JPH03241675A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03241675A
JPH03241675A JP2040396A JP4039690A JPH03241675A JP H03241675 A JPH03241675 A JP H03241675A JP 2040396 A JP2040396 A JP 2040396A JP 4039690 A JP4039690 A JP 4039690A JP H03241675 A JPH03241675 A JP H03241675A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
positive electrode
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2040396A
Other languages
Japanese (ja)
Other versions
JP2709303B2 (en
Inventor
Osamu Yamamoto
治 山本
Yasuo Takeda
保雄 武田
Riyouji Sugano
了次 菅野
Takayuki Ichikawa
貴之 市川
Masamichi Ohashi
大橋 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2040396A priority Critical patent/JP2709303B2/en
Publication of JPH03241675A publication Critical patent/JPH03241675A/en
Application granted granted Critical
Publication of JP2709303B2 publication Critical patent/JP2709303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To remarkably improve the cycle life of a secondary battery by forming a layer mainly made of carbon into which lithium ions can be inserted or removed is formed on one face or both faces of a lithium metal plate or a lithium alloy plate for a negative electrode. CONSTITUTION:A negative electrode 2 constituted of a lithium metal plate 2a and a graphite molding 2b is pressed on the inner face of a negative electrode current collector 7, and it is fixed to the inner bottom face of a stainless negative electrode can 5 with a U-shaped cross section. The periphery of the negative electrode can 5 is fixed inside a polypropylene insulating packing 8, and a stainless positive electrode can 4 with a U-shaped cross section is fixed on the outer periphery in the opposite direction to the negative electrode can 5. A positive electrode current collector 6 is fixed on the inner bottom face of the positive electrode can 4, and a positive electrode 1 having manganese dioxide as an active material is fixed inside it. A separator 3 made of a polypropylene nonwoven fabric is inserted between the positive electrode 1 and the negative electrode 2. The cycle life of a secondary battery can remarkably be improved.

Description

【発明の詳細な説明】 童栗上■腓朋分野 本発明は三酸化モリブデン、五酸化バナジウム、二酸化
マンガン、硫化チタンなどのような再充電可能な活物質
よりなる正極と、リチウムまたはリチウム合金を活物質
とする負極と、非水電解液とを備えた非水電解液二次電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a positive electrode made of a rechargeable active material such as molybdenum trioxide, vanadium pentoxide, manganese dioxide, titanium sulfide, etc., and a lithium or lithium alloy. The present invention relates to a non-aqueous electrolyte secondary battery including a negative electrode as an active material and a non-aqueous electrolyte.

従来■肢血 金属リチウム負極に用いた電池の問題点は、負極活物質
であるリチウムが充電の際に負極表面に樹枝状に成長す
る結果、正極と接して内部短絡を引起こしたり、或いは
リチウムが首状に析出して脱落を生じるため、サイクル
寿命が極めて短いことである。
The problem with conventional batteries used as lithium metal negative electrodes is that the lithium, which is the negative electrode active material, grows in a dendritic form on the surface of the negative electrode during charging, and as a result comes into contact with the positive electrode and causes an internal short circuit, or the lithium The cycle life is extremely short because it precipitates in a neck shape and falls off.

そこで、特開昭52−5423号公報に示すように、負
極にリチウム−アルミニウム合金を用いるものが提案さ
れている。これはリチウム単独の場合、放電によってリ
チウムがイオンとなって溶出すると負極表面が凹凸状と
なり、その後の充電の際にリチウムが凸部に集中的に電
析して樹枝状の成長するのに対して、リチウム−アルミ
ニウム合金であれば、充電時にリチウムが負極の基体と
なるアルミニウムと合金を形成するように復元するため
、リチウムの樹枝状成長が抑制できるという利点を奏す
るためである。
Therefore, as shown in Japanese Unexamined Patent Publication No. 52-5423, a method using a lithium-aluminum alloy for the negative electrode has been proposed. This is because in the case of lithium alone, when lithium is ionized and eluted during discharge, the negative electrode surface becomes uneven, and during subsequent charging, lithium is deposited intensively on the convex parts and grows like a tree. This is because, in the case of a lithium-aluminum alloy, lithium restores itself to form an alloy with aluminum, which serves as the base of the negative electrode, during charging, so that the dendritic growth of lithium can be suppressed.

