JPH011836A - Construction method for prestressed steel reinforced concrete beams - Google Patents

Construction method for prestressed steel reinforced concrete beams

Info

Publication number
JPH011836A
JPH011836A JP62-156543A JP15654387A JPH011836A JP H011836 A JPH011836 A JP H011836A JP 15654387 A JP15654387 A JP 15654387A JP H011836 A JPH011836 A JP H011836A
Authority
JP
Japan
Prior art keywords
concrete
steel
beams
reinforced concrete
prestressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-156543A
Other languages
Japanese (ja)
Other versions
JPH076230B2 (en
JPS641836A (en
Inventor
三雄 林
Original Assignee
株式会社ピー・エス
Filing date
Publication date
Application filed by 株式会社ピー・エス filed Critical 株式会社ピー・エス
Priority to JP62156543A priority Critical patent/JPH076230B2/en
Priority claimed from JP62156543A external-priority patent/JPH076230B2/en
Publication of JPS641836A publication Critical patent/JPS641836A/en
Publication of JPH011836A publication Critical patent/JPH011836A/en
Publication of JPH076230B2 publication Critical patent/JPH076230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建築物の施工において、プレストレストコン
クリート梁に鉄骨を組み合わせてなる靭性に富む梁材を
合理的に施工する架設工法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an erection method for rationally constructing a highly tough beam material made by combining a prestressed concrete beam with a steel frame in the construction of a building.

(従来の技術) プレストレストコンクリートは、高強度のコンクリート
にPC鋼材によりプレストレスを導入したものて、小断
面て大きな耐力を有するので、梁1桁材などとして、非
常に右利な部材であり、構造材として土木、建築の分野
で広く用いられている。
(Prior art) Prestressed concrete is high-strength concrete that is prestressed using prestressed steel, and has a small cross section and large yield strength, so it is an extremely useful member for single-girder beams, etc. It is widely used as a structural material in the fields of civil engineering and architecture.

一方、1981年に建築物の耐震11ジ計法の大幅な改
正か行われ4 「新耐震性設計法」と呼ばれる方式に移
行した。この方式は、改正前の「短期許容応力度設計法
」の考え方と異なり、建設地盤の振動特性、建物のIM
右周期、振動応答を考慮した一種の振動解析法となって
いる。
On the other hand, in 1981, a major revision was made to the 11-gear seismic design method for buildings, and a transition was made to a method called the ``New Earthquake-resistant Design Method.'' This method differs from the concept of the "short-term allowable stress design method" before the revision, and is based on the vibration characteristics of the construction ground and the IM of the building.
This is a type of vibration analysis method that takes into account the right period and vibration response.

また、地震に対する建物の抵抗能力も中規模地震と大J
1!震の2つに分けて考え、前者に対しては短期許容応
力度法(−次設計)を適用して建物に被害か起きないよ
うにし、後者に対しては建物の保有耐力計算と変形能力
に基づいて検討(二次設計)を行い、建物の崩壊を防止
するようにしている。保有耐力と変形能力(ねばりまた
は靭性)の関係については震度■以トの地震時に建物か
弾性応答を示した際、ベースシアーで1G(rrX力の
加速度)の入力エネルギーを想定しており、ねばりのあ
る建物の場合は弾性応答IGの耐カエネルギーに相当す
る耐力と変形性能を併せ持つことが必要となる。
In addition, the resistance ability of buildings against earthquakes is also different from medium-sized earthquakes to large-scale earthquakes.
1! For the former, we apply the short-term allowable stress method (-order design) to prevent damage to the building, and for the latter, we apply the building's capacity calculation and deformation capacity. A study (secondary design) is conducted based on this to prevent the building from collapsing. Regarding the relationship between strength and deformation capacity (toughness or toughness), when a building exhibits an elastic response during an earthquake with a seismic intensity of In the case of a certain building, it is necessary to have both a yield strength and deformation performance equivalent to the energy resistance of the elastic response IG.

