JP4673668B2 - Oxide superconducting bulk body and manufacturing method thereof - Google Patents

Oxide superconducting bulk body and manufacturing method thereof Download PDF

Info

Publication number
JP4673668B2
JP4673668B2 JP2005144263A JP2005144263A JP4673668B2 JP 4673668 B2 JP4673668 B2 JP 4673668B2 JP 2005144263 A JP2005144263 A JP 2005144263A JP 2005144263 A JP2005144263 A JP 2005144263A JP 4673668 B2 JP4673668 B2 JP 4673668B2
Authority
JP
Japan
Prior art keywords
resin
oxide superconducting
superconducting bulk
resin layer
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005144263A
Other languages
Japanese (ja)
Other versions
JP2006321668A (en
Inventor
英一 手嶋
芳生 平野
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005144263A priority Critical patent/JP4673668B2/en
Publication of JP2006321668A publication Critical patent/JP2006321668A/en
Application granted granted Critical
Publication of JP4673668B2 publication Critical patent/JP4673668B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、フライホイールや超電導軸受、超強力バルク磁石等に用いられる酸化物超電導バルク体及びその製造方法に関する。   The present invention relates to an oxide superconducting bulk body used for a flywheel, a superconducting bearing, an ultra-strong bulk magnet, and the like, and a method for manufacturing the same.

酸化物超電導体は、空気中の水分や二酸化炭素と反応し、徐々に劣化することが知られている。線材のような応用では、金属被覆シース材が酸化物超電導体と水分や二酸化炭素との間の分離機能の役割を担うが、バルク(塊状)体としての応用でも、同様の機能のものが求められる。特許文献1には、表面に硬化型樹脂を含む経年劣化防止用の保護膜を形成した酸化物超電導体バルクが開示されており、保護膜によって保護膜内にある超電導体が大気中に含まれる水や二酸化炭素の影響を受ける虞を完全に除去できるとある。硬化型樹脂の種類として、エポキシ樹脂、尿素樹脂、メラニン樹脂、フェノール樹脂、不飽和ポリエステル、アルキド樹脂、ウレタン樹脂、メタクリル酸エステル、フッ素樹脂、アクリルゴムが、例として挙げられている。   It is known that oxide superconductors react with moisture and carbon dioxide in the air and gradually deteriorate. In applications such as wire rods, the metal-coated sheath material plays a role of separation function between the oxide superconductor and moisture or carbon dioxide. It is done. Patent Document 1 discloses an oxide superconductor bulk in which a protective film for preventing aging containing a curable resin is formed on the surface, and the superconductor contained in the protective film is contained in the atmosphere by the protective film. The possibility of being affected by water and carbon dioxide can be completely removed. Examples of the curable resin include epoxy resin, urea resin, melanin resin, phenol resin, unsaturated polyester, alkyd resin, urethane resin, methacrylic ester, fluororesin, and acrylic rubber.

特開平3−69576号公報Japanese Patent Laid-Open No. 3-69576

上述したように、酸化物超電導バルク体の表面に樹脂による保護膜を設けることで、酸化物超電導バルク体が水分や二酸化炭素と触れるのを避けることができる。しかしながら、酸化物超電導バルク体は液体窒素温度(77K)等の極低温に冷却して用いられるが、酸化物超電導体を常温から極低温に冷却することを繰り返すと、酸化物超電導バルク体の表面に設けた樹脂製の保護膜に亀裂が入ったり、保護膜が剥離したりするという問題があった。亀裂が入った保護膜や剥離した保護膜では、酸化物超電導バルク体が水分や二酸化炭素と触れることを避けることができず、保護膜の経年劣化防止機能は著しく低下する。   As described above, by providing a protective film made of resin on the surface of the oxide superconducting bulk body, the oxide superconducting bulk body can be prevented from coming into contact with moisture or carbon dioxide. However, the oxide superconducting bulk body is used after being cooled to a cryogenic temperature such as liquid nitrogen temperature (77K). However, when the oxide superconductor is repeatedly cooled from room temperature to cryogenic temperature, the surface of the oxide superconducting bulk body is used. There is a problem that the protective film made of resin is cracked or the protective film is peeled off. In a protective film having a crack or a peeled protective film, the oxide superconducting bulk material cannot be prevented from coming into contact with moisture or carbon dioxide, and the function of preventing the deterioration of the protective film over time is significantly lowered.

そこで、本発明は、上記の問題を解決し、極低温への繰り返し冷却の耐久性が高い保護膜を有する酸化物超電導バルク体及びその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to solve the above problems and provide an oxide superconducting bulk body having a protective film having high durability for repeated cooling to an extremely low temperature and a method for manufacturing the same.