しかしながら、リチウムとアルミニウムとの組成比を充
放電サイクルに優れるように設定すると、リチウム−ア
ルミニウム合金が硬くなって加工困難となる。したがっ
て、偏平形電池に用いることはできるが、負極をうず巻
状に巻回することを要する巻弐円筒形電池には用いるこ
とができないという課題を有していた。
However, if the composition ratio of lithium and aluminum is set to be excellent in charge/discharge cycles, the lithium-aluminum alloy becomes hard and difficult to process. Therefore, although it can be used for flat batteries, it cannot be used for wound cylindrical batteries that require the negative electrode to be spirally wound.

この対策として、特開昭57−208079号公報に開
示されているように、負極をリチウムの黒鉛層間化合物
で構成することが提案されている。
As a countermeasure against this problem, it has been proposed that the negative electrode be made of a graphite intercalation compound of lithium, as disclosed in Japanese Patent Application Laid-Open No. 57-208079.

このような構成であれば、リチウムの樹枝状成長が抑制
されると共に、巻弐円筒型電池にも対応することができ
る。これは、充電時にリチウムが負極の基体となる黒鉛
と層間化合物を形成するように復元すること、及び黒鉛
層間化合物が柔軟であるということに起因するものと考
えられる。
With such a configuration, dendritic growth of lithium can be suppressed, and it can also be applied to a double-wound cylindrical battery. This is considered to be due to the fact that during charging, lithium is restored to form an intercalation compound with graphite, which is the base of the negative electrode, and that the graphite intercalation compound is flexible.

B <′ しよ゛と るi ところで、一般に、非水電解液二次電池は充放電サイク
ルを繰り返すにしたがって、電解液とリチウムとの反応
によりリチウムが消費されていく。
B <' = i By the way, in general, as a non-aqueous electrolyte secondary battery repeats charge/discharge cycles, lithium is consumed due to the reaction between the electrolyte and lithium.

このため、負極容量は正極容量の2〜4倍程度となるよ
うに構成されている。しかしながら、上記リチウムの黒
鉛層間化合物の組成比は、炭素原子6に対してリチウム
原子1であるため、リチウム金属を負極として使用した
場合に比べ、負極の単位体積当たりの容量が約1/3、
単位重量当たりの容量が約1/10になってしまう。こ
の結果、電池のエネルギー密度が低下すると共にリチウ
ム不足が生じるため、サイクル寿命が短くなってしまう
という課題を有していた。
For this reason, the negative electrode capacity is configured to be about 2 to 4 times the positive electrode capacity. However, since the composition ratio of the graphite intercalation compound of lithium is 1 lithium atom to 6 carbon atoms, the capacity per unit volume of the negative electrode is approximately 1/3 compared to when lithium metal is used as the negative electrode.
The capacity per unit weight becomes approximately 1/10. As a result, the energy density of the battery decreases and a lithium shortage occurs, resulting in a shortened cycle life.

本発明はかかる現状に鑑みてなされたものであり、上記
諸欠点を解消できることになる非水電解液二次電池を提
供することを目的とする。
The present invention has been made in view of the current situation, and it is an object of the present invention to provide a non-aqueous electrolyte secondary battery that can eliminate the above-mentioned drawbacks.

割栗し」〒坦た嘉@手殺− 本発明は上記目的を達成するために、す、チウム又はリ
チウム合金を活物質とする負極と、正極と、これら両極
間に配されたセパレータとを有する非水電解液二次電池
において、前記負極は、リチウム金属板又はリチウム合
金板の片面或いは両面に、リチウムイオンが層間へ挿入
、離脱しうる炭素或いは黒鉛を主成分とする層が形成さ
れた構造であることを特徴とする。
In order to achieve the above object, the present invention uses a negative electrode made of lithium or lithium alloy as an active material, a positive electrode, and a separator disposed between these two electrodes. In the non-aqueous electrolyte secondary battery, the negative electrode has a layer mainly composed of carbon or graphite formed on one or both sides of a lithium metal plate or a lithium alloy plate, into which lithium ions can be intercalated and extracted. It is characterized by a structure.