以上の観点から、前記のすぐれた高耐力特性をもつプレ
ストレストコンクリート梁にねばりのある鉄骨鉄筋構造
を組み入れ高靭性を併有させることか考えられ、従来、
場所打の鉄骨鉄筋コンクリート梁にプレストレスを併用
しPC鋼材によりプレストレスを導入する構造か開発さ
れている。
From the above points of view, it has been considered to incorporate a tenacious steel reinforced concrete structure into the prestressed concrete beam, which has the above-mentioned excellent high strength characteristics, to provide high toughness.
A structure has been developed that uses prestressing in combination with cast-in-place steel reinforced concrete beams and introduces prestressing using prestressed steel.

(発明か解決しようとする問題点) このような従来開発されているプレストレスト鉄骨鉄筋
コンクリートの施工は、鉄骨鉄筋を場所M【みケてし、
これにPC鋼材挿通用のシースな組込み、型枠を施して
場所打コンクリートを打設し、次いで、シース中にPC
鋼材を挿通してボストテンション方式によりプレストレ
スト鉄骨鉄筋コンクリート梁を形成するものである。
(Problem to be solved by the invention) In the construction of conventionally developed prestressed steel reinforced concrete, the steel reinforcing bars are placed at a location M.
A sheath for inserting the PC steel material was assembled into this, a formwork was applied, and cast-in-place concrete was poured. Then, the PC steel was inserted into the sheath.
A prestressed steel reinforced concrete beam is formed by inserting steel material and using the boss tension method.

このような構造物は従来の構造に比し、小断面て高耐力
高靭性であるから、極めて好ましいか。
Such a structure is extremely preferable because it has a small cross section and high strength and toughness compared to conventional structures.

しかし場所打て高強度の信頼性の高いコンクリート部材
を製作するのは必ずしも容易でなく、また施[「間の増
大、建設工事のL期の延長を来すなどの欠点かあった。
However, it is not always easy to produce cast-in-place, high-strength, reliable concrete members, and there are also disadvantages such as increased construction time and an extension of the construction period.

本発明は、このようなプレストレストコンクリート鉄骨
鉄筋コンクリート梁を施工するに当り、梁の半製品(仕
掛梁)を工場または製作ヤード等において、厳しい品質
管理の下にプレキャスト製造し、この仕掛梁を運搬・架
設することによって、合理的でかつ短工期施工を可濠と
した、省力化した活気的な架設工法を提供することを目
的とする。
When constructing such prestressed concrete steel reinforced concrete beams, the present invention precasts semi-finished beams (in-progress beams) under strict quality control in a factory or production yard, and transports and transports the in-process beams. The purpose of this project is to provide a labor-saving and lively construction method that is rational and allows for short construction periods.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は次の技術手段から成る。 The present invention consists of the following technical means.

(1)  鉄骨断面の頂部をコンクリート上面に露出さ
せたプレストレストコンクリート仕掛梁をプレキャスト
製造する。
(1) Precast prestressed concrete beams with the tops of the steel cross sections exposed on the upper surface of the concrete are manufactured.

この場合、プレストレスの導入はプレテンション方式で
もボストテンション方式でも何れでもよい。また、Ji
I!搬・架設のために必要なプレストレス導入を適宜行
う。
In this case, the prestress may be introduced by either a pretension method or a post tension method. Also, Ji
I! The necessary prestressing for transportation and erection will be introduced as appropriate.

(2) この仕掛梁を建物の建設位tに運搬し。(2) Transport this work-in-progress beam to the construction site of the building.

仕口部の鉄骨を接合して組ケて、次にプレキャストスラ
ブを仕掛梁に載せてその後に仕口部の型枠、仕掛梁及び
スラフの配筋、PC鋼材の配置を行いコンクリートを打
設して合成梁を造る。
The steel frames for the joint section are joined and assembled, and then the precast slab is placed on the semi-finished beams.Then, the formwork for the joint section, reinforcement for the semi-finished beams and slough, and prestressing steel are placed, and concrete is poured. and create a composite beam.

(3) コンクリート硬化後合成梁に必要な緊張力を与
え、場所打仕口部をプレストレスト鉄骨鉄筋コンクリー
ト梁として完成させる。
(3) After the concrete hardens, apply the necessary tension to the composite beam and complete the cast-in-place joint part as a prestressed steel reinforced concrete beam.