本発明の酸化物超電導バルク体は、以下のとおりである。
(1)表面保護膜を有する酸化物超電導バルク体であって、前記酸化物超電導バルク体が、単結晶状のREBa 2 Cu 3 x 相(REはY又は希土類元素から選ばれた少なくとも1つの元素)中にRE 2 BaCuO 5 相が微細分散した酸化物超電導体であり、前記表面保護膜が、前記酸化物超電導バルク体の上に形成される第1樹脂層と、当該第1樹脂層の上に形成される第2樹脂層とからなり、前記第1樹脂層が、50μm〜100μmの厚みで、エポキシ系樹脂、ポリイミドアミド系樹脂及びポリエーテルスルホン系樹脂のいずれか1種であり、前記第2樹脂層が、50μm〜100μmの厚みで、フッ素系樹脂であることを特徴とする酸化物超電導バルク体。
) 表面保護膜を有する酸化物超電導バルク体であって、前記酸化物超電導バルク体が、単結晶状のREBa 2 Cu 3 x 相(REはY又は希土類元素から選ばれた少なくとも1つの元素)中にRE 2 BaCuO 5 相が微細分散した酸化物超電導体であり、前記表面保護膜が、2種以上の樹脂を混合させた混合系樹脂層であり、前記混合系樹脂層が、少なくともフッ素系樹脂を質量比で20%以上80%以下含むものであり、前記混合系樹脂層において、前記フッ素系樹脂と混合される樹脂が、エポキシ系樹脂、ポリイミドアミド系樹脂及びポリエーテルスルホン系樹脂のいずれか1種であることを特徴とする酸化物超電導バルク体
The oxide superconducting bulk material of the present invention is as follows.
(1) An oxide superconducting bulk body having a surface protective film, wherein the oxide superconducting bulk body is a single crystal REBa 2 Cu 3 O x phase (RE is at least one selected from Y or a rare earth element) Element) is an oxide superconductor in which the RE 2 BaCuO 5 phase is finely dispersed, and the surface protective film is formed of a first resin layer formed on the oxide superconductor bulk body, and Ri Do and a second resin layer formed on the first resin layer, a thickness of 50 .mu.m to 100 .mu.m, is any one of epoxy resin, polyimide amide resin and a polyether sulfone-based resin, the second resin layer, a thickness of 50 .mu.m to 100 .mu.m, oxide bulk superconductor, wherein a fluorine-based resin der Rukoto.
( 2 ) An oxide superconducting bulk body having a surface protective film, wherein the oxide superconducting bulk body is a single-crystal REBa 2 Cu 3 O x phase (RE is at least one selected from Y or rare earth elements) an oxide superconductor RE 2 BaCuO 5 phase is finely dispersed in the element), the surface protective film, a mixture of two or more resin layers der in which the resin is mixed is, the mixed resin layer, The resin containing at least 20% to 80% by mass of the fluorine resin, and the resin mixed with the fluorine resin in the mixed resin layer is an epoxy resin, a polyimide amide resin, and a polyether sulfone resin. oxide superconducting bulk body, wherein any one Tanedea Rukoto resin.

また、本発明の酸化物超電導バルク体の製造方法は、以下のとおりである。
) (1)又は(2)に記載の酸化物超電導バルク体を製造する製造方法であって、前記表面保護膜を形成する樹脂層を硬化する温度が、100℃(373K)以上300℃(573K)以下であることを特徴とする酸化物超電導バルク体の製造方法。
Moreover, the manufacturing method of the oxide superconducting bulk body of this invention is as follows.
( 3 ) A method for producing the oxide superconducting bulk material according to (1) or (2) , wherein a temperature at which the resin layer forming the surface protective film is cured is 100 ° C. (373 K) or more and 300 ° C. (573K) The manufacturing method of the oxide superconductor bulk body characterized by being below.

本発明により、極低温への繰り返し冷却の耐久性が高い保護膜を有する酸化物超電導バルク体を提供することができる。   According to the present invention, it is possible to provide an oxide superconducting bulk body having a protective film having high durability for repeated cooling to an extremely low temperature.

以下に、本発明の実施の形態について図に沿って説明する。
図1は、本発明の実施形態における酸化物超電導バルク体の構造を示す断面図である。図1では、酸化物超電導バルク体1の表面に表面保護膜2が設けられており、表面保護膜2は第1樹脂層3と第2樹脂層4から形成されている。第1樹脂層3は、酸化物超電導バルク体1との接着機能を有する樹脂層で、第2樹脂層4は、極低温への繰り返し冷却における第1樹脂層3の亀裂進展防止機能を有する樹脂層である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing the structure of an oxide superconducting bulk body according to an embodiment of the present invention. In FIG. 1, a surface protective film 2 is provided on the surface of the oxide superconducting bulk body 1, and the surface protective film 2 is formed of a first resin layer 3 and a second resin layer 4. The first resin layer 3 is a resin layer having an adhesive function with the oxide superconducting bulk body 1, and the second resin layer 4 is a resin having a function of preventing crack propagation of the first resin layer 3 in repeated cooling to an extremely low temperature. Is a layer.

第2樹脂層4の樹脂としては、樹脂の中で極低温でも比較的伸びや弾性を示すフッ素系樹脂が好ましく、第1樹脂層3としては、非フッ素系樹脂が好ましい。第1樹脂層の非フッ素系樹脂としては、酸化物超電導バルク体とフッ素系樹脂の両方との接着性が良好である、エポキシ系樹脂、ポリイミドアミド系樹脂、ポリエーテルスルホン系樹脂のいずれか1種がより好ましい。   The resin of the second resin layer 4 is preferably a fluorine-based resin that exhibits elongation and elasticity relatively even at extremely low temperatures, and the first resin layer 3 is preferably a non-fluorine-based resin. As the non-fluorine resin of the first resin layer, any one of an epoxy resin, a polyimide amide resin, and a polyether sulfone resin, which has good adhesion between both the oxide superconducting bulk material and the fluorine resin, is used. Species are more preferred.

図1のような構造にすることにより、第1樹脂層3が酸化物超電導バルク体1の表面に強固に接着する。さらに、極低温に冷却した際に、第1樹脂層3が弾性を失い、酸化物超電導バルク体1との間の熱膨張率差に起因する熱歪みの影響で第1樹脂層3にミクロな亀裂が発生しても、極低温でも伸びや弾性を有する第2樹脂層4が、第1樹脂層3のミクロな亀裂の進展を防ぐため、表面保護膜2を貫通する亀裂は発生しない。したがって、極低温への冷却を繰り返しても、表面保護膜2は、酸化物超電導バルク体1が水分や二酸化炭素と触れるのを避ける機能を失わないので、本発明により、極低温への繰り返し冷却の耐久性が高い保護膜を有する酸化物超電導バルク体を提供することができる。   With the structure as shown in FIG. 1, the first resin layer 3 is firmly bonded to the surface of the oxide superconducting bulk body 1. Furthermore, when the first resin layer 3 loses elasticity when cooled to a very low temperature, the first resin layer 3 is microscopically affected by the thermal strain caused by the difference in thermal expansion coefficient with the oxide superconducting bulk body 1. Even if a crack is generated, the second resin layer 4 having elongation and elasticity even at an extremely low temperature prevents the microcrack from progressing in the first resin layer 3, so that a crack penetrating the surface protective film 2 does not occur. Therefore, even if the cooling to the cryogenic temperature is repeated, the surface protective film 2 does not lose the function of avoiding the oxide superconducting bulk body 1 from touching moisture or carbon dioxide. Therefore, according to the present invention, the cooling to the cryogenic temperature is repeated. An oxide superconducting bulk body having a protective film with high durability can be provided.