昨−一■ 上記の如く、リチウム金属等の表面に炭素或いは黒鉛を
主成分とする層が形成された構造であれば、リチウムと
炭素或いは黒鉛との比率が限定されることがない。した
がって、理論的に黒鉛或いは炭素と層間化合物を形成す
るリチウム量より多くのリチウム量を電池内に存在させ
ることが可能であるので、リチウムの黒鉛層間化合物の
みを負極として使用した場合よりも、負極の単位重量、
単位体積当たりの容量、即ち電池の容量密度が増加する
As mentioned above, as long as the structure is such that a layer containing carbon or graphite as a main component is formed on the surface of lithium metal, there are no limitations on the ratio of lithium to carbon or graphite. Therefore, since it is theoretically possible to have a larger amount of lithium in the battery than the amount of lithium that forms an intercalation compound with graphite or carbon, the negative electrode can unit weight of,
The capacity per unit volume, ie, the capacity density of the battery, increases.

また、充電時に、リチウムイオンが黒鉛或いは炭素に挿
入、拡散し、リチウム金属に辿り着くため、電極表面で
リチウムが樹枝状に析出することがない。
Furthermore, during charging, lithium ions are inserted into graphite or carbon, diffused, and reach lithium metal, so lithium does not precipitate in a dendritic form on the electrode surface.

更に、リチウム金属と炭素或いは黒鉛を主成分とする層
とは共に柔軟であるので、負極の加工性が向上する。
Furthermore, since both the lithium metal and the layer mainly composed of carbon or graphite are flexible, the workability of the negative electrode is improved.

第土実旌併 本発明の第1実施例を、第1図及び第2図に基づいて、
以下に説明する。
The first embodiment of the present invention, based on FIGS. 1 and 2,
This will be explained below.

〔実施例■〕[Example ■]

第1図は本発明に係る偏平型の非水電解液二次電池の半
断面図であり、リチウム金属板2aと黒鉛成形体2bと
から成る負極2は負極集電体7の内面に圧着されており
、この負極集電体7は断面略コ字状のステンレスから成
る負極缶5の内底面に固着されている。上記負極缶5の
周端はポリプロピレン製の絶縁バッキング8の内部に固
定されており、絶縁バッキング8の外周には上記負極缶
5とは反対方向に断面略コ字状を成すステンレス製の正
極缶4が固定されている。この正極缶4の内底面には正
極集電体6が固定されており、この正極集電体6の内面
には二酸化マンガンを活物質とする正極1が固定さてい
る。この正極1と前記負極2との間にはポリプロピレン
製不織布より成るセパレータ3が介装されている。尚、
電池寸法は直径24.0mm、厚み3.Qmmである。
FIG. 1 is a half-sectional view of a flat non-aqueous electrolyte secondary battery according to the present invention, in which a negative electrode 2 consisting of a lithium metal plate 2a and a graphite molded body 2b is crimped onto the inner surface of a negative electrode current collector 7. This negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section. The peripheral end of the negative electrode can 5 is fixed inside an insulating backing 8 made of polypropylene, and on the outer periphery of the insulating backing 8 there is a positive electrode can made of stainless steel having a substantially U-shaped cross section in the opposite direction to the negative electrode can 5. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode 1 having manganese dioxide as an active material is fixed to the inner surface of the positive electrode current collector 6. A separator 3 made of a nonwoven polypropylene fabric is interposed between the positive electrode 1 and the negative electrode 2. still,
Battery dimensions are 24.0mm in diameter and 3.0mm in thickness. Qmm.

また、電解液としては、プロピレンカーボネートと1,
2ジメ1−キシエタンとの等量混合溶媒に過塩素酸リチ
ウムを1モル/lの割合で溶解したものを用いている。
In addition, as an electrolyte, propylene carbonate and 1,
A solution of lithium perchlorate at a ratio of 1 mol/l in a mixed solvent with an equal amount of 2-dime-1-xyethane is used.