(作用) 本発明によれば、厳密な品質管理下で高強度、高信頼性
のコンクリートによって仕掛梁を製造することかでき、
この仕掛梁を用いて施工するのて、架設工事か合理化さ
れ、耐震性能の極めてすぐれた高耐力、高靭性構造の建
築物を容易に施工することかできる。
(Function) According to the present invention, a work beam can be manufactured using high-strength and highly reliable concrete under strict quality control.
By using these semi-finished beams, the erection work is streamlined, and it is possible to easily construct a building with a high strength and high toughness structure that has excellent seismic performance.

このようなプレストレスト鉄骨鉄筋コンクリート梁はプ
レテンション方式でもボストテンション方式でもよい。
Such prestressed steel reinforced concrete beams may be of the pre-tension type or the post-tension type.

このような仕掛梁は、運搬および施工用タワークレーン
の濠力を勘案して重琶および寸法を決定すればよく、柱
との取付仕口部に鉄骨を突出させて形成しておけば好都
合である。
The weight and dimensions of such a work-in-progress beam can be determined by taking into account the moat force of the tower crane for transportation and construction, and it is convenient to form it with a protruding steel frame at the joint where it connects to the pillar. be.

なお、この仕掛梁を規格化、汎用化することによって、
仕掛梁の生産性の向上を図ることかてきる。
Furthermore, by standardizing and generalizing this work-in-progress beam,
It is possible to improve the productivity of work-in-progress beams.

第2図は本発明方法によって施工される梁に生ずる応力
を説明する説明図である。
FIG. 2 is an explanatory diagram illustrating stress generated in a beam constructed by the method of the present invention.

第2図(a)に示す断面の梁を製作し、プレストレスを
導入したとき、梁の断面に生ずる応力は第2図(b)の
ようになり、この梁を第2図(c)のように施工後佐荷
重を受けると載荷重による110プ応力は第2図(d)
の如くなるので、このとき合成応力は第2図(e)のよ
うになる。
When a beam with the cross section shown in Figure 2 (a) is manufactured and prestress is introduced, the stress generated in the cross section of the beam becomes as shown in Figure 2 (b), and the beam is transformed into the beam shown in Figure 2 (c). As shown in Figure 2 (d), when a load is applied after construction, the 110p stress due to the applied load is as shown in Figure 2 (d).
Therefore, the resultant stress is as shown in FIG. 2(e).

第2図(e)から明らかなように、この梁は断面全体に
αって小さな応力がほぼ一様に分布し、かつコンクリー
トに引張を生じないのて小断面とすることかでき、耐力
か大きい。またこの梁に地震力か作用したとき、鉄骨の
ねばりによる靭性が大きく、繰返し荷重に対して大きな
ヒステリシス曲線を描いて抵抗し、大きく変形エネルギ
ーを吸収するのてすぐれた高靭性挙動を示す。
As is clear from Figure 2(e), this beam has a small stress α almost uniformly distributed over the entire cross section, and since no tension is generated in the concrete, it is possible to have a small cross section, and the yield strength is low. big. Furthermore, when seismic force is applied to this beam, it exhibits excellent toughness due to the elasticity of the steel frame, resisting repeated loads by drawing a large hysteresis curve, and absorbing a large amount of deformation energy.

(実施例) 第1図(a)に横断面を示すような鉄骨2、シース4.
5、鉄筋6.プレキャストコンクリート3から成る仕掛
梁lを製造した。仕掛梁lは、運搬およびタワークレー
ンの吊上能力(IOT)を考慮して製作した。
(Example) A steel frame 2 and a sheath 4 whose cross section is shown in FIG. 1(a).
5. Rebar 6. A work beam l made of precast concrete 3 was manufactured. The in-progress beam l was manufactured taking into consideration the transportation and lifting capacity (IOT) of the tower crane.

仕掛梁の仕様は次の通りである。The specifications of the in-process beams are as follows.

スパン−15m 鉄骨=H形鋼5S−41 H600x200xl 1x17 プレキヤストコンクリート: 圧縮強度:600kgf/crn’ 寸法二幅400 m m (両端部の幅は500 m m ) 高さ670 m m PCケーブル:モノストランドIT 12、7 m mφ×4本 この什掛梁lは運搬および架設下・h中の取扱いのため
に、コンクリート硬化後、シース4(:jSIUAに黒
丸で示した)にPCCケラルを挿通してプレストレスを
導入した。
Span - 15m Steel frame = H-beam 5S-41 H600x200xl 1x17 Precast concrete: Compressive strength: 600kgf/crn' Width at double dimensions 400mm (Width at both ends is 500mm) Height 670mm PC cable: Mono strand IT 12,7 m mφ x 4 pieces For transportation and handling during erection, PCC Keral was inserted into sheath 4 (indicated by a black circle in SIUA) after the concrete had hardened. Introduced prestress.

この什掛梁lを架設現場に2I!搬し、第3図に示すよ
うに、柱の鉄骨lOから突出した仕口部11と仕掛梁l
の端部仕口部12とをガゼツトプレート13て結合した
2I of this shingle beam l at the construction site! As shown in FIG.
The end joint portions 12 of the two are connected to each other by means of a gazette plate 13.

次いで仕掛梁lにプレキャストスラブ14を差掛け、必
要な鉄筋やシース7を配設し、また仕口部15に型枠を
施しコンクリート9を打設した。
Next, a precast slab 14 was placed on the in-progress beam 1, necessary reinforcing bars and sheaths 7 were placed, a formwork was provided at the joint part 15, and concrete 9 was poured.

プレキャストスラブ仕様: 型式:ダブルT型薄板 スバンニ6m 輻: 2m スラブ厚:30mm 場所打床版コンクリート仕様: 圧縮強度:210kgf/cm’ 厚さ:100mm このコンクリート打設により第1図(b)に示すように
梁とスラブ9とは一体化して合成梁8を形成した。
Precast slab specifications: Model: Double T-shaped thin plate Subanni 6m Radius: 2m Slab thickness: 30mm Place cast slab concrete specifications: Compressive strength: 210kgf/cm' Thickness: 100mm This concrete placement is shown in Figure 1 (b). Thus, the beam and slab 9 were integrated to form a composite beam 8.

コンクリート硬化後1舎成梁緊張用シース5、場所配置
シース7に12.7 m mφPCケーブルを挿通して
緊張し、梁と柱の一体化を行った。
After the concrete hardened, a 12.7 mm φ PC cable was inserted through the sheath 5 for tensioning the beams in the first building and the sheath 7 placed at the site, and tension was applied to integrate the beams and columns.

このような工法により、安価で信頼性が高く、靭性に富
む梁を容易に施工することが可能となった。
This construction method has made it possible to easily construct beams that are inexpensive, highly reliable, and have high toughness.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プレストレストコンクリートに鉄骨鉄
筋を併用した靭性の高い梁の半製品をプレキャストで製
作しておき、これを用いて施工するので、信頼性が高く
、省力的で、短工期施工に太きく’i!i′学し、実用
的な価値が極めて高いものである。
According to the present invention, a high-toughness semi-finished beam made of prestressed concrete and steel reinforcing bars is precast and used for construction, resulting in high reliability, labor savings, and short construction times. Thick 'i! It is of extremely high practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明工法の説明図、第2図はプレストレスト
鉄骨鉄筋コンクリート梁の応力の説明図、第3図は梁と
柱の接合構造を示す施工図である。 l・・・仕掛梁 2・・・鉄骨 3・・・コンクリート 4.5.7・・・シース 6・・・鉄筋 8・・・梁 9・・−スラブ 10・・・柱の鉄骨 11・・・柱の仕口部鉄骨 12−・・梁の仕口部 13・・・ガゼツトプレート 14−・・プレキャストスラブ 15・・・仕口部
FIG. 1 is an explanatory diagram of the construction method of the present invention, FIG. 2 is an explanatory diagram of stress in a prestressed steel reinforced concrete beam, and FIG. 3 is a construction diagram showing the joint structure of a beam and a column. l...Beam in progress 2...Steel frame 3...Concrete 4.5.7...Sheath 6...Rebar 8...Beam 9...-Slab 10...Column steel frame 11...・Column joint part steel frame 12--beam joint part 13--gusset plate 14--precast slab 15--joint part