比較のため、図3に、従来技術における樹脂で形成された表面保護膜2を有する酸化物超電導バルク体1を示す。従来は、表面保護膜2が1種類の樹脂で形成されていたが、樹脂は極低温で伸びや弾性を失うため、酸化物超電導バルク体1との間の熱膨張率差に起因する熱歪みの影響で表面保護膜2にミクロな亀裂が発生し、極低温への冷却を繰返し行うと、表面保護膜2に発生したミクロな亀裂がマクロな亀裂に進展していた。また、樹脂の中で極低温でも比較的伸びや弾性を示すフッ素系樹脂を表面保護膜2に用いた場合には、亀裂は発生し難くなるが、酸化物超電導バルク体1との接着性が低いために、極低温への冷却を繰り返すと、表面保護膜2が剥離していた。   For comparison, FIG. 3 shows an oxide superconducting bulk body 1 having a surface protective film 2 formed of a resin in the prior art. Conventionally, the surface protective film 2 has been formed of one type of resin, but since the resin loses its elasticity and elasticity at extremely low temperatures, thermal distortion caused by the difference in thermal expansion coefficient from the oxide superconducting bulk body 1 Due to this, micro cracks were generated in the surface protective film 2, and when the cooling to the cryogenic temperature was repeated, the micro cracks generated in the surface protective film 2 were developed into macro cracks. In addition, when a fluorine-based resin that is relatively stretched and elastic even at an extremely low temperature is used for the surface protective film 2, cracks are less likely to occur, but the adhesion to the oxide superconducting bulk body 1 is low. Due to the low temperature, the surface protective film 2 was peeled off when the cooling to the cryogenic temperature was repeated.

したがって、この従来技術における樹脂で形成された表面保護膜2を有する酸化物超電導バルク体1では、極低温への冷却を繰り返すと表面保護膜2に亀裂が入ったり、表面保護膜2が剥離したりするという問題があったため、従来技術における表面保護膜2では、酸化物超電導バルク体1が水分や二酸化炭素と触れるのを避ける機能が失われていた。   Therefore, in the oxide superconducting bulk body 1 having the surface protection film 2 formed of the resin in this prior art, the surface protection film 2 is cracked or the surface protection film 2 is peeled off when the cooling to the cryogenic temperature is repeated. In the surface protection film 2 in the prior art, the function of preventing the oxide superconducting bulk body 1 from coming into contact with moisture or carbon dioxide has been lost.

図2は、本発明の他の実施形態における酸化物超電導バルク体の構造を示す断面図である。図2では、酸化物超電導バルク体1の表面に表面保護膜2が設けられており、表面保護膜2は2種以上の樹脂を混合させた混合系樹脂層で形成されている。   FIG. 2 is a cross-sectional view showing the structure of an oxide superconducting bulk body according to another embodiment of the present invention. In FIG. 2, a surface protective film 2 is provided on the surface of the oxide superconducting bulk body 1, and the surface protective film 2 is formed of a mixed resin layer in which two or more kinds of resins are mixed.

混合系樹脂層を形成する樹脂としては、フッ素系樹脂と非フッ素系樹脂との混合系樹脂が好ましい。フッ素系樹脂は、表面保護膜2の極低温での弾性機能を保持する役割を担うのであり、混合系樹脂におけるフッ素系樹脂の割合は20%以上が好ましい。また、フッ素系樹脂が多すぎても酸化物超電導バルク体1との接着性が低下するので、混合系樹脂におけるフッ素系樹脂の割合は80%以下が好ましい。したがって、混合系樹脂におけるフッ素系樹脂の好ましい割合は20%以上80%以下である。さらに、フッ素系樹脂と混合する非フッ素系樹脂としては、酸化物超電導バルク体とフッ素系樹脂の両方との接着性が良好である、エポキシ系樹脂、ポリイミドアミド系樹脂、ポリエーテルスルホン系樹脂がより好ましい。   As the resin forming the mixed resin layer, a mixed resin of a fluorine resin and a non-fluorine resin is preferable. The fluororesin plays a role of maintaining the elastic function of the surface protective film 2 at an extremely low temperature, and the ratio of the fluororesin in the mixed resin is preferably 20% or more. Moreover, since the adhesiveness with the oxide superconducting bulk body 1 will fall even if there are too many fluororesins, the ratio of the fluororesin in mixed resin is preferable 80% or less. Therefore, a preferable ratio of the fluorine resin in the mixed resin is 20% or more and 80% or less. Furthermore, as non-fluorine resin mixed with fluorine resin, epoxy resin, polyimide amide resin, and polyethersulfone resin, which have good adhesion to both oxide superconducting bulk material and fluorine resin, are available. More preferred.

図2のような構成にすることにより、図1の構造のような表面保護膜2に第1樹脂層3と第2樹脂層4との間に明瞭な境界は存在しないが、接着性が高い非フッ素系樹脂の層が酸化物超電導バルク体1側に形成され易く、その外側にフッ素系樹脂層が形成され易く、結果として図1の構造の例と同じように、極低温への繰り返し冷却の耐久性が高い酸化物超電導バルク体1が提供可能となる。   With the configuration as shown in FIG. 2, there is no clear boundary between the first resin layer 3 and the second resin layer 4 in the surface protective film 2 as in the structure of FIG. 1, but the adhesiveness is high. A non-fluorine resin layer is likely to be formed on the oxide superconducting bulk body 1 side, and a fluorine resin layer is likely to be formed on the outside thereof. As a result, as in the example of the structure of FIG. It is possible to provide an oxide superconducting bulk body 1 having high durability.

さらに、図2の構造の例では、酸化物超電導バルク体1の表面に樹脂層を形成する工程が1回で済み、製造工程の簡素化を図れるというメリットだけでなく、第1樹脂層3と第2樹脂層4との間の境界が不明瞭であることは、第1樹脂層3と第2樹脂層4との間の接着性がより強固になり、第1樹脂層3と第2樹脂層4との間で剥離することもなくなるというメリットを有することにもなる。   Further, in the example of the structure of FIG. 2, not only the process of forming the resin layer on the surface of the oxide superconducting bulk body 1 is required once, but also the manufacturing process can be simplified, the first resin layer 3 and The fact that the boundary between the second resin layer 4 is unclear makes the adhesiveness between the first resin layer 3 and the second resin layer 4 stronger, and the first resin layer 3 and the second resin. It also has an advantage that it does not peel off from the layer 4.

本発明に用いる酸化物超電導バルク体は、酸化物超電導体であれば特に材料系を制限するものではなく、RE−Ba−Cu−O(REはY又は希土類元素から選ばれた少なくとも1つの元素)系酸化物超電導体、Bi系酸化物超電導バルク体等でもよい。   The oxide superconducting bulk material used in the present invention is not particularly limited as long as it is an oxide superconductor, and RE-Ba-Cu-O (RE is at least one element selected from Y or rare earth elements) ) -Based oxide superconductor, Bi-based oxide superconducting bulk material, or the like.

焼結法で製造された酸化物超電導バルク体は多結晶体であり、その熱膨張率が等方的であるため、1種類の樹脂を用いた表面保護膜の場合においても、樹脂層の亀裂の発生をある程度抑制するために、樹脂中にフィラー材等を混入させ、混入量を調整し、酸化物超電導バルク体と樹脂層の熱膨張率を揃えるという手段が有効かもしれないが、単結晶状の酸化物超電導バルク体に対しては、その熱膨張率に異方性があり、そのような手段は難しい。酸化物超電導バルク体の中でも、溶融法で製造された単結晶状のREBa2Cu3x相中にRE2BaCuO5相が微細分散した酸化物超電導バルク体は、臨界電流密度が高く、応用上注目されている材料であるが、本発明における表面保護膜は、そのような単結晶状の酸化物超電導バルク体の極低温での耐久性を高めるのに特に有効である。 Since the oxide superconducting bulk body manufactured by the sintering method is a polycrystalline body and its thermal expansion coefficient is isotropic, cracks in the resin layer can be obtained even in the case of a surface protective film using one kind of resin. In order to suppress the occurrence of the corrosion to some extent, it may be effective to mix a filler material into the resin, adjust the mixing amount, and align the thermal expansion coefficient of the oxide superconducting bulk material and the resin layer. For the oxide superconducting bulk material, the thermal expansion coefficient is anisotropic, and such means is difficult. Among oxide superconducting bulk bodies, oxide superconducting bulk bodies in which the RE 2 BaCuO 5 phase is finely dispersed in the single-crystal REBa 2 Cu 3 O x phase produced by the melting method have a high critical current density, Although it is a material that has been attracting attention, the surface protective film in the present invention is particularly effective in enhancing the durability of such a single crystal oxide superconducting bulk body at cryogenic temperatures.

本発明の酸化物超電導バルク体を製造する方法としては、酸化物超電導バルク体の表面にスプレーや浸漬等の手段で液状又は粉末状の樹脂層を塗布し、その後、樹脂層を硬化させる工程がある。硬化する温度としては、常温でも効果があるが、表面保護膜と酸化物超電導バルク体との接着性を増すためには、100℃(373K)以上に加熱することが好ましい。しかし、300℃(573K)よりも高い温度で加熱すると、表面酸素の欠乏や熱衝撃のために酸化物超電導バルク体が劣化する可能性があり、工程中の雰囲気を制御したり、加熱速度を精密に制御したりと、工程が煩雑になる。したがって、樹脂層を形成するための焼成温度としては、100℃(373K)以上300℃(573K)以下が好ましい。また、酸化物超電導バルク体の表面に凹凸構造を設けたり、樹脂層形成前に研磨紙やサンドブラスト等で酸化物超電導バルク体の表面粗度を研磨紙で粗くしたりすることで、表面保護膜と酸化物超電導バルク体との接着性を増すことができる。   As a method for producing the oxide superconducting bulk body of the present invention, there is a step of applying a liquid or powdery resin layer to the surface of the oxide superconducting bulk body by means of spraying or dipping, and then curing the resin layer. is there. Although the curing temperature is effective even at room temperature, it is preferable to heat to 100 ° C. (373 K) or higher in order to increase the adhesion between the surface protective film and the oxide superconducting bulk material. However, when heated at a temperature higher than 300 ° C. (573 K), there is a possibility that the oxide superconducting bulk body deteriorates due to lack of surface oxygen or thermal shock, and the atmosphere during the process is controlled, or the heating rate is increased. The process becomes complicated when precisely controlled. Accordingly, the firing temperature for forming the resin layer is preferably 100 ° C. (373 K) or more and 300 ° C. (573 K) or less. In addition, the surface protective film is provided by providing an uneven structure on the surface of the oxide superconducting bulk body, or by roughening the surface roughness of the oxide superconducting bulk body with abrasive paper or sandblast before forming the resin layer. And the adhesion between the oxide superconducting bulk material can be increased.

(実施例1)
DyBa2Cu3x相とDy2BaCuO5相がモル比で75:25の割合になるように原料粉を調整し、成形体を1423Kまで加熱し半溶融状態にした後、種結晶を用い、1273K付近を徐冷することで結晶成長させるという溶融法により、直径46mm、厚さ15mmで、単結晶状のDyBa2Cu3x相中に平均粒径1.2μmのDy2BaCuO5相が微細分散したDy−Ba−Cu−O系酸化物超電導バルク体を作製した。このDy−Ba−Cu−O系酸化物超電導バルク体の表面に、第1樹脂層として厚さ50μm程度のエポキシ系樹脂を塗布し、150℃で30分間硬化した後、第2樹脂層として厚さ100μm程度のフッ素系樹脂を塗布し、350℃で30分間硬化した試料Aを製造した。比較のため、厚さ150μm程度のエポキシ系樹脂だけを塗布した試料Bと、厚さ150μm程度のフッ素系樹脂だけを塗布した試料Cを製造し、極低温耐久性試験を実施した。この極低温耐久性試験では、常温の試料を液体窒素に浸漬して5分間保持した後、液体窒素から取り出し、3時間以上常温で放置した後、再度液体窒素に浸漬するということを繰り返した。
Example 1
After adjusting the raw material powder so that the DyBa 2 Cu 3 O x phase and the Dy 2 BaCuO 5 phase have a molar ratio of 75:25, the molded body was heated to 1423K to be in a semi-molten state, and then a seed crystal was used. By a melting method of crystal growth by gradually cooling around 1273 K, a Dy 2 BaCuO 5 phase having a diameter of 46 mm and a thickness of 15 mm and having an average particle diameter of 1.2 μm in a single-crystal DyBa 2 Cu 3 O x phase A Dy-Ba-Cu-O-based oxide superconducting bulk body in which is finely dispersed was prepared. On the surface of this Dy-Ba-Cu-O-based oxide superconducting bulk material, an epoxy resin having a thickness of about 50 μm is applied as a first resin layer, cured at 150 ° C. for 30 minutes, and then thick as a second resin layer. A sample A having a thickness of about 100 μm was applied and cured at 350 ° C. for 30 minutes. For comparison, a sample B coated only with an epoxy resin having a thickness of about 150 μm and a sample C coated only with a fluorine resin having a thickness of about 150 μm were manufactured, and a cryogenic durability test was performed. In this cryogenic durability test, a sample at room temperature was immersed in liquid nitrogen and held for 5 minutes, then removed from the liquid nitrogen, left at room temperature for 3 hours or more, and then immersed in liquid nitrogen again.

試料Bは、冷却1回目から目視で観測される大きさの亀裂が発生し、冷却9回目で表面保護膜の一部が欠けた。試料Cは、冷却3回目で表面保護膜の一部が酸化物超電導バルク体から剥離し、浮いたような状態になり、冷却15回目で剥離部分が破損した。しかし、試料Aは、液体窒素への冷却を50回繰り返しても表面保護膜に劣化は見られなかった。   In Sample B, cracks having a size visually observed from the first cooling occurred, and a part of the surface protective film was missing at the ninth cooling. In the sample C, a part of the surface protective film was peeled off from the oxide superconducting bulk body at the third cooling, and floated, and the peeled portion was damaged at the 15th cooling. However, in Sample A, the surface protective film was not deteriorated even when the cooling to liquid nitrogen was repeated 50 times.

(実施例2)
GdBa2Cu3x相とGd2BaCuO5相がモル比で80:20の割合で、銀を20質量%添加した原料粉を調整し、成形体を1373Kまで加熱し半溶融状態にした後、種結晶を用い、1273K付近を徐冷することで結晶成長させるという溶融法により、直径30mm、厚さ10mmで、単結晶状のGdBa2Cu3x相中に平均粒径0.9μmのGd2BaCuO5相が微細分散したGd−Ba−Cu−O系酸化物超電導バルク体を作製した。このGd−Ba−Cu−O系酸化物超電導バルク体の表面に、第1樹脂層として厚さ100μm程度のポリイミドアミド系樹脂を塗布し、200℃で20分間硬化した後、第2樹脂層として厚さ100μm程度のフッ素系樹脂を塗布し、350℃で30分間硬化した試料Dを製造した。硬化にあたっては,350℃まで3時間かけてゆっくりと昇温することで、酸化物超電導バルク体への熱衝撃を緩和した。
(Example 2)
After preparing a raw material powder in which 20% by mass of silver is added at a molar ratio of GdBa 2 Cu 3 O x phase and Gd 2 BaCuO 5 phase of 80:20, the molded body is heated to 1373K to be in a semi-molten state By a melting method in which a crystal is grown by gradually cooling around 1273 K using a seed crystal, the average particle size is 0.9 μm in a single crystal GdBa 2 Cu 3 O x phase having a diameter of 30 mm and a thickness of 10 mm. A Gd—Ba—Cu—O-based oxide superconducting bulk material in which the Gd 2 BaCuO 5 phase was finely dispersed was produced. On the surface of this Gd—Ba—Cu—O-based oxide superconducting bulk material, a polyimide amide resin having a thickness of about 100 μm is applied as a first resin layer, cured at 200 ° C. for 20 minutes, and then as a second resin layer. A sample D coated with a fluororesin having a thickness of about 100 μm and cured at 350 ° C. for 30 minutes was produced. In curing, the thermal shock to the oxide superconducting bulk material was relaxed by slowly raising the temperature to 350 ° C. over 3 hours.

試料Dについて、実施例1と同様に、液体窒素への浸漬を繰り返す極低温耐久性試験を実施したが、冷却を50回繰り返しても表面保護膜に劣化は見られなかった。   Sample D was subjected to a cryogenic durability test in which immersion in liquid nitrogen was repeated in the same manner as in Example 1. However, no deterioration was observed in the surface protective film even after cooling was repeated 50 times.

(実施例3)
GdとDyがモル比で50:50の割合で、(Gd0.5Dy0.5)Ba2Cu3x相と(Gd0.5Dy0.52BaCuO5相がモル比で80:20の割合で、銀を10質量%添加した原料粉を調整し、成形体を1423Kまで加熱し半溶融状態にした後、種結晶を用い、1273K付近を徐冷することで結晶成長させるという溶融法により、直径60mm、厚さ15mmで、単結晶状の(Gd0.5Dy0.5)Ba2Cu3x相中に平均粒径1.1μmの(Gd0.5Dy0.52BaCuO5相が微細分散した(Gd0.5Dy0.5)−Ba−Cu−O系酸化物超電導バルク体を作製した。この(Gd0.5Dy0.5)−Ba−Cu−O系酸化物超電導バルク体の表面に、第1樹脂層として厚さ100μm程度のポリエーテルスルホン系樹脂を塗布し、150℃で60分間硬化した後、第2樹脂層として厚さ50μm程度のフッ素系樹脂を塗布し、250℃で30分間硬化した試料Eを製造した。
(Example 3)
Gd and Dy are in a molar ratio of 50:50, (Gd 0.5 Dy 0.5 ) Ba 2 Cu 3 O x phase and (Gd 0.5 Dy 0.5 ) 2 BaCuO 5 phase in a molar ratio of 80:20, silver The raw material powder to which 10% by mass was added was prepared, the molded body was heated to 1423K to be in a semi-molten state, and then the seed crystal was used to melt the crystal by slowly cooling around 1273K. thick 15 mm, single crystalline (Gd 0.5 Dy 0.5) Ba 2 Cu 3 O x phase the average particle size of 1.1μm in (Gd 0.5 Dy 0.5) 2 BaCuO 5 phase is finely dispersed (Gd 0.5 Dy 0.5 ) -Ba-Cu-O-based oxide superconducting bulk material was produced. After applying a polyethersulfone resin having a thickness of about 100 μm as a first resin layer to the surface of this (Gd 0.5 Dy 0.5 ) -Ba—Cu—O-based oxide superconducting bulk body and curing at 150 ° C. for 60 minutes. A sample E was prepared by applying a fluororesin having a thickness of about 50 μm as the second resin layer and curing at 250 ° C. for 30 minutes.

試料Eについて、実施例1と同様に、液体窒素への浸漬を繰り返す極低温耐久性試験を実施したが、冷却を50回繰り返しても表面保護膜に劣化は見られなかった。   Sample E was subjected to a cryogenic durability test in which immersion in liquid nitrogen was repeated in the same manner as in Example 1. However, the surface protective film was not deteriorated even after cooling was repeated 50 times.

(実施例4)
HoBa2Cu3x相とHo2BaCuO5相がモル比で75:25の割合になるように原料粉を調整し、成形体を1423Kまで加熱し半溶融状態にした後、種結晶を用い、1273K付近を徐冷することで結晶成長させるという溶融法により、縦40mm、横40mm、厚さ15mmで、単結晶状のHoBa2Cu3x相中に平均粒径1.5μmのHo2BaCuO5相が微細分散したHo−Ba−Cu−O系酸化物超電導バルク体を作製した。このHo−Ba−Cu−O系酸化物超電導バルク体の表面に、厚さ100μm程度のフッ素系樹脂とエポキシ系樹脂を質量比で50:50の割合で混合した樹脂を塗布し、200℃で30分間硬化した試料Fを製造した。
Example 4
After adjusting the raw material powder so that the HoBa 2 Cu 3 O x phase and the Ho 2 BaCuO 5 phase have a molar ratio of 75:25, and heating the molded body to 1423K to a semi-molten state, the seed crystal was used. , By melting the crystal around 1273K to grow crystals by slow cooling, Ho 2 with a length of 40 mm, a width of 40 mm, a thickness of 15 mm, and an average particle size of 1.5 μm in a single crystal HoBa 2 Cu 3 O x phase. A Ho—Ba—Cu—O-based oxide superconducting bulk body in which the BaCuO 5 phase was finely dispersed was produced. On the surface of this Ho-Ba-Cu-O-based oxide superconducting bulk material, a resin in which a fluorine-based resin and an epoxy-based resin having a thickness of about 100 μm are mixed at a mass ratio of 50:50 is applied at 200 ° C. Sample F cured for 30 minutes was produced.

試料Fについて、実施例1と同様に、液体窒素への浸漬を繰り返す極低温耐久性試験を実施したが、冷却を50回繰り返しても表面保護膜に劣化は見られなかった。   Sample F was subjected to a cryogenic durability test in which immersion in liquid nitrogen was repeated in the same manner as in Example 1. However, the surface protective film was not deteriorated even after cooling was repeated 50 times.

(実施例5)
GdBa2Cu3x相とGd2BaCuO5相がモル比で70:30の割合で、銀を15質量%添加した原料粉を調整し、成形体を1373Kまで加熱し半溶融状態にした後、種結晶を用い、1273K付近を徐冷することで結晶成長させるという溶融法により、直径46mm、厚さ15mmで、単結晶状のGdBa2Cu3x相中に平均粒径1.2μmのGd2BaCuO5相が微細分散したGd−Ba−Cu−O系酸化物超電導バルク体を作製した。このGd−Ba−Cu−O系酸化物超電導バルク体を内径46mm(肉厚5mm)、高さ15mmのステンレス製リングに嵌合したものの表面に厚さ50μm程度のフッ素系樹脂とポリイミドアミド系樹脂を質量比で70:30の割合で混合した樹脂を塗布し、220℃で30分間硬化した試料Gを製造した。
(Example 5)
After adjusting the raw material powder in which the GdBa 2 Cu 3 O x phase and the Gd 2 BaCuO 5 phase are added in a molar ratio of 70:30 and 15% by mass of silver is added, and the molded body is heated to 1373K to be in a semi-molten state By a melting method in which a crystal is grown by gradually cooling around 1273 K using a seed crystal, the average particle diameter is 1.2 μm in a single crystalline GdBa 2 Cu 3 O x phase having a diameter of 46 mm and a thickness of 15 mm. A Gd—Ba—Cu—O-based oxide superconducting bulk material in which the Gd 2 BaCuO 5 phase was finely dispersed was produced. This Gd-Ba-Cu-O-based oxide superconducting bulk body is fitted with a stainless steel ring having an inner diameter of 46 mm (thickness 5 mm) and a height of 15 mm, and a fluorine resin and a polyimide amide resin having a thickness of about 50 μm on the surface. The sample G which apply | coated resin mixed by the ratio of 70:30 by mass ratio and hardened | cured for 30 minutes at 220 degreeC was manufactured.

試料Gについて、実施例1と同様に、液体窒素への浸漬を繰り返す極低温耐久性試験を実施したが、冷却を50回繰り返しても表面保護膜に劣化は見られなかった。   Sample C was subjected to a cryogenic durability test in which immersion in liquid nitrogen was repeated in the same manner as in Example 1. However, the surface protective film was not deteriorated even after cooling was repeated 50 times.

(実施例6)
BiとSrとCaとCuがモル比で2:2:2:3の割合で原料粉を調整し、成形体を1173Kまで加熱し焼結法により、直径46mm、厚さ15mmの多結晶状のBi系酸化物超電導バルク体を作製した。このBi系酸化物超電導バルク体の表面に厚さ100μm程度のフッ素系樹脂とポリエーテルスルホン系樹脂を質量比で80:20の割合で混合した樹脂を塗布し、200℃で40分間硬化した試料Hを製造した。
(Example 6)
Bi, Sr, Ca and Cu are prepared in a molar ratio of 2: 2: 2: 3, the raw material powder is adjusted, the molded body is heated to 1173K, and sintered by a polycrystalline method having a diameter of 46 mm and a thickness of 15 mm. A Bi-based oxide superconducting bulk body was produced. A sample obtained by applying a resin in which a fluorine-based resin having a thickness of about 100 μm and a polyethersulfone-based resin are mixed at a mass ratio of 80:20 to the surface of this Bi-based oxide superconducting body and curing at 200 ° C. for 40 minutes. H was produced.

試料Hについて、実施例1と同様に、液体窒素への浸漬を繰り返す極低温耐久性試験を実施したが、冷却を50回繰り返しても表面保護膜に劣化は見られなかった。   Sample H was subjected to a cryogenic durability test in which immersion in liquid nitrogen was repeated in the same manner as in Example 1. However, the surface protective film was not deteriorated even after cooling was repeated 50 times.

本発明によれば、極低温への繰り返し冷却の耐久性が高い保護膜を有する酸化物超電導バルク体を提供することができるので、フライホイールや超電導軸受、超強力バルク磁石等への酸化物超電導バルク体の工業上の利用範囲が拡大する。   According to the present invention, it is possible to provide an oxide superconducting bulk body having a protective film with high durability for repeated cooling to cryogenic temperatures. The range of industrial use of bulk materials is expanded.

本発明の実施形態における酸化物超電導バルク体の構造を示す断面図である。It is sectional drawing which shows the structure of the oxide superconducting bulk body in embodiment of this invention. 本発明の他の実施形態における酸化物超電導バルク体の構造を示す断面図である。It is sectional drawing which shows the structure of the oxide superconducting bulk body in other embodiment of this invention. 従来の酸化物超電導バルク体の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional oxide superconducting bulk body.

符号の説明Explanation of symbols

1 酸化物超電導バルク体
2 表面保護膜
3 第1樹脂層
4 第2樹脂層
DESCRIPTION OF SYMBOLS 1 Oxide superconducting bulk body 2 Surface protective film 3 1st resin layer 4 2nd resin layer

Claims (3)

表面保護膜を有する酸化物超電導バルク体であって、
前記酸化物超電導バルク体が、単結晶状のREBa 2 Cu 3 x 相(REはY又は希土類元素から選ばれた少なくとも1つの元素)中にRE 2 BaCuO 5 相が微細分散した酸化物超電導体であり、
前記表面保護膜が、前記酸化物超電導バルク体の上に形成される第1樹脂層と、当該第1樹脂層の上に形成される第2樹脂層とからなり、
前記第1樹脂層が、50μm〜100μmの厚みで、エポキシ系樹脂、ポリイミドアミド系樹脂及びポリエーテルスルホン系樹脂のいずれか1種であり、
前記第2樹脂層が、50μm〜100μmの厚みで、フッ素系樹脂であることを特徴とする酸化物超電導バルク体。
An oxide superconducting bulk body having a surface protective film,
The oxide superconductor is an oxide superconductor in which a RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (RE is at least one element selected from Y or a rare earth element). And
The surface protective film, Ri Do from a first resin layer formed on said oxide superconducting bulk body, a second resin layer formed on the said first resin layer,
The first resin layer has a thickness of 50 μm to 100 μm and is any one of an epoxy resin, a polyimide amide resin, and a polyethersulfone resin,
The second resin layer, a thickness of 50 .mu.m to 100 .mu.m, oxide bulk superconductor, wherein a fluorine-based resin der Rukoto.
表面保護膜を有する酸化物超電導バルク体であって、
前記酸化物超電導バルク体が、単結晶状のREBa 2 Cu 3 x 相(REはY又は希土類元素から選ばれた少なくとも1つの元素)中にRE 2 BaCuO 5 相が微細分散した酸化物超電導体であり、
前記表面保護膜が、2種以上の樹脂を混合させた混合系樹脂層であり、
前記混合系樹脂層が、少なくともフッ素系樹脂を質量比で20%以上80%以下含むものであり、
前記混合系樹脂層において、前記フッ素系樹脂と混合される樹脂が、エポキシ系樹脂、ポリイミドアミド系樹脂及びポリエーテルスルホン系樹脂のいずれか1種であることを特徴とする酸化物超電導バルク体。
An oxide superconducting bulk body having a surface protective film,
The oxide superconductor is an oxide superconductor in which a RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (RE is at least one element selected from Y or a rare earth element). And
The surface protective film, Ri mixed resin layer der obtained by mixing two or more resins,
The mixed resin layer contains at least a fluorine resin in a mass ratio of 20% to 80%,
In the mixed resin layer, the resin to be mixed with the fluororesin, epoxy resin, oxide superconducting bulk body, wherein any one Tanedea Rukoto polyimide amide resin, and polyethersulfone resin .
請求項1又は2に記載の酸化物超電導バルク体を製造する製造方法であって、
前記表面保護膜を形成する樹脂層を硬化する温度が、100℃(373K)以上300℃(573K)以下であることを特徴とする酸化物超電導バルク体の製造方法。
A manufacturing method for manufacturing the oxide superconducting bulk material according to claim 1 or 2 ,
The method for producing an oxide superconducting bulk material, wherein a temperature for curing the resin layer forming the surface protective film is 100 ° C. (373 K) or more and 300 ° C. (573 K) or less.
JP2005144263A 2005-05-17 2005-05-17 Oxide superconducting bulk body and manufacturing method thereof Expired - Fee Related JP4673668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144263A JP4673668B2 (en) 2005-05-17 2005-05-17 Oxide superconducting bulk body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144263A JP4673668B2 (en) 2005-05-17 2005-05-17 Oxide superconducting bulk body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006321668A JP2006321668A (en) 2006-11-30
JP4673668B2 true JP4673668B2 (en) 2011-04-20

Family

ID=37541606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144263A Expired - Fee Related JP4673668B2 (en) 2005-05-17 2005-05-17 Oxide superconducting bulk body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4673668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736216B2 (en) * 2011-03-31 2015-06-17 学校法人 芝浦工業大学 Superconducting bulk body, manufacturing method thereof, and superconducting bulk magnet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196082A (en) * 1987-10-06 1989-04-14 Mitsubishi Electric Corp Oxide superconductor
JPH01117396A (en) * 1987-10-30 1989-05-10 Seiko Epson Corp Magnetic shielding material
JPH01126284A (en) * 1987-11-10 1989-05-18 Ube Ind Ltd Stabilized ceramics superconductive at high temperature
JPH01160081A (en) * 1987-12-16 1989-06-22 Fujitsu Ltd Manufacture of wiring board
JPH01183484A (en) * 1988-01-19 1989-07-21 Fujita Corp Surface treatment of superconducting ceramic
JPH01282175A (en) * 1988-05-07 1989-11-14 Fujitsu Ltd Formation of protective film of superconducting material
JPH0369576A (en) * 1989-08-07 1991-03-25 Dowa Mining Co Ltd Bulky oxide superconductor
WO2000011093A1 (en) * 1998-08-24 2000-03-02 Daikin Industries, Ltd. Thin coating film made of fluoropolymer and method of forming the same
JP2000178025A (en) * 1998-12-18 2000-06-27 Internatl Superconductivity Technology Center Oxide superconductor and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647414A (en) * 1987-06-30 1989-01-11 Toshiba Corp Superconductive element of oxide type
JPS6410529A (en) * 1987-07-03 1989-01-13 Kawasaki Steel Co Manufacture of ceramic superconductive material
JPS6433087A (en) * 1987-07-28 1989-02-02 Sumitomo Spec Metals Superconducting ceramics having superior water resistance
JPS6452085A (en) * 1987-08-21 1989-02-28 Tdk Corp Superconductive oxide ceramic material
JPH0649626B2 (en) * 1987-08-27 1994-06-29 株式会社半導体エネルギ−研究所 Oxide superconducting material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196082A (en) * 1987-10-06 1989-04-14 Mitsubishi Electric Corp Oxide superconductor
JPH01117396A (en) * 1987-10-30 1989-05-10 Seiko Epson Corp Magnetic shielding material
JPH01126284A (en) * 1987-11-10 1989-05-18 Ube Ind Ltd Stabilized ceramics superconductive at high temperature
JPH01160081A (en) * 1987-12-16 1989-06-22 Fujitsu Ltd Manufacture of wiring board
JPH01183484A (en) * 1988-01-19 1989-07-21 Fujita Corp Surface treatment of superconducting ceramic
JPH01282175A (en) * 1988-05-07 1989-11-14 Fujitsu Ltd Formation of protective film of superconducting material
JPH0369576A (en) * 1989-08-07 1991-03-25 Dowa Mining Co Ltd Bulky oxide superconductor
WO2000011093A1 (en) * 1998-08-24 2000-03-02 Daikin Industries, Ltd. Thin coating film made of fluoropolymer and method of forming the same
JP2000178025A (en) * 1998-12-18 2000-06-27 Internatl Superconductivity Technology Center Oxide superconductor and its production

Also Published As

Publication number Publication date
JP2006321668A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP6779987B2 (en) How to transfer a single crystal block
Khan et al. Growth of Pb (Mg1/3Nb2/3) O3‐35 mol% PbTiO3 single crystals from (111) substrates by seeded polycrystal conversion
Singh et al. Mechanical and superconducting properties of sintered composite YBa2Cu3O7− δ tape on a silver substrate
WO2011071071A1 (en) Oxide superconducting bulk magnet member
JP2005123619A (en) Nitride semiconductor formed on silicon substrate, and manufacturing method therefor
WO2014189043A1 (en) Oxide superconducting bulk magnet
EP2224505A3 (en) Thermoelectric nanowire and method of manufacturing the same
JP4673668B2 (en) Oxide superconducting bulk body and manufacturing method thereof
EP0631331A1 (en) Method of preparing high-temperature superconducting wire
JP2010184849A (en) METHOD FOR COMPOSITE BONDING OF SEED CRYSTAL FOR GROWING SiC SINGLE CRYSTAL BY SOLUTION GROWTH TECHNIQUE
CA1286551C (en) Method of producing superconducting wire
KR101101983B1 (en) Seed assembly and method of manufacturing the same
Lucca et al. Investigation of polished single crystal ZnO by nanoindentation
US7718573B2 (en) Method for producing oxide superconductor, oxide superconductor and substrate material for supporting precursor of the same
JP2008066168A (en) Mgb2 superconducting wire rod and its manufacturing method
Quan et al. Bipolar electric field induced strain in Li substituted lead-free Bi0. 5 (Na0. 82K0. 18) 0.5 Ti0. 95Sn0. 05O3 piezoelectric ceramics
JP2013056806A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL, AND SiC SINGLE CRYSTAL OBTAINED THEREBY
JP3144675B2 (en) Oxide superconductor and manufacturing method thereof
JP3100370B2 (en) Oxide superconductor and manufacturing method thereof
JP6217842B2 (en) Bulk oxide superconductor and method for producing bulk oxide superconductor
Turgay et al. effect of diffusion annealing temperature on crack-initiating omnipresent flaws, void/crack propagation and dislocation movements along Ni surface-layered Bi-2223 crystal structure
JP4903729B2 (en) Oxide superconducting magnet, manufacturing method thereof, and cooling method
KR20140078533A (en) Manufacturing method of carbonaceous substrate coated thermal decomposition boron nitride
KR102408088B1 (en) High heat-dissipating aluminum oxide-Elastomer composites and fabrication method therof
JP4591219B2 (en) Single crystal growth crucible

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R151 Written notification of patent or utility model registration

Ref document number: 4673668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees