JPH01183484A - Surface treatment of superconducting ceramic - Google Patents

Surface treatment of superconducting ceramic

Info

Publication number
JPH01183484A
JPH01183484A JP63007537A JP753788A JPH01183484A JP H01183484 A JPH01183484 A JP H01183484A JP 63007537 A JP63007537 A JP 63007537A JP 753788 A JP753788 A JP 753788A JP H01183484 A JPH01183484 A JP H01183484A
Authority
JP
Japan
Prior art keywords
superconducting
ceramic
superconducting ceramic
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63007537A
Other languages
Japanese (ja)
Inventor
Toshifumi Niino
敏文 新納
Hiroshi Kiyokawa
清川 博
Kiyoshi One
大根 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP63007537A priority Critical patent/JPH01183484A/en
Publication of JPH01183484A publication Critical patent/JPH01183484A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent a superconducting ceramic from internal fracture due to freeze-thaw action of the water therein, by coating the surface of a superconducting ceramic with a fluororesin through baking to stop the water movement through said surface. CONSTITUTION:The surface of a superconducting ceramic is coated with a water-resistant fluororesin durable to liquefied nitrogen temperature, being subjected to forced drying followed by baking. This coating process prevents water movement through said surface, thus shielding the influence of the moisture in air on the ceramic. Therefore, when a superconducting ceramic is repeatedly dipped into liquefied nitrogen, the internal fracture of said ceramic due to the freeze-thaw action of the moisture in air can be prevented even taken out from the liquefied nitrogen into the air.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導セラミックスの表面処理方法に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for surface treatment of superconducting ceramics.

(従来の技術) 最近発見されたLa−Ba −(Sr)  Cu−0系
及びY−Ha−Cu−0系超電導セラミツクスは、高温
で超電導現象を示す物質として産業界の注目を浴びてい
る。
(Prior Art) Recently discovered La-Ba-(Sr)Cu-0-based and Y-Ha-Cu-0-based superconducting ceramics are attracting attention in industry as materials that exhibit superconductivity at high temperatures.

特にY−Ha−Cu−0系超電導セラミツクスは、液体
窒素温度(−196°C)以上で超電導現象を示し、従
来冷媒として用いられていた液体ヘリウムに代り、安価
な液体窒素が使用できるため、超電導の応用へ多大なる
期待が寄せられ、実用化の研究が盛んに行なわれている
In particular, Y-Ha-Cu-0-based superconducting ceramics exhibit superconductivity above the liquid nitrogen temperature (-196°C), and inexpensive liquid nitrogen can be used instead of liquid helium, which has traditionally been used as a refrigerant. There are great expectations for the application of superconductivity, and research into practical application is being actively conducted.

(発明が解決しようとする課題) しかしながら従来の金属、合金、化合物系の超電導物質
に比して、前記超電導物質はセラミックスであるため、
実用化に際して大きな問題点が2つ挙げられる。
(Problems to be Solved by the Invention) However, compared to conventional metal, alloy, and compound-based superconducting materials, since the superconducting materials are ceramics,
There are two major problems in practical application.

その1つは脆い性質のため、加工しに(いこと、もう1
つは経時変化の問題であり、空気中の水分と反応して性
質が変っていくことである。
One is that it is difficult to process due to its brittle nature.
The first problem is that it changes over time, and its properties change as it reacts with moisture in the air.

但し後者については未だ完全に明確化されておらず、液
体窒素中、または水中にドブ漬けしたものは数ケ月経時
変化なしというデータもあり、今後の解明が待たれると
ころである。
However, the latter has not yet been completely clarified, and there is data showing that there is no change over time for several months after soaking in liquid nitrogen or water, so further clarification is awaited.

従来はこの2点が実用化のネックとされていた。Previously, these two points were considered to be the bottlenecks for practical application.

しかしながら、本発明者等が前記超電導物質を取り扱っ
ている間に、もう1つの大きな課題があることが判明し
た。
However, while the inventors were working with the superconducting materials, it became clear that there was another major problem.

