JPH01186754A - Nonaqueous electrolytic liquid secondary battery - Google Patents

Nonaqueous electrolytic liquid secondary battery

Info

Publication number
JPH01186754A
JPH01186754A JP63006351A JP635188A JPH01186754A JP H01186754 A JPH01186754 A JP H01186754A JP 63006351 A JP63006351 A JP 63006351A JP 635188 A JP635188 A JP 635188A JP H01186754 A JPH01186754 A JP H01186754A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
secondary battery
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63006351A
Other languages
Japanese (ja)
Inventor
Kazuo Terashi
和生 寺司
Toshihiko Saito
俊彦 齋藤
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63006351A priority Critical patent/JPH01186754A/en
Publication of JPH01186754A publication Critical patent/JPH01186754A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the cycle property by using a lithium processed by a ring-form ether in which lithium arsenate hexafluoride is solved, as the lithium of a lithium negative electrode. CONSTITUTION:By processing lithium with a ring-form ether in which lithium arsenate hexafluoride is solved, a protective membrane is formed on the surface of lithium. By using the lithium processed in such a way as the negative electrode, the deposition and the electric separation are generated through the protective membrane in the charge and the discharge of the battery, and the direct contact of the separated active lithium to the nonaqueous electrolyte is prevented to suppress the reaction with the solvent. The charge and discharge cycle property can be improved consequently.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は非水電解液二次電池に関するものである。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a non-aqueous electrolyte secondary battery.

(ロ)従来技術 非水電解液電池は高エネルギー密度を有し、且自己放電
が少ないという利点を有するため注目されている。
(b) Prior Art Non-aqueous electrolyte batteries have attracted attention because they have the advantage of having high energy density and low self-discharge.

そしてリチウムを負極とし、二酸化マンガンやフッ化炭
素などを正極活物質とした一次電池系は既に実用化され
ており、又、三酸化モ91デン、五酸化バナジウム、二
酸化マンガン、チタン或いはニオブの硫化物、セレン化
物などを正極活物質とする二次電池系も検討されている
Primary battery systems that use lithium as the negative electrode and manganese dioxide or carbon fluoride as the positive electrode active material have already been put into practical use. Secondary battery systems using selenide, selenide, and the like as positive electrode active materials are also being considered.

(ハ)発明が解決しようとする課題 非水電解液二次電池は放電時にイオンとなって溶出した
リチウムが充電時に金属リチウムとして負極表面に電析
するのであるが、この電析リチウムは表面積の大きな微
粒子状であ、るため活性度が高く、そのため非水電解液
を構成する溶媒と反応して溶媒を分解し非水電解液を劣
化させるtこ至り充放電サイクル特性に問題゛があった
(c) Problems to be Solved by the Invention In non-aqueous electrolyte secondary batteries, lithium eluted as ions during discharge is deposited as metallic lithium on the negative electrode surface during charging, but this electrodeposited lithium has a surface area of Because they are in the form of large fine particles, they have high activity, and as a result, they react with the solvent that makes up the non-aqueous electrolyte, decomposing the solvent and degrading the non-aqueous electrolyte, resulting in problems with charge-discharge cycle characteristics. .

に)課題を解決するための手段 六フッ化砒酸リチウム(LiAsF6)を溶解した環状
エーテルで処理したリチウムを負極として用いる。
B) Means for Solving the Problems Lithium treated with a cyclic ether in which lithium hexafluoroarsenate (LiAsF6) is dissolved is used as a negative electrode.

又、処理に関しては上記処理液中にリチウムを浸漬する
のみで良いが、浸漬し通電処理する方がさらに好ましい
Regarding the treatment, it is sufficient to simply immerse lithium in the above-mentioned treatment liquid, but it is more preferable to immerse the lithium and conduct an electric current treatment.

尚、環状エーテルの代表的なものとしてはテトラヒドロ
フラン(THF)、2メチル−テトラヒドロフラン(2
Me−THF )、4メチル−ジオキソラン(4Me−
DOXL)が挙げられるがこれら化限定されない。
Typical cyclic ethers include tetrahydrofuran (THF), 2methyl-tetrahydrofuran (2
Me-THF), 4methyl-dioxolane (4Me-
DOXL), but are not limited to these.

(ホ)作 用 六フッ化砒酸リチウムを溶解した環状エーテルでリチウ
ムを処理するとリチウム表面に保護被膜が形成される。
(e) Effect When lithium is treated with a cyclic ether in which lithium hexafluoroarsenate is dissolved, a protective film is formed on the lithium surface.

このように処理したリチウムを負極に用いると、電池の
放電及び充電時、この保護被膜を介してリチウムの溶出
及び電析が生じることになり、活性な電析リチウムが直
接非水電解液と接触しないため溶媒との反応が抑制され
充放電・サイクル特性の改善が図れる。
If lithium treated in this way is used in the negative electrode, lithium will be eluted and deposited through this protective film during battery discharging and charging, and the active deposited lithium will come into direct contact with the non-aqueous electrolyte. This suppresses reaction with the solvent and improves charge/discharge/cycle characteristics.

尚、保護被膜の形態について考察すると、例えば環状エ
ーテルとしてテトラヒドロフラン(THE)を例にとる
と、先ずTHFとLiとが反応しTHFが開環を起こし
てブトキシリチウム(C4H90Li)が生成し、つい
でこのC4H90LiとL i’A s F aとが反
応しこの反応生成物が保護被膜となるものと考えられる
When considering the form of the protective film, for example, if we take tetrahydrofuran (THE) as a cyclic ether, first THF and Li react, THF undergoes ring opening to produce butoxylithium (C4H90Li), and then this It is thought that C4H90Li and Li'A s Fa react and this reaction product becomes a protective film.

(ハ)実施例 実施例1 負極の作成:第1表に示す如(LiAsF6を1モル/
l溶解した各種環状エーテルよりなる処理液(a)〜(
ψ中にリチウム板を浸漬し、0.5mA/dの電流密度
でリチウム板の理論容量の2〜3%を放電させた後、6
0°Cで1週間放置する。この処理により表面に被膜が
形成されたリチウム板が得られこれを負極とする。
(c) Examples Example 1 Preparation of negative electrode: As shown in Table 1 (1 mol/1 mole of LiAsF6
l Treatment liquids (a) to (a) consisting of various dissolved cyclic ethers
After immersing the lithium plate in ψ and discharging 2 to 3% of the theoretical capacity of the lithium plate at a current density of 0.5 mA/d,
Leave at 0°C for 1 week. This treatment yields a lithium plate with a coating formed on its surface, which is used as a negative electrode.

第1図は電池の半断面図を示し、(1)は上記せる処理
済みのリチウム圧延板よりなる負極であって負極缶(2
)の内底面に固着せる負極集電体(3)に圧着されてい
る。(4)は正極であって二硫化チタン活物質に尋電剤
としてのアセチレンブラック及び結着剤としてのフッ素
樹脂粉末を重爪比で80:10:10の割合で混合した
合剤を成型したものであり、正極缶(5)の内底面に固
着した正極集電体(6)に圧接されている。(7)はポ
リプロピレン不織布よりなるセパレータであって、この
セパレータにはプロピレンカーボネートと1,2ジメト
キシエタンとの等容積混合溶媒にホウフッ化リチウムを
1モル/l溶解した電解液が含浸されている。(8)は
絶縁バッキング、電池寸法は直径24W1厚み3.0厘
である。
FIG. 1 shows a half-sectional view of the battery, in which (1) is the negative electrode made of the above-mentioned treated lithium rolled plate, and the negative electrode can (2
) is crimped to a negative electrode current collector (3) which is fixed to the inner bottom surface of the electrode. (4) is a positive electrode, in which a mixture of titanium disulfide active material, acetylene black as a dielectric agent, and fluororesin powder as a binder are mixed in a ratio of 80:10:10 is molded. It is pressed into contact with a positive electrode current collector (6) fixed to the inner bottom surface of the positive electrode can (5). (7) is a separator made of polypropylene nonwoven fabric, and this separator is impregnated with an electrolytic solution in which 1 mol/l of lithium fluoroborate is dissolved in an equal volume mixed solvent of propylene carbonate and 1,2 dimethoxyethane. (8) is an insulating backing, and the battery dimensions are 24W in diameter and 3.0L in thickness.

このように作成した本発明電池を処理液に対応させて(
A)〜(C)とする。
The battery of the present invention created in this way was made compatible with the treatment liquid (
A) to (C).

比較例 第1表に示す処理液(ψ〜(0中にリチウム板を浸漬し
、0.5mA/cd電流密度でリチウム板の理論容量の
2〜3%を放電させた後、60℃で1週間放置したリチ
ウムを負極として用いることを除いて他は実施例1と同
様の比較電池を作成した。
Comparative Example A lithium plate was immersed in the treatment solution (ψ~(0) shown in Table 1, and after discharging 2 to 3% of the theoretical capacity of the lithium plate at a current density of 0.5 mA/cd, A comparative battery was prepared in the same manner as in Example 1 except that lithium that had been left for a week was used as the negative electrode.

この比較電池を処理液番こ対応させて(D)〜(F)と
する。尚、予じめ何ら処理をしないリチウム板を負極と
して用いた比較電池を(G)とする。
These comparative batteries are shown as (D) to (F) corresponding to the treatment solution number. Note that a comparative battery (G) uses a lithium plate that has not been subjected to any treatment in advance as a negative electrode.

実施例2 第1表]こ示す如き処理液(a)〜(C)中にリチウム
板を浸漬して室温で2ケ月放置する。この処理により表
面に被膜が形成されたリチウム板を負極に用いることを
除いて他は実施例1と同様の本発明電池を作成した。こ
れらの電池を(A)〜(C)とする。
Example 2 Table 1] A lithium plate was immersed in treatment solutions (a) to (C) as shown below and left at room temperature for two months. A battery of the present invention was prepared in the same manner as in Example 1 except that a lithium plate whose surface was coated by this treatment was used as a negative electrode. These batteries are designated as (A) to (C).

第   1  表 第2図はこれら電池のサイクル特性図を示し、サイクル
条件は充電電流2mAで充電終止電圧6゜Ov、放電電
流2mAで放電終止電圧1.Ovとした。
Table 1 and Figure 2 show the cycle characteristics of these batteries, and the cycle conditions are a charge current of 2 mA and a charge end voltage of 6°Ov, and a discharge current of 2 mA and a discharge end voltage of 1.0V. It was Ov.

第2図から明らかなように、本発明電池(A)〜(C)
及び(A′)〜(C′)は比較電池(D)〜(G)に比
してサイクル特性が改善されているのがわかる。この理
由は本発明のよう番こ六フッ化砒酸リチウムを溶解した
環状エーテルで処理したリチウム負極表面には、活性な
電析リチウムと溶媒との反応を阻止する保護被膜が形成
されているのに対し、比較電池ではこのような保護被膜
が形成されていないことに起因すると考えられる。
As is clear from FIG. 2, batteries (A) to (C) of the present invention
It can be seen that the cycle characteristics of the batteries (A') to (C') are improved compared to the comparative batteries (D) to (G). The reason for this is that in the present invention, a protective film is formed on the surface of the lithium negative electrode treated with a cyclic ether in which lithium hexafluoroarsenate is dissolved, which prevents the reaction between the active electrodeposited lithium and the solvent. On the other hand, this is thought to be due to the fact that such a protective film was not formed in the comparative battery.

又、通電処理した本発明電池(A)〜(C)の方が単に
処理液中に浸漬したのみの本発明電池(A’)〜(C′
)に比してサイクル特性が優れるのは、通電処理によっ
てリチウム板の表面に予じめ存在していたLiOH,L
i2COaなどの電池性能に悪影響を与える物質を除去
しうろこと及び被膜が均一に形成されることに起因する
と考えられる。
Moreover, the batteries (A) to (C) of the present invention that were subjected to current treatment were better than the batteries (A') to (C') of the present invention that were simply immersed in the treatment solution.
) The reason why the cycle characteristics are superior to that of
This is thought to be due to the fact that the scales and coating are uniformly formed by removing substances such as i2COa that adversely affect battery performance.

更に処理時間を短縮化しうるという利点もある。Furthermore, there is an advantage that processing time can be shortened.

尚、本発明においては実施例で開示した環状エーテル以
外の環状エーテルも用いることができるのは明らかであ
る。
It is clear that cyclic ethers other than those disclosed in the Examples can also be used in the present invention.

(ト)発明の効果 上述した如く、リチウム負極を用いる非水電解液電池に
おいて、リチウムとして六フッ化砒酸リチウムを溶解し
た環状エーテルで処理したものを用いることにより、こ
の種電池のサイクル特性を改善することができるもので
ありその工業的価値は極めて大である。
(g) Effects of the invention As mentioned above, in a non-aqueous electrolyte battery using a lithium negative electrode, the cycle characteristics of this type of battery are improved by using lithium treated with a cyclic ether in which lithium hexafluoroarsenate is dissolved. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の半断面図、第2図は本発明電池と
比較電池のサイクル特性図である。
FIG. 1 is a half-sectional view of the battery of the present invention, and FIG. 2 is a cycle characteristic diagram of the battery of the present invention and a comparative battery.

Claims (2)

【特許請求の範囲】[Claims] (1)六フッ化砒酸リチウムを溶解した環状エーテルで
処理したリチウムを負極として用いたことを特徴とする
非水電解液二次電池。
(1) A non-aqueous electrolyte secondary battery characterized in that lithium treated with a cyclic ether in which lithium hexafluoroarsenate is dissolved is used as a negative electrode.
(2)前記処理が通電処理であることを特徴とする特許
請求の範囲第(1)項記載の非水電解液二次電池。
(2) The non-aqueous electrolyte secondary battery according to claim (1), wherein the treatment is an energization treatment.
JP63006351A 1988-01-14 1988-01-14 Nonaqueous electrolytic liquid secondary battery Pending JPH01186754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006351A JPH01186754A (en) 1988-01-14 1988-01-14 Nonaqueous electrolytic liquid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006351A JPH01186754A (en) 1988-01-14 1988-01-14 Nonaqueous electrolytic liquid secondary battery

Publications (1)

Publication Number Publication Date
JPH01186754A true JPH01186754A (en) 1989-07-26

Family

ID=11635947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006351A Pending JPH01186754A (en) 1988-01-14 1988-01-14 Nonaqueous electrolytic liquid secondary battery

Country Status (1)

Country Link
JP (1) JPH01186754A (en)

Similar Documents

Publication Publication Date Title
JP2001023613A (en) Lithium secondary battery
JPH0495363A (en) Nonaqueous secondary-battery
JP2989230B2 (en) Non-aqueous battery
JPH0426075A (en) Organicelectrolyte battery
JPH03241675A (en) Nonaqueous electrolyte secondary battery
JPH04206267A (en) Nonaqueous electrolyte secondary battery
JPH01186754A (en) Nonaqueous electrolytic liquid secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP2639935B2 (en) Non-aqueous electrolyte secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JPH0355770A (en) Lithium secondary battery
JPH02239572A (en) Polyaniline battery
JPS59130070A (en) Nonaqueous electrolytic secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPS62108455A (en) Non aqueous secondary cell
JP3021478B2 (en) Non-aqueous secondary battery
JPH04169077A (en) Nonaqueous electrolyte secondary battery
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JP2698180B2 (en) Non-aqueous secondary battery
JPH04160766A (en) Nonaqueous electrolyte secondary battery
JPH01132067A (en) Organic electrolyte secondary cell
JP2834731B2 (en) Non-aqueous secondary battery
JPH0421990B2 (en)
JPH01302659A (en) Organic solvent battery