8…切断
後の導波路母材、9…枠部材、12…空間(隙間)。
6, 11 ... Clad layer member, 7 ... Core layer member, 8 ... Waveguide base material after cutting, 9 ... Frame member, 12 ... Space (gap).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 クラッド層とコア層からなり、該コア層
内に光を閉じ込め導波させる光導波路において、 前記クラッド層及びコア層となる各部材から構成され、
長手方向に対して垂直な断面の構造が相似形となる導波
路母材を製作する導波路母材製作工程と、 前記導波路母材を長手方向に加熱延伸し、該導波路母材
のコア層幅を所定の幅にする母材延伸工程と、 前記延伸された導波路母材を長手方向に対して直交する
方向に所定の厚さで切断する母材加工工程と、 前記所定の厚さに切断された母材の切断面であって、コ
ア層が露出している2面にクラッド層を接着するクラッ
ド形成工程とを備えた光導波路の製造方法。
1. An optical waveguide comprising a clad layer and a core layer, wherein light is confined and guided in the core layer, the member comprising the clad layer and the core layer,
A waveguide base material manufacturing step of manufacturing a waveguide base material in which a structure of a cross section perpendicular to the longitudinal direction has a similar shape; A base material drawing step of making a layer width a predetermined width; a base material processing step of cutting the drawn waveguide base material with a predetermined thickness in a direction orthogonal to the longitudinal direction; and the predetermined thickness. A method of manufacturing an optical waveguide, comprising: a clad forming step of adhering a clad layer to two cut surfaces of a base material cut into pieces and exposing a core layer.
【請求項2】 前記導波路母材製作工程は、クラッド層
部材とコア層部材とを固定し、加熱融着して導波路母材
を製作することを特徴とする請求項1記載の光導波路の
製造方法。
2. The optical waveguide according to claim 1, wherein in the step of producing the waveguide base material, the waveguide layer base material is produced by fixing the clad layer member and the core layer member and heat-sealing them. Manufacturing method.
【請求項3】 前記導波路母材製作工程は、屈折率を低
下させる元素をドーパントしたSiO2 からなるクラッ
ド層部材を、コア層に相当する部分を予め空間にして固
定し、加熱融着して導波路母材を製作することを特徴と
する請求項1記載の光導波路の製造方法。
3. In the step of producing the waveguide base material, a clad layer member made of SiO 2 doped with an element that lowers the refractive index is fixed in advance with a space corresponding to the core layer as a space, and heat fusion is performed. 2. The method of manufacturing an optical waveguide according to claim 1, wherein the waveguide base material is manufactured by the following method.
【請求項4】 前記導波路母材の断面外周形状は、略円
形であることを特徴とする請求項1記載の光導波路の製
造方法。
4. The method of manufacturing an optical waveguide according to claim 1, wherein the cross-sectional outer peripheral shape of the waveguide base material is substantially circular.
【請求項5】 前記母材加工工程は、延伸された導波路
母材の切断後、所定の厚さに切断された該母材の外周部
分を研磨することを特徴とする請求項1記載の光導波路
の製造方法。
5. The base material processing step comprises, after cutting the stretched waveguide base material, polishing an outer peripheral portion of the base material cut into a predetermined thickness. Manufacturing method of optical waveguide.
JP32432492A 1992-12-03 1992-12-03 Production of optical wave guide Pending JPH06174955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32432492A JPH06174955A (en) 1992-12-03 1992-12-03 Production of optical wave guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32432492A JPH06174955A (en) 1992-12-03 1992-12-03 Production of optical wave guide

Publications (1)

Publication Number Publication Date
JPH06174955A true JPH06174955A (en) 1994-06-24

Family

ID=18164523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32432492A Pending JPH06174955A (en) 1992-12-03 1992-12-03 Production of optical wave guide

Country Status (1)

Country Link
JP (1) JPH06174955A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005607A1 (en) * 1998-07-23 2000-02-03 Molecular Optoelectronics Corporation Method for fabricating an optical waveguide
US6141475A (en) * 1998-07-23 2000-10-31 Molecular Optoelectronics Corporation Optical waveguide with dissimilar core and cladding materials, and light emitting device employing the same
US6198569B1 (en) 1998-02-20 2001-03-06 Molecular Optoelectronics Corporation Multiple window dense wavelength divison multiplexed communications link with optical amplification and dispersion compensation
US6208456B1 (en) 1999-05-24 2001-03-27 Molecular Optoelectronics Corporation Compact optical amplifier with integrated optical waveguide and pump source
US6236793B1 (en) 1998-09-23 2001-05-22 Molecular Optoelectronics Corporation Optical channel waveguide amplifier
US6289027B1 (en) 1998-02-20 2001-09-11 Molecular Optoelectronics Corporation Fiber optic lasers employing fiber optic amplifiers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198569B1 (en) 1998-02-20 2001-03-06 Molecular Optoelectronics Corporation Multiple window dense wavelength divison multiplexed communications link with optical amplification and dispersion compensation
US6289027B1 (en) 1998-02-20 2001-09-11 Molecular Optoelectronics Corporation Fiber optic lasers employing fiber optic amplifiers
WO2000005607A1 (en) * 1998-07-23 2000-02-03 Molecular Optoelectronics Corporation Method for fabricating an optical waveguide
US6141475A (en) * 1998-07-23 2000-10-31 Molecular Optoelectronics Corporation Optical waveguide with dissimilar core and cladding materials, and light emitting device employing the same
US6270604B1 (en) 1998-07-23 2001-08-07 Molecular Optoelectronics Corporation Method for fabricating an optical waveguide
AU745368B2 (en) * 1998-07-23 2002-03-21 Molecular Optoelectronics Corporation Method for fabricating an optical waveguide
US6511571B2 (en) 1998-07-23 2003-01-28 Molecular Optoelectronics Corporation Method for fabricating an optical waveguide
US6236793B1 (en) 1998-09-23 2001-05-22 Molecular Optoelectronics Corporation Optical channel waveguide amplifier
US6208456B1 (en) 1999-05-24 2001-03-27 Molecular Optoelectronics Corporation Compact optical amplifier with integrated optical waveguide and pump source
US6384961B2 (en) 1999-05-24 2002-05-07 Molecular Optoelectronics Corporation Compact optical amplifier with integrated optical waveguide and pump source

Similar Documents

Publication Publication Date Title
US4619680A (en) Manufacture of integrated optical waveguides
JPH0447285B2 (en)
JP3230679B2 (en) Waveguide structure
US3932160A (en) Method for forming low loss optical waveguide fibers
JPH06174955A (en) Production of optical wave guide
JPH0581543B2 (en)
US4549891A (en) Method for forming a non-symmetrical optical fiber
US5194079A (en) Method of forming an optical channel waveguide by thermal diffusion
JP2530823B2 (en) Fiber type single mode lightwave circuit element and method of manufacturing the same
JPH04128704A (en) Quartz optical waveguide and production thereof
JPH05188231A (en) Production of optical waveguide
JPH05215929A (en) Manufacture of glass waveguide
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JPH0548445B2 (en)
JPS59137346A (en) Manufacture of glass waveguide
JP3871737B2 (en) Manufacturing method of tape-shaped multi-core fiber
JPS58110439A (en) Manufacture of constant polarization type optical fiber
JP3228016B2 (en) Manufacturing method of glass waveguide device
JPS61158303A (en) Formation of quartz optical waveguide
JPS59202407A (en) Manufacture of light guide
JPH07261040A (en) Glass waveguide and its manufacture
JP6623146B2 (en) Method for manufacturing base material for multi-core fiber, and method for manufacturing multi-core fiber using the same
JPS6294B2 (en)
JPH0875940A (en) Production of optical waveguide
JPH04317432A (en) Production of elliptic-core type polarization plane maintaining optical fiber