即ち液体窒素中への繰返しドブ漬は試験で、液体窒素か
ら前記超電導物質を大気中に出すと、直ちに同物質の表
面に着霜し、しばらくすると霜が融けて水になり、セラ
ミックス中に浸透する。これを再度液体窒素中に入れる
と直ちに水は氷となり、その際、体積膨張を生起する。
That is, repeated immersion in liquid nitrogen was a test, and when the superconducting material was released from liquid nitrogen into the atmosphere, frost immediately formed on the surface of the material, and after a while, the frost melted and turned into water, which penetrated into the ceramic. do. When this water is placed in liquid nitrogen again, the water immediately turns into ice, causing volumetric expansion.

以上の繰り返しで超電導セラミックスは内部から破壊し
ていき、このことは実用化に際して解決すべき重大な課
題である。
Repeating the above process destroys the superconducting ceramic from the inside, and this is a serious issue that must be solved before it can be put into practical use.

(課題を解決するための手段) 本発明はこのような課題を解決するために提案されたも
ので、超電導セラミックスの表面にフッ素樹脂を焼付は
塗装することを特徴とする超電導セラミックスの表面処
理方法に係るものである。
(Means for Solving the Problems) The present invention was proposed to solve the above problems, and provides a method for surface treatment of superconducting ceramics, which comprises baking or painting a fluororesin on the surface of superconducting ceramics. This is related to.

(作用) 本発明は前記したように、超電導セラミックスの表面に
、液体窒素温度に耐え、耐水性を有するフッ素樹脂を焼
付は塗装することによって、超電導セラミックスの内外
への水分の出入が防止され、大気中の水分の影響が遮断
され、同水分の凍結融解作用による超電導セラミックス
の内部破壊が防止される。
(Function) As described above, the present invention prevents moisture from entering and exiting the superconducting ceramic by baking or coating the surface of the superconducting ceramic with a fluororesin that can withstand liquid nitrogen temperatures and has water resistance. The influence of moisture in the atmosphere is blocked, and internal destruction of the superconducting ceramics due to the freezing and thawing effect of the moisture is prevented.

(実施例) 以下本発明を実施例について説明する。(Example) The present invention will be described below with reference to Examples.

Y−Ba−Cu−0系超電導セラミツクスのエツジ部を
サンドペーパーで研磨し、アセトンによって付着物を除
去し、均一な膜厚が作られるように、スプレーでエアー
圧2.8〜4.2 kg/cd程度をかけて、プライマ
ーのIOμ霧程度の塗膜を作る。
Polish the edges of the Y-Ba-Cu-0 based superconducting ceramics with sandpaper, remove deposits with acetone, and spray with air pressure of 2.8 to 4.2 kg to create a uniform film thickness. /cd to create a coating film about the size of primer IOμ mist.

なおプライマーとしては、例えばデュポン社製、ライン
プライマー(商品名)が使用される。
As the primer, for example, Line Primer (trade name) manufactured by DuPont is used.

補記プライマーを自然乾燥、または82°C未満の強制
乾燥し、250°Cで約20分焼付けたのち空気冷却す
る。・ かくして得られた超電導セラミックスペレット(1)に
均一な膜厚が作られるように、第1図に示す如く、スプ
レー(2)によってエアー圧2.8〜3.5kg/cd
程度をかけて、フッ素樹脂系のコーテイング材によるト
ップコートを、前記ペレット(1)のA面(表面)及び
B面(外周面)に30μm程度の塗膜となるように吹付
ける。
Supplementary note: The primer is air-dried or forced-dried at a temperature below 82°C, baked at 250°C for about 20 minutes, and then air cooled. - In order to create a uniform film thickness on the superconducting ceramic pellets (1) thus obtained, spray (2) is applied at an air pressure of 2.8 to 3.5 kg/cd, as shown in Figure 1.
A top coat made of a fluororesin coating material is sprayed on the A side (surface) and B side (outer peripheral surface) of the pellet (1) to form a coating film of about 30 μm.

しかるのち50〜60°Cで強制乾燥をし、320°C
で約30分焼付けたのち空気冷却する。
Then, force dry at 50-60°C, then dry at 320°C.
Bake for about 30 minutes and then cool in the air.

次いで前記ペレット(1)の0面(裏面)に前記同様の
方法でフッ素樹脂系のコーテイング材を吹付け、50〜
60°Cで強制乾燥したのち385°Cで約30分焼付
け、空気冷却する。
Next, a fluororesin coating material was sprayed on the 0 side (back side) of the pellet (1) in the same manner as described above, and
After forced drying at 60°C, bake at 385°C for about 30 minutes and cool in air.

なお前記コーテイング材として、デュポン社製のテフロ
ンPTFE (商品名)を使用した。
Note that Teflon PTFE (trade name) manufactured by DuPont was used as the coating material.

またここで2工程に分けてフッ素樹脂系コーテイング材
を焼付けるのは、焼付けるときペレット(1)の1面が
下になるためで、第1の工程で温度を320℃と少し低
い目で生焼きし、第2の工程で385°Cで本焼きする
ものである。
Also, the reason why the fluororesin coating material is baked in two steps is because one side of the pellet (1) will be facing down during baking, so in the first step, the temperature is set at a slightly lower temperature of 320℃. It is first baked raw and then fully baked at 385°C in the second step.

また注意しなければならないのは、前記超電導セラミッ
クスは400〜500°Cで酸素の出入りが生じ、性質
が変化するため、焼付温度はそれ以下で行なう必要があ
る。
It should also be noted that the superconducting ceramics undergoes oxygen inflow and outflow at 400 to 500°C, changing its properties, so the baking temperature must be lower than that.

前記超電導セラミックスに焼付けられるフッ素樹脂は、
−240″C〜260°Cと低温、高温において耐熱性
を有するため、液体窒素中でも十分性能を保持し、また
撥水性を有するため、水分を超電導セラミックスの内部
に入れず、内部破壊を生じない。
The fluororesin baked onto the superconducting ceramics is
It has heat resistance at low and high temperatures of -240"C to 260°C, so it maintains sufficient performance even in liquid nitrogen. It also has water repellency, so moisture does not enter inside the superconducting ceramic and internal destruction does not occur. .

実験の結果、表面処理を施さない超電導セラミックス供
試体が、液体窒素への出し入れで、3日でクラックが生
じるのに対して、本方法で表面処理を施したものは20
日以上変化しない。
As a result of experiments, superconducting ceramic specimens without surface treatment cracked within 3 days when placed in and out of liquid nitrogen, whereas those with surface treatment using this method developed cracks within 3 days.
Does not change for more than a day.

また本方法によればシリコーン系シーリング材によって
表面処理を施した場合に比して均一な膜厚を作ることが
できる。
Furthermore, according to this method, a more uniform film thickness can be produced than when surface treatment is performed with a silicone sealant.

(発明の効果) 本発明によればこのように、超電導セラミックスの表面
にフッ素樹脂を焼付けることによって、大気中の水分の
影響を遮断し、同水分の凍結融解作用による超電導セラ
ミックスの内部破壊を防止しうるとともに、超電導セラ
ミックスの大気中での経時変化をも抑止し、耐久性を向
上しうるものである。
(Effects of the Invention) According to the present invention, by baking a fluororesin onto the surface of superconducting ceramics, the influence of moisture in the atmosphere is blocked, and internal destruction of superconducting ceramics due to the freezing and thawing action of the moisture is prevented. In addition to preventing this, it also suppresses the aging of superconducting ceramics in the atmosphere and improves its durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超電導セラミックスの表面処理方
法の一実施例の実施状況を示す斜面図である。 (1)−超電導セラミックスペレット (2)−−−スプレー 代理人 弁理士 岡 本 重 文 外2名 第1図 0面(裏面)
FIG. 1 is a perspective view showing an embodiment of the method for surface treatment of superconducting ceramics according to the present invention. (1) - Superconducting ceramic pellets (2) - Spray agent Patent attorney Shigeru Okamoto 2 people Figure 1 page 0 (back side)

Claims (2)

【特許請求の範囲】[Claims] (1)超電導セラミックスの表面にフッ素樹脂を焼付け
塗装することを特徴とする超電導セラミックスの表面処
理方法。
(1) A method for surface treatment of superconducting ceramics, which comprises baking and painting a fluororesin on the surface of superconducting ceramics.
(2)前記フッ素樹脂の焼付は400℃以下で行なう請
求項1に記載の超電導セラミッ クスの表面処理方法。
(2) The method for surface treatment of superconducting ceramics according to claim 1, wherein the baking of the fluororesin is carried out at 400°C or lower.
JP63007537A 1988-01-19 1988-01-19 Surface treatment of superconducting ceramic Pending JPH01183484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63007537A JPH01183484A (en) 1988-01-19 1988-01-19 Surface treatment of superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63007537A JPH01183484A (en) 1988-01-19 1988-01-19 Surface treatment of superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01183484A true JPH01183484A (en) 1989-07-21

Family

ID=11668538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63007537A Pending JPH01183484A (en) 1988-01-19 1988-01-19 Surface treatment of superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01183484A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246106A (en) * 1988-03-29 1989-10-02 Mitsubishi Mining & Cement Co Ltd Superconducting oxide material
JP2006321668A (en) * 2005-05-17 2006-11-30 Nippon Steel Corp Oxide superconductive bulk body and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647414A (en) * 1987-06-30 1989-01-11 Toshiba Corp Superconductive element of oxide type
JPS6456385A (en) * 1987-08-27 1989-03-03 Semiconductor Energy Lab Oxide superconductive material and its production
JPH0196082A (en) * 1987-10-06 1989-04-14 Mitsubishi Electric Corp Oxide superconductor
JPH01126284A (en) * 1987-11-10 1989-05-18 Ube Ind Ltd Stabilized ceramics superconductive at high temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647414A (en) * 1987-06-30 1989-01-11 Toshiba Corp Superconductive element of oxide type
JPS6456385A (en) * 1987-08-27 1989-03-03 Semiconductor Energy Lab Oxide superconductive material and its production
JPH0196082A (en) * 1987-10-06 1989-04-14 Mitsubishi Electric Corp Oxide superconductor
JPH01126284A (en) * 1987-11-10 1989-05-18 Ube Ind Ltd Stabilized ceramics superconductive at high temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246106A (en) * 1988-03-29 1989-10-02 Mitsubishi Mining & Cement Co Ltd Superconducting oxide material
JP2006321668A (en) * 2005-05-17 2006-11-30 Nippon Steel Corp Oxide superconductive bulk body and method of manufacturing the same
JP4673668B2 (en) * 2005-05-17 2011-04-20 新日本製鐵株式会社 Oxide superconducting bulk body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS641552B2 (en)
JPS5596641A (en) Method of fabricating silicon monocrystal wafer
JPH01183484A (en) Surface treatment of superconducting ceramic
US5086037A (en) Ceramic superconducting member
JPS5591745A (en) Controlling device for air-fuel ratio of internal conbustion engine
JPS54151715A (en) Combustion chamber forming member for internal combustion engine and method of producing the same
EP0018703A3 (en) Camshaft manufacturing process
JPS60200848A (en) Aggregate coating treatment
JPH01183483A (en) Surface treatment of superconducting ceramic
EP0791968A1 (en) Method for improving the performance of high temperature superconducting thin film wafers
US4902536A (en) Method of producing a protective layer on a structural part
JPS6411378A (en) Formation of josephson element
JPH02281511A (en) Method of protecting superconductor
JPH0393685A (en) Surface stabilizing treatment for oxide superconductive bulk
SU1320505A1 (en) Method of manufacturing cryosorption element
CN113063242B (en) Method for realizing frost inhibition and defrosting through film pre-icing
JP2748522B2 (en) Method for producing high-temperature superconducting thin film
JPS62130827A (en) Manufacture of drain evaporating pipe of cooling device
SU1733516A1 (en) Method of treating films of b@-c@-s@-c@-o system
JPS5651245A (en) Coating of solid catalyst carrier
JPS6421824A (en) Line-shaped oxide superconductor and its manufacture
JPS5529188A (en) Controlling method of shape of pattern
Huther Method of Producing Protective Coatings
JPH0297420A (en) Production of high temperature superconducting thin film
JPS6450313A (en) Superconductor device