Claims (1)

【特許請求の範囲】[Claims] 1 鉄骨断面の頂部をコンクリート上部に露出させたプ
レストレストコンクリート仕掛梁を予め製作し、該仕掛
梁の仕口部を柱と結合して組立て、次いで前記上部に露
出した鉄骨を含む梁形断面およびスラブコンクリートを
同時に打設して合成梁を形成することを特徴とするプレ
ストレスト鉄骨鉄筋コンクリート梁の架設工法。
1. A prestressed concrete semi-finished beam with the top of the steel cross section exposed on the top of the concrete is manufactured in advance, the joint part of the semi-finished beam is connected to a column and assembled, and then a beam-shaped cross section and a slab including the steel frame exposed at the top are assembled. A construction method for prestressed steel reinforced concrete beams, which is characterized by simultaneously pouring concrete to form a composite beam.
JP62156543A 1987-06-25 1987-06-25 Construction method for prestressed steel reinforced concrete beams Expired - Fee Related JPH076230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62156543A JPH076230B2 (en) 1987-06-25 1987-06-25 Construction method for prestressed steel reinforced concrete beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62156543A JPH076230B2 (en) 1987-06-25 1987-06-25 Construction method for prestressed steel reinforced concrete beams

Publications (3)

Publication Number Publication Date
JPS641836A JPS641836A (en) 1989-01-06
JPH011836A true JPH011836A (en) 1989-01-06
JPH076230B2 JPH076230B2 (en) 1995-01-30

Family

ID=15630096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62156543A Expired - Fee Related JPH076230B2 (en) 1987-06-25 1987-06-25 Construction method for prestressed steel reinforced concrete beams

Country Status (1)

Country Link
JP (1) JPH076230B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296751B (en) * 2011-06-01 2013-03-20 马人乐 Prestressing anti-fatigue girder
CN112380600B (en) * 2020-11-11 2023-12-26 中国有色金属工业第六冶金建设有限公司 Cantilever plate construction method based on BIM technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253636A (en) * 1984-05-28 1985-12-14 株式会社 中野建築研究所 Building structure

Similar Documents

Publication Publication Date Title
US5299445A (en) Method of post-tensioning steel/concrete truss before installation
Megget Cyclic behaviour of exterior reinforced concrete beam-column joints
JPS6145042A (en) Mold frame for casting concrete
JPH011836A (en) Construction method for prestressed steel reinforced concrete beams
JPS6282147A (en) Novel prestressed synthetic beam and its construction
JP2831934B2 (en) How to build substructure
JPH0520817Y2 (en)
JPH076230B2 (en) Construction method for prestressed steel reinforced concrete beams
JPS5817052Y2 (en) reinforced concrete column
JPH0270850A (en) Pc coupled beam and execution of construction using same
JPS6035700Y2 (en) reinforced concrete column
JPH06146472A (en) Precast ferro-concrete beam
JP3198642B2 (en) Prestressed concrete board
JP2659329B2 (en) Construction method of PC structure
JPH01287336A (en) Steel frame reinforced concrete lamination construction
JPS61196035A (en) Construction of concrete building
JPH0533388A (en) Joining section of precast reinforced concrete construction
JPS59228554A (en) Precast small beam and construction of slab structure using the same
JPH01226943A (en) Slip prevention of beam main-reinforcement at joint section of column and beam in reinforced concrete structure
JPS61290142A (en) Construction of synthetic cantilevered slab
JP2813816B2 (en) Lift-up method using synthetic steel beams
JP2541241B2 (en) Void slab method
JPS63252293A (en) Top slab structure of container made of concrete and manufacture thereof
JP2541366B2 (en) Concrete beams and lower concrete beam members for concrete beams
JPH07119526B2 (en) Beam rebar assembling method