ここで、本発明の要旨である負極2は、以下のようにし
て作製した。
Here, the negative electrode 2, which is the gist of the present invention, was produced as follows.

先ず、厚み0.6Mのリチウム金属箔を直径19mmに
打ち抜いた後、これを負極集電体7上に圧着する。次に
、リチウムの挿入、離脱が可能な黒鉛と、結着剤として
のポリテトラフルオロエチレンとを重量比で90:10
の割合に混合した後、これを直径20mm、厚み0.6
mmに加圧成型し、更に200〜300°Cで2〜10
時間真空乾燥させる。次いで、この成型品を上記リチウ
ム金属箔上に載置することにより作製した。尚、負極容
量は400mAhであった。
First, a lithium metal foil with a thickness of 0.6 M is punched out to a diameter of 19 mm, and then this is crimped onto the negative electrode current collector 7. Next, graphite capable of intercalating and deintercalating lithium and polytetrafluoroethylene as a binder were mixed in a weight ratio of 90:1.
After mixing in the ratio of
Pressure molded to 2-10 mm at 200-300°C
Vacuum dry for an hour. Next, this molded product was produced by placing it on the lithium metal foil. Note that the negative electrode capacity was 400 mAh.

一方上記正極1は、活物質として充放電可能な二酸化マ
ンガンと、導電剤としてのアセチレンブラックと、結着
剤としてのポリテトラフルオロエチレンとを重量比で8
0:1010の比率で混合して正極合剤を作成した後、
この正極合剤を直径20mm、厚み1.2mmに加圧成
型する。しかる後、この成型品を280°Cで2時間真
空乾燥することにより作製した。尚、正極容量は150
mAhであった。
On the other hand, the positive electrode 1 contains chargeable and dischargeable manganese dioxide as an active material, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder in a weight ratio of 8.
After creating a positive electrode mixture by mixing at a ratio of 0:1010,
This positive electrode mixture is pressure molded to a diameter of 20 mm and a thickness of 1.2 mm. Thereafter, this molded product was vacuum dried at 280°C for 2 hours to produce a molded product. In addition, the positive electrode capacity is 150
It was mAh.

このようにして作製した電池を、以下(A)電池と称す
る。
The battery thus produced is hereinafter referred to as the (A) battery.

〔比較例I〕[Comparative example I]

負極として、直径20mm、厚み1.2mmの円盤状の
リチウム金属板のみを用いる他は、実施例Iと同様にし
て電池を作製した。尚、負極容量は800mAhであっ
た。
A battery was produced in the same manner as in Example I, except that only a disk-shaped lithium metal plate with a diameter of 20 mm and a thickness of 1.2 mm was used as the negative electrode. Note that the negative electrode capacity was 800 mAh.

このようにして作製した電池を、以下(Xl)電池と称
する。
The battery thus produced is hereinafter referred to as an (Xl) battery.

〔比較例■〕[Comparative example ■]

負極を以下の如(作製する他は、実施例Iと同様にして
電池を作製した。
A battery was produced in the same manner as in Example I, except that the negative electrode was produced as follows.

リチウムの挿入、離脱が可能な黒鉛と結着剤としてのポ
リテトラフルオロエチレンとを重量比で90 : 10
の比率で混合して負極合剤を作成した後、この負極合剤
を直径20mm、厚み1.2mmに加圧成型する。しか
る後、この成型品を200〜300°Cで2〜10時間
真空乾燥した後、非水電解液中でLi:C=1:6とな
るようにリチウムを電気化学的にドープして作製した。
Graphite capable of intercalating and deintercalating lithium and polytetrafluoroethylene as a binder in a weight ratio of 90:10.
A negative electrode mixture is prepared by mixing at a ratio of , and then this negative electrode mixture is pressure molded to a diameter of 20 mm and a thickness of 1.2 mm. Thereafter, this molded product was vacuum-dried at 200-300°C for 2-10 hours, and then electrochemically doped with lithium in a non-aqueous electrolyte so that Li:C=1:6. .

尚、負極容量は100mAhであった。Note that the negative electrode capacity was 100 mAh.

このようにして作製した電池を、以下(X2)電池と称
する。
The battery thus produced is hereinafter referred to as an (X2) battery.

〔実験〕〔experiment〕

上記本発明の(A)電池及び比較例の(X、)電池、(
X、)電池のサイクル特性を調べたので、その結果を第
2図に示す。尚、実験条件は、3mAの電流で充電終止
電圧3.5vまで充電した後、電流3mAで放電終止電
圧2.0■まで放電するという条件である。
The (A) battery of the present invention and the (X,) battery of the comparative example, (
The cycle characteristics of the battery were investigated and the results are shown in FIG. The experimental conditions were to charge to a charge end voltage of 3.5V with a current of 3 mA, and then discharge to a discharge end voltage of 2.0V with a current of 3 mA.

第2図から明らかなように、(Xl)電池では著しいサ
イクル劣化を生じ、また(X2)電池では当初の放電容
量が少なく且つサイクル劣化も早い。これに対して、(
A)電池では当初の放電容量も大きく且つサイクル劣化
も少ない。これは、以下に示す理由によるものと考えら
れる。
As is clear from FIG. 2, the (Xl) battery suffers from significant cycle deterioration, while the (X2) battery has a small initial discharge capacity and undergoes rapid cycle deterioration. On the contrary,(
A) Batteries have a large initial discharge capacity and little cycle deterioration. This is considered to be due to the following reasons.

即ち、(Xl)電池では充放電サイクルを繰り返してい
る間に、負極表面にリチウムが樹枝状の析出して内部短
絡を生じ、著しい容量劣化が生じる。また、(X2)電
池ではリチウムの黒鉛層間化合物のみを負極として用い
ているので、負極容量が正極容量より小さくなって、放
電容量が小さくなる。これに対して、(A)電池では充
電時にリチウムイオンが黒鉛と層間化合物を形成し、そ
の後拡散してリチウム金属にたどりつくため、複合電極
表面に樹枝状析出が生成しない。したがって、内部短絡
を防止することができる。加えて、複合電極を用いてい
るため、負極容量がリチウムの黒鉛層間化合物のみを使
用した負極よりも大きくなって放電容量が増加する。し
たがって、電池のエネルギー密度の大きくなるというこ
とに起因するものと考えられる。
That is, during repeated charging and discharging cycles in the (Xl) battery, lithium is deposited in a dendritic form on the surface of the negative electrode, causing an internal short circuit, resulting in significant capacity deterioration. Furthermore, since the (X2) battery uses only a graphite intercalation compound of lithium as the negative electrode, the negative electrode capacity is smaller than the positive electrode capacity, resulting in a smaller discharge capacity. On the other hand, in the battery (A), lithium ions form an intercalation compound with graphite during charging, and then diffuse to reach lithium metal, so that no dendritic precipitation occurs on the surface of the composite electrode. Therefore, internal short circuits can be prevented. In addition, since a composite electrode is used, the negative electrode capacity is larger than that of a negative electrode using only a graphite intercalation compound of lithium, and the discharge capacity is increased. Therefore, this is considered to be due to the increase in the energy density of the battery.

第1ユ漏貫 本発明の第2実施例を、第3図に基づいて、以下に説明
する。
A second embodiment of the present invention will be described below with reference to FIG. 3.

〔実施例r〕[Example r]

第3図は本発明に係る巻弐円筒型の非水電解液二次電池
の断面図であり、上記第1実施例と同様0 の組成を有する二酸化マンガン活物質から成る正極11
と、リチウム金属箔12aの両面に上記第1実施例と同
様の組成のシート状の黒鉛層12bが重ねられた負極1
2と、これら正負両極11・12間に介挿された多層セ
パレータ13とから成る電極群14は渦巻状に巻回され
ている。この電極群14は負極端子兼用の外装工16内
に配置されており、この外装工16と上記負極12とは
負極用導電クブ15により接続されている。上記外装工
16の上部開口にはバッキング17を介して封口体18
が装着されており、この封口体1日の内部にはコイルス
プリング19が設けられている。
FIG. 3 is a sectional view of a cylindrical nonaqueous electrolyte secondary battery according to the present invention, in which the positive electrode 11 is made of a manganese dioxide active material having a composition of 0 as in the first embodiment.
and a negative electrode 1 in which sheet-like graphite layers 12b having the same composition as in the first embodiment are stacked on both sides of a lithium metal foil 12a.
2 and a multilayer separator 13 interposed between the positive and negative electrodes 11 and 12, the electrode group 14 is spirally wound. This electrode group 14 is arranged in an exterior work 16 which also serves as a negative electrode terminal, and this exterior work 16 and the negative electrode 12 are connected by a conductive knob 15 for the negative electrode. A sealing body 18 is inserted into the upper opening of the exterior work 16 via a backing 17.
is attached, and a coil spring 19 is provided inside the sealing body.

このコイルスプリング19は電池内部の内圧が異常上昇
したときに矢印A方向に押圧されて内部のガスが大気中
に開放されるように構成されている。
This coil spring 19 is configured so that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere.

また、上記封口体18と前記正極11とは正極用導電タ
ブ20にて接続されている。
Further, the sealing body 18 and the positive electrode 11 are connected by a positive electrode conductive tab 20.

このようにして作製した電池と、負極にリチウム金属の
みを使用した電池と、負極にリチウムの黒鉛層間化合物
のみを使用した電池との充放電サイクル特性を調べたと
ころ、図示はしないが、上記第1実施例の実験と同様の
結果となることが確認された。
When we investigated the charge/discharge cycle characteristics of the battery prepared in this way, a battery using only lithium metal in the negative electrode, and a battery using only a lithium graphite intercalation compound in the negative electrode, we found that the above-mentioned It was confirmed that the results were similar to those of the experiment in Example 1.

尚、上記実施例では、リチウムの挿入、離脱が可能なも
のとして黒鉛を用いているが、炭素を用いることも可能
である。
In the above embodiment, graphite is used as a material capable of inserting and extracting lithium, but carbon can also be used.

また、黒鉛をシート状にして用いているが、これに限定
するものではな(、粉末成形体状、不織布、織布等の形
態で用いることも可能である。
Furthermore, although graphite is used in the form of a sheet, it is not limited thereto (it is also possible to use it in the form of a powder compact, nonwoven fabric, woven fabric, etc.).

更に、上記実施例ではシート状の黒鉛をリチウム金属箔
上に載置しているだけであるが、シート状の黒鉛とリチ
ウム金属箔とを加圧して一体化したものであっても良い
Further, in the above embodiment, the sheet-like graphite is simply placed on the lithium metal foil, but the sheet-like graphite and the lithium metal foil may be integrated by pressing.

発泗深芳来 以上説明したように本発明によれば、負極の容量密度が
増加すると共に、負極表面でリチウムが樹枝状に析出す
ることがない。これらのことから、電池のサイクル寿命
を格段に向上させることができる。
As explained above, according to the present invention, the capacity density of the negative electrode is increased, and lithium does not precipitate in a dendritic form on the surface of the negative electrode. For these reasons, the cycle life of the battery can be significantly improved.

更に、加工性が向上するので、巻弐円筒形電池1 2 4゜ にも用いることができる等の効果を奏する。Furthermore, since the workability is improved, the second cylindrical battery 1 2 4゜ It can also be used for other purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の偏平型非水電解液二次電池の半断面図
、第2図は本発明の(A)電池と比較例の(Xl)電池
、(XZ)電池のサイクル特性を示すグラフ、第3図は
本発明の巻弐円筒型非水電解液二次電池の断面図である
。 1・11・・・正極、2・12・・・負極、3・13・
・・セパレータ。
Fig. 1 is a half-sectional view of a flat non-aqueous electrolyte secondary battery of the present invention, and Fig. 2 shows the cycle characteristics of the (A) battery of the present invention and comparative examples (Xl) battery and (XZ) battery. The graph and FIG. 3 are cross-sectional views of the cylindrical non-aqueous electrolyte secondary battery of the present invention. 1.11...Positive electrode, 2.12...Negative electrode, 3.13.
...Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウム又はリチウム合金を活物質とする負極と
、正極と、これら両極間に配されたセパレータとを有す
る非水電解液二次電池において、 前記負極は、リチウム金属板又はリチウム合金板の片面
或いは両面に、リチウムイオンが層間へ挿入、離脱しう
る炭素或いは黒鉛を主成分とする層が形成された構造で
あることを特徴とする非水電解液二次電池。
(1) In a non-aqueous electrolyte secondary battery having a negative electrode made of lithium or a lithium alloy as an active material, a positive electrode, and a separator disposed between these two electrodes, the negative electrode is made of a lithium metal plate or a lithium alloy plate. 1. A non-aqueous electrolyte secondary battery characterized by having a structure in which a layer mainly composed of carbon or graphite is formed on one or both sides, into which lithium ions can be intercalated and extracted.
JP2040396A 1990-02-20 1990-02-20 Non-aqueous electrolyte secondary battery Expired - Fee Related JP2709303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040396A JP2709303B2 (en) 1990-02-20 1990-02-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040396A JP2709303B2 (en) 1990-02-20 1990-02-20 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03241675A true JPH03241675A (en) 1991-10-28
JP2709303B2 JP2709303B2 (en) 1998-02-04

Family

ID=12579509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040396A Expired - Fee Related JP2709303B2 (en) 1990-02-20 1990-02-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2709303B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248276A (en) * 1991-01-25 1992-09-03 Matsushita Electric Ind Co Ltd Lithium secondary battery
EP0600718A3 (en) * 1992-11-30 1995-11-15 Canon Kk Secondary battery.
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
US6528212B1 (en) 1999-09-13 2003-03-04 Sanyo Electric Co., Ltd. Lithium battery
JP2006202594A (en) * 2005-01-20 2006-08-03 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673069B2 (en) 2012-06-25 2020-06-02 Battelle Memorial Institute Hybrid anodes for energy storage devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157973A (en) * 1983-02-24 1984-09-07 Kao Corp Electrode for secondary battery
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157973A (en) * 1983-02-24 1984-09-07 Kao Corp Electrode for secondary battery
JPS60235372A (en) * 1984-05-07 1985-11-22 Sanyo Chem Ind Ltd Secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248276A (en) * 1991-01-25 1992-09-03 Matsushita Electric Ind Co Ltd Lithium secondary battery
EP0600718A3 (en) * 1992-11-30 1995-11-15 Canon Kk Secondary battery.
US6528212B1 (en) 1999-09-13 2003-03-04 Sanyo Electric Co., Ltd. Lithium battery
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
US7202000B2 (en) 2001-07-31 2007-04-10 Nec Corporation Anode for secondary battery, secondary battery using same and method for fabricating anode
JP2006202594A (en) * 2005-01-20 2006-08-03 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2709303B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
JPS63285865A (en) Nonaqueous electrolyte secondary battery
JP2000195516A (en) Lithium secondary battery
JP3536944B2 (en) Non-aqueous electrolyte battery
US6989218B2 (en) Composite electrode material and method for producing the same, and electrochemical element using the same
JPH10144298A (en) Lithium secondary battery
JPH0562712A (en) Non-aqueous electrolyte secondary cell
JP2000011991A (en) Organic electrolyte secondary battery
JPH03241675A (en) Nonaqueous electrolyte secondary battery
JP3326185B2 (en) Non-aqueous electrolyte secondary battery
JP2000021392A (en) Nonaqueous secondary battery
JPH05258773A (en) Secondary battery with nonaqueous electrolyte
JPH04112455A (en) Secondary battery
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JPH08115745A (en) Nonaqueous electrolyte battery
JP3043175B2 (en) Lithium secondary battery
JP2951013B2 (en) Non-aqueous electrolyte secondary battery
JP4100175B2 (en) Negative electrode for lithium ion secondary battery
JP3025692B2 (en) Rechargeable battery
JPH03182059A (en) Secondary battery with non-aqueous electrolytic solution
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0454352B2 (en)
JP3066086B2 (en) Non-aqueous secondary battery
JP3133316B2 (en) Rechargeable battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPH03147277A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees