JP2008066168A - Mgb2 superconducting wire rod and its manufacturing method - Google Patents

Mgb2 superconducting wire rod and its manufacturing method Download PDF

Info

Publication number
JP2008066168A
JP2008066168A JP2006243793A JP2006243793A JP2008066168A JP 2008066168 A JP2008066168 A JP 2008066168A JP 2006243793 A JP2006243793 A JP 2006243793A JP 2006243793 A JP2006243793 A JP 2006243793A JP 2008066168 A JP2008066168 A JP 2008066168A
Authority
JP
Japan
Prior art keywords
mgb
layer
magnesium
superconducting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006243793A
Other languages
Japanese (ja)
Inventor
Kazumasa Togano
一正 戸叶
Takao Takeuchi
孝夫 竹内
Hiroaki Kumakura
浩明 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006243793A priority Critical patent/JP2008066168A/en
Publication of JP2008066168A publication Critical patent/JP2008066168A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide an MgB<SB>2</SB>superconducting wire rod which has a superior superconducting critical current and of which workability is improved, and its manufacturing method. <P>SOLUTION: In this superconducting wire rod, a magnesium (Mg)-lithium (Li)-boron (B) alloy layer and a magnesium boride (MgB<SB>2</SB>) superconducting layer are laminated. As for the manufacturing method, a composite is constituted which is composed of laminating a boron (B) layer so as to contact a magnesium (Mg)-lithium (Li) alloy layer, and after processing this to a wire shape or a tape shape, the magnesium boride (MgB<SB>2</SB>) superconducting layer is formed by heat-treating this at a diffusion reaction temperature of magnesium (Mg) and boron (B). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、MgB超伝導線材とその製造法に関する。 The present invention relates to a MgB 2 superconducting wire and a method for producing the same.

電気抵抗ゼロの超伝導現象は損失無しに大きな電流を流したり、非常に強い磁界を発生させることが可能なため、エネルギーや環境問題に関連して種々の応用開発が進められている。超伝導現象を応用するためには、臨界温度や臨界磁界等の超伝導特性の優れた超伝導材料を線材化するための技術開発が必要である。特性の優れた超伝導材料のうち、塑性変形能を有し直接線材に加工することが可能なニオブーチタン(Nb−Ti)合金線材(臨界温度9K、臨界磁界12T)が最も早くから実用化され、現在でも多くの超伝導機器に使われている。一方、Nb−Tiよりも臨界温度、臨界磁界が高い超伝導材料は殆どが金属間化合物あるいは酸化物系に属し、硬く脆くて直接線材に加工することは不可能である。したがって、これらの材料を線材化するためには特殊な技術開発が必要となってくる。その中でニオブ3錫(NbSn)金属間化合物超伝導体(臨界温度18K、臨界磁界25T)が拡散反応を使った方法によって最初に実用化され、さらに酸化物系高温超伝導材料の中のビスマス系(臨界温度80−110K、臨界磁界100T以上)が粉末法によって線材化されて現在各種の応用開発が進められている。 Since the superconducting phenomenon with zero electrical resistance can flow a large current without loss or generate a very strong magnetic field, various application developments are being promoted in relation to energy and environmental problems. In order to apply the superconducting phenomenon, it is necessary to develop a technology for forming a superconducting material with excellent superconducting properties such as critical temperature and critical magnetic field. Among superconducting materials with excellent properties, niobium-titanium (Nb-Ti) alloy wire (critical temperature 9K, critical magnetic field 12T) that has plastic deformability and can be directly processed into wire has been put into practical use from the earliest days. But it is used in many superconducting devices. On the other hand, most of the superconducting materials having a higher critical temperature and critical magnetic field than Nb—Ti belong to intermetallic compounds or oxides, are hard and brittle, and cannot be directly processed into a wire. Therefore, special technology development is required to make these materials into wires. Among them, niobium 3 tin (Nb 3 Sn) intermetallic compound superconductors (critical temperature 18K, critical magnetic field 25T) were first put into practical use by a method using a diffusion reaction. The bismuth system (critical temperature 80-110K, critical magnetic field 100T or more) has been made into a wire material by the powder method, and various application developments are currently underway.

本発明の対象となっているに二硼化マグネシウム(MgB)超伝導体は2001年に新たに発見され、金属間化合物の中ではずば抜けて高い臨界温度(39K)をもつことから、物性面のみならず応用面からも非常に注目されている超伝導材料である。特に従来の金属系超伝導線材では困難であった冷凍機冷却による中温度(約20−30K)での応用が可能となるため、一刻も早い線材化が切望されている。しかし、MgBはNbSnと同様に金属間化合物の範疇に属し、硬く脆いため直接線材に加工することは不可能である。現在種々の線材化法が試みられているが、粉末を金属管に詰めて加工するPIT(Powder−in−tube)法が最も多く研究されている。MgBのPIT法では、直接MgB粉末を詰めて加工するエクス・シチュー(ex−situ)法とMgとBとの混合粉末を詰めて加工、熱処理するイン・シチュー(in−situ)法とが開発されている。イン・シチュー法の方が他元素添加による高磁界特性の改善がより効果的に行える利点があることからより多く研究されているが、Mg、Bともに難加工性の元素であるため粉末の混合体として詰め込む以外に手段の無いのが現状である。この場合MgBの生成原理はMg粒子とB粒子との焼結反応を基本とし、さらにMgとBとが反応してMgBに変化する時に収縮が起こるため内部に空孔の生成が起こり、高密度を達成することが本質的に不可能な欠点を有する。そのため、PIT法では実用に足る十分な臨界電流密度特性が得られていないのが現状である。 The magnesium diboride (MgB 2 ) superconductor, which is the object of the present invention, was newly discovered in 2001, and has a high critical temperature (39K), which is extremely high among the intermetallic compounds. It is a superconducting material that is attracting a great deal of attention not only from the application standpoint. In particular, since it can be applied at a medium temperature (about 20-30 K) by cooling a refrigerator, which was difficult with conventional metal-based superconducting wires, it is desired to make wires as soon as possible. However, MgB 2 belongs to the category of intermetallic compounds like Nb 3 Sn and is hard and brittle, so it cannot be processed directly into a wire. At present, various wire rod forming methods have been tried, but the PIT (Powder-in-tube) method, in which powder is packed in a metal tube and processed, has been most studied. The MgB 2 PIT method includes an ex-situ method in which MgB 2 powder is directly packed and processed, and an in-situ method in which a mixed powder of Mg and B is processed and heat-treated. Has been developed. The in-situ method has been studied more because it has the advantage that it can improve the high magnetic field characteristics more effectively by adding other elements, but since both Mg and B are difficult-to-work elements, powder mixing There is currently no means other than stuffing as a body. In this case, the formation principle of MgB 2 is based on the sintering reaction between Mg particles and B particles, and further, shrinkage occurs when Mg and B react to change to MgB 2 , so that voids are generated inside, It has the disadvantage that it is essentially impossible to achieve high density. For this reason, the PIT method does not provide sufficient critical current density characteristics sufficient for practical use.

本発明は、このような実情に鑑み、良好な超伝導臨界電流を有しながら加工性をも向上したMgB超伝導線材とその製造法を提供することを目的とした。 In view of such circumstances, an object of the present invention is to provide a MgB 2 superconducting wire having a good superconducting critical current and improved workability and a method for producing the same.

発明1のMgB2超伝導線材は、マグネシウム(Mg)−リチウム(Li)―ボロン(B)合金層と二硼化マグネシウム(MgB)超伝導層とが積層されてなることを特徴とする。 MgB2 superconducting wire of the invention 1, magnesium (Mg) - Lithium (Li) - boron (B) alloy layer and the magnesium diboride (MgB 2) and the superconducting layer is equal to or formed by stacking.

発明2のMgB2超伝導線材は、発明2において、ボロン(B)に対し、1〜10原子%のナノサイズ炭化珪素(SiC)が添加されてなることを特徴とする。 The MgB2 superconducting wire of the invention 2 is characterized in that, in the invention 2, 1 to 10 atomic% of nanosize silicon carbide (SiC) is added to boron (B).

発明3は、発明1又は2のMgB超伝導線材の製造法であって、マグネシウム(Mg)−リチウム(Li)合金層と接触する形でボロン(B)層を積層してなる複合体を構成し、これを線状あるいはテープ状に加工した後、マグネシウム(Mg)とボロン(B)の拡散反応温度で熱処理することによって二硼化マグネシウム(MgB)超伝導層を生成させることを特徴とする。 Invention 3 is a method for producing the MgB 2 superconducting wire of Invention 1 or 2, wherein a composite formed by laminating a boron (B) layer in contact with a magnesium (Mg) -lithium (Li) alloy layer is provided. A magnesium diboride (MgB 2 ) superconducting layer is produced by forming a linear or tape-like structure and then heat-treating at a diffusion reaction temperature of magnesium (Mg) and boron (B). And

発明4のMgB2超伝導線材の製造法は、発明3において、Mg−Li合金の管を他の金属あるいは合金管の中に挿入した2重管を形成し、その内部にB粉末を封入することによって、マグネシウム(Mg)ーリチウム(Li)合金層と接触する形でボロン(B)層を積層したことを特徴とする。 The manufacturing method of the MgB2 superconducting wire of the invention 4 is the invention 3, wherein the Mg-Li alloy tube is inserted into another metal or alloy tube to form a double tube, and the B powder is enclosed therein. Thus, the boron (B) layer is laminated in contact with the magnesium (Mg) -lithium (Li) alloy layer.

発明5のMgB2超伝導線材の製造法は、発明3において、金属あるいは合金管の中にその内径より小さい外形を有するMg−Li合金棒を挿入し、その周囲に形成された隙間にB粉末を充填することによって、マグネシウム(Mg)ーリチウム(Li)合金層と接触する形でボロン(B)層を積層したことを特徴とする。 The manufacturing method of the MgB2 superconducting wire of the invention 5 is the invention 3, wherein the Mg-Li alloy rod having an outer shape smaller than the inner diameter is inserted into the metal or alloy tube, and the B powder is put in the gap formed around the rod. By filling, a boron (B) layer is laminated in contact with a magnesium (Mg) -lithium (Li) alloy layer.

発明6は、発明1又は2のMgB超伝導線材の製造法であって、予め線状あるいはテープ状に加工したマグネシウム(Mg)−リチウム(Li)合金層に、ボロン(B)層を接触させて形成し、マグネシウム(Mg)とボロン(B)の拡散反応温度で熱処理することによって二硼化マグネシウム(MgB)超伝導層を生成させることを特徴とする。 Invention 6 is a method for producing the MgB 2 superconducting wire of Invention 1 or 2, wherein a boron (B) layer is brought into contact with a magnesium (Mg) -lithium (Li) alloy layer which has been processed into a linear shape or a tape shape in advance. And forming a magnesium diboride (MgB 2 ) superconducting layer by heat treatment at a diffusion reaction temperature of magnesium (Mg) and boron (B).

発明7のMgB2超伝導線材の製造法は、発明5において、Mg−Li合金管の中に他の金属あるいは棒を挿入した複合体を形成し、これを線状あるいはテープ状に加工したものを基材とし、その上に塗布法によりB層を形成させることを特徴とする。 The manufacturing method of the MgB2 superconducting wire of Invention 7 is the same as that of Invention 5, in which a composite is formed by inserting another metal or rod into an Mg-Li alloy tube, and this is processed into a linear or tape shape. A B layer is formed on the substrate by a coating method.

前記発明1により、品質の高いMgB超伝導層が生成される。すなわちMgBが層状に成長することにより、従来の方法(例えばPIT法)では得られなかった密度の高いMgB超伝導相が得られる。また層状成長にともなって余分のLiあるいは過剰のMg、Bが存在した場合は、これらは中心部にはき寄せられてMg−Li−B合金層となるが、この相はMgB層と平行に層状に存在するため、超伝導電流の流れを阻害することはない。 Wherein the invention 1, a high MgB 2 superconductor layer quality is generated. That is, when MgB 2 grows in a layered form, a high-density MgB 2 superconducting phase that cannot be obtained by conventional methods (for example, PIT method) can be obtained. Further, when there is excess Li or excess Mg, B due to the layer growth, these are attracted to the central portion to become an Mg—Li—B alloy layer, but this phase is parallel to the MgB 2 layer. Therefore, the flow of superconducting current is not hindered.

前記発明2により、超伝導特性のうち特に臨界電流特性が著しく改善される。すなわち添加されたナノサイズのSiCからCが効果的にMgB相の結晶格子の中に組み込まれて、磁束のピン止め効果がより有効に発揮されて臨界電流が上昇する。 By the said invention 2, especially a critical current characteristic is remarkably improved among superconducting characteristics. That is, C is effectively incorporated into the crystal lattice of the MgB 2 phase from the added nano-sized SiC, and the pinning effect of the magnetic flux is more effectively exhibited and the critical current is increased.

前記発明3により、Mgを主成分とする層とB(あるいはそれにナノサイズのSiCを含む)層とが直接接触するようになり、両者間の拡散が効果的に進捗し、発明1の線材の作製が可能となる。   According to the invention 3, the layer mainly composed of Mg and the B (or nano-sized SiC) layer come into direct contact, and the diffusion between the two effectively proceeds, and the wire of the invention 1 Fabrication is possible.

前記発明4により、発明3の複合体の作製が極めて容易になる。すなわち難加工性の純Mgの替わりに加工性の著しく優れたMg−Li合金を用いることによって、Mgを主成分とする層とB(あるいはそれにナノサイズのSiCを含む)層とが密着性良く線材の長手方向に平行に接触するようになり、拡散が効果的に進捗する。   The invention 4 makes it extremely easy to produce the composite of the invention 3. In other words, by using a Mg-Li alloy that is remarkably excellent in workability instead of pure Mg, which is difficult to process, the layer mainly composed of Mg and the B (or nano-sized SiC) layer have good adhesion. It comes in contact with the longitudinal direction of the wire, and diffusion effectively proceeds.

前記発明5により、発明3の複合体の作製が極めて容易になる。すなわち難加工性の純Mgの替わりに加工性の著しく優れたMg−Li合金を用いることによって、Mgを主成分とする層とB(あるいはそれにナノサイズのSiCを含む)層とが密着性良く線材の長手方向に平行に接触するようになり、拡散が効果的に進捗する。   The invention 5 makes it extremely easy to produce the composite of the invention 3. In other words, by using a Mg-Li alloy that is remarkably excellent in workability instead of pure Mg, which is difficult to process, the layer mainly composed of Mg and the B (or nano-sized SiC) layer have good adhesion. It comes in contact with the longitudinal direction of the wire, and diffusion effectively proceeds.

前記発明6により、Mgを主成分とする層とB(あるいはそれにナノサイズのSiCを含む)層とが直接接触するようになり、両者間の拡散が効果的に進捗し、発明1の線材の作製が可能となる。   According to the invention 6, the Mg-based layer and the B (or nano-sized SiC) layer come into direct contact with each other, and the diffusion between the two effectively proceeds. Fabrication is possible.

前記発明7により、発明6の複合体の作製が極めて容易になる。すなわち難加工性の純Mgの替わりに加工性の著しく優れたMg−Li合金を用いることによって、Mgを主成分とする表面層を有する基板テープが作製可能となり、さらにB(あるいはそれにナノサイズのSiCを含む)層を塗布することによって容易に目的とする複合体が形成される。   The invention 7 makes it extremely easy to produce the composite of the invention 6. That is, by using a Mg—Li alloy having remarkably excellent workability instead of pure Mg, which is difficult to process, a substrate tape having a surface layer mainly composed of Mg can be produced. The desired composite is easily formed by applying a layer containing SiC.

本発明の特徴は、難加工性のMgにLiを添加すると加工性が著しく改善されることに着目し、Mg−Li合金をPIT法における被覆材側の一部として組み込み、反応を粒子間の反応から界面拡散方式に変化させて緻密で不純物の混入が無い高品質のMgB超伝導層を生成させることにある。図1の平衡状態図に示すように、Mgは通常六方晶の結晶系に属しそのことが加工性を困難にしているが、約30原子%以上のLiを合金化すると結晶系が体心立方格子に変化して中間焼鈍なしに大きな加工率で塑性変形させることが可能となる。 The feature of the present invention is that the workability is remarkably improved when Li is added to difficult-to-work Mg, and the Mg-Li alloy is incorporated as a part of the coating material side in the PIT method, and the reaction is performed between the particles. By changing from reaction to interfacial diffusion, a high-quality MgB 2 superconducting layer free from impurities is produced. As shown in the equilibrium diagram of FIG. 1, Mg usually belongs to a hexagonal crystal system, which makes workability difficult. However, when about 30 atomic% or more of Li is alloyed, the crystal system becomes a body-centered cubic. By changing to a lattice, it becomes possible to perform plastic deformation at a large processing rate without intermediate annealing.

図2(a)は本発明の原理図を示した。すなわち純鉄,(Fe)管の中に、さらにMg−Li合金の管を挿入して2重の複合管とし、その中にボロン粉末を充填した複合体を形成した。複合体は中間焼鈍を加えなくても大きな減面率で冷間加工することが可能で、目的とする線状あるいはテープ状に容易に成形できる。得られた線あるいはテープは、最内層がB、中間層がMg−Li合金、最外層がFeの複合体である。次にこの複合体に熱処理を施すとMg−Li合金層とB層との界面で反応を起こしMgB超伝導体が生成される。
その際、Liは生成されたMgBの中に入らず、中心部に移動しMg−Li−B合金層として存在するためMgBの超伝導特性を害することはない。
FIG. 2 (a) shows the principle of the present invention. That is, a Mg-Li alloy pipe was further inserted into a pure iron (Fe) pipe to form a double composite pipe, and a composite filled with boron powder was formed therein. The composite can be cold worked with a large reduction in area without adding intermediate annealing, and can be easily formed into the desired linear or tape shape. The obtained wire or tape is a composite in which the innermost layer is B, the intermediate layer is an Mg—Li alloy, and the outermost layer is Fe. Next, when this composite is subjected to a heat treatment, a reaction occurs at the interface between the Mg—Li alloy layer and the B layer to produce a MgB 2 superconductor.
At that time, Li does not enter into the generated MgB 2 , moves to the center and exists as an Mg—Li—B alloy layer, and therefore does not impair the superconducting properties of MgB 2 .

その際MgBの成長は界面から内部に向けて層状に進行し、またMgの供給がMg−Li合金層から拡散によって絶えず行われるため、MgB生成に必要なMgの供給が過不足無く行われる。そのため生成されたMgB層の密度が高く、臨界電流密度特性の優れたMgB線材が得られる利点を有する。熱処理は650℃から750℃の間の温度で行うことが望ましい。なお、最外層の金属は純鉄に限定されないが、熱処理によってMg、LiさらにはBと反応を起こし超伝導特性を劣化させるものは好ましくない。 At this time, the growth of MgB 2 proceeds in layers from the interface to the inside, and the supply of Mg is constantly performed by diffusion from the Mg—Li alloy layer, so that the supply of Mg necessary for MgB 2 generation is performed without excess or deficiency. Is called. Therefore, the MgB 2 layer produced has a high density and has an advantage of obtaining an MgB 2 wire excellent in critical current density characteristics. The heat treatment is desirably performed at a temperature between 650 ° C. and 750 ° C. Although the outermost layer metal is not limited to pure iron, it is not preferable to cause a reaction with Mg, Li or B by heat treatment to deteriorate the superconducting properties.

なお最初に構成物を形成する際、図2(b)に示したように、Mg−Li合金を棒状として最内部に挿入し、純鉄管との隙間にB粉末を充填する構造でも最終的に同じ線材が作製可能である。   In addition, when forming a structure for the first time, as shown in FIG.2 (b), Mg-Li alloy is inserted in the innermost part as a rod shape, and finally it is the structure filled with B powder in a gap with a pure iron pipe. The same wire can be produced.

本発明の原理をPIT法以外の方法に適用することも可能である。図3はMg−Li合金を塗布法の基材の一部として構成させた場合の製造工程である。すなわち、Mg−Li合金の管にFe棒を挿入した複合体をテープ状あるいは線状に加工する。加工は中間焼鈍無しで大きな減面率で行うことが可能である。得られたFe/Mg−Li複合線材の上にディップコート(塗布)法などによってB層を形成し、熱処理を加えると同様の原理でMgB超伝導層を生成させることが可能である。 It is possible to apply the principle of the present invention to a method other than the PIT method. FIG. 3 shows a manufacturing process in the case where the Mg—Li alloy is configured as a part of the base material of the coating method. That is, a composite in which an Fe bar is inserted into a Mg-Li alloy tube is processed into a tape shape or a linear shape. Processing can be performed with a large reduction in area without intermediate annealing. When a B layer is formed on the obtained Fe / Mg—Li composite wire by a dip coating (coating) method and heat treatment is applied, a MgB 2 superconducting layer can be generated on the same principle.

なお、PIT法ではMgとBとの混合粉体にナノサイズの炭化珪素(SiC)を添加すると臨界磁界が高くなり、高磁界での臨界電流密度が改善されることが知られている。本発明の方法では、B粉末に1−10原子%のSiCを添加することによって同様の高磁界特性の改善が得られる。   In the PIT method, it is known that when nano-sized silicon carbide (SiC) is added to a mixed powder of Mg and B, the critical magnetic field increases and the critical current density in a high magnetic field is improved. In the method of the present invention, the same high magnetic field characteristics can be improved by adding 1-10 atomic% of SiC to the B powder.

外径4mm、内径3mmのマグネシウムーリチウム(Mg−Li)合金(Li含有量:約35原子%)の管を外径6mm、内径4mmの純鉄(Fe)管の中に挿入し、さらにその中にボロン(B)粉末あるいはボロン粉末に5原子%ないしは10原子%のSiC微粉末(粒サイズ約20nm)を添加した混合粉末を封入した複合体を形成した(図2(a))。この複合体は中間焼鈍無しに加工が可能で、溝ロール、圧延によって最終的に厚み約0.6mm、幅約4mmの複合テープ状に成形した。
この複合体テープをアルゴンガス雰囲気中で、550−800℃で1時間の熱処理を行った。これらの試料について、液体ヘリウム中で200Aまでの通電試験を行い、超伝導の臨界電流測定を行った。表1は測定の結果を一覧として示した。5%SiC添加で最も良好な臨界電流値(Ic)が得られ、また熱処理温度としては650−700℃の範囲で最も高いIcが得られた。
Insert a magnesium-lithium (Mg-Li) alloy tube (Li content: about 35 atomic%) with an outer diameter of 4 mm and an inner diameter of 3 mm into a pure iron (Fe) tube with an outer diameter of 6 mm and an inner diameter of 4 mm, and A composite in which boron (B) powder or a mixed powder obtained by adding 5 atomic% to 10 atomic% of SiC fine powder (grain size: about 20 nm) was enclosed was formed (FIG. 2A). This composite can be processed without intermediate annealing, and finally formed into a composite tape having a thickness of about 0.6 mm and a width of about 4 mm by groove rolling and rolling.
This composite tape was heat-treated at 550-800 ° C. for 1 hour in an argon gas atmosphere. These samples were subjected to an energization test up to 200 A in liquid helium, and the superconducting critical current was measured. Table 1 lists the measurement results. The best critical current value (Ic) was obtained with the addition of 5% SiC, and the highest Ic was obtained in the range of 650-700 ° C. as the heat treatment temperature.

実施例1のMg−35原子%Li合金に替えて、純MgあるいはMgにLiを15および50原子%含む合金を用いて同様の複合体を形成しテープ状に加工を試みた。
その結果、純MgおよびMg−15原子%合金を用いた場合は、複合体内部でMgあるいはMg−Li合金層が一様に変形せず、均一な組織をもつ複合体は作製することは困難であった。これは図1の状態図に示すように結晶構造が変形困難な六方晶であるためである。一方、Mg−50at%Li合金の場合は複合体として均一な加工が可能であった。しかし、700℃で1時間の熱処理を行った試料は約10Kの超伝導性しか示さなかった。これは特性の良いMgB相を生成するために十分なMgが供給されなかったためである。
A similar composite was formed using pure Mg or an alloy containing 15 and 50 atomic% of Li in Mg instead of the Mg-35 atomic% Li alloy of Example 1, and processing into a tape shape was attempted.
As a result, when pure Mg and Mg-15 atomic% alloy are used, it is difficult to produce a composite having a uniform structure because the Mg or Mg-Li alloy layer does not deform uniformly inside the composite. Met. This is because the crystal structure is a hexagonal crystal that is difficult to deform as shown in the phase diagram of FIG. On the other hand, in the case of an Mg-50 at% Li alloy, uniform processing was possible as a composite. However, the sample heat-treated at 700 ° C. for 1 hour showed only about 10K superconductivity. This is because sufficient Mg was not supplied to produce a MgB 2 phase having good characteristics.

外径2.5mmのマグネシウムーリチウム(Mg−Li)合金(Li含有量:約35原子%)の棒を外径6mm、内径4mmの純鉄(Fe)管の中に挿入し、生じた隙間にボロン粉末に5原子%のSiC微粉末(粒サイズ約20nm)を添加した混合粉末を充填した複合体を形成した(図2(b))。
この複合体は中間焼鈍無しに加工が可能で、溝ロール、圧延によって最終的に厚み約0.6mm、幅約4mmの複合テープ状に成形した。この複合体テープをアルゴンガス雰囲気中で、700℃で1時間の熱処理を行った。得られた試料について、液体ヘリウム中で200Aまでの通電試験を行ったが200Aまで超伝導状態が保たれ、常伝導状態への遷移は起こらなかった。
A gap formed by inserting a rod of magnesium-lithium (Mg-Li) alloy (Li content: about 35 atomic%) with an outer diameter of 2.5 mm into a pure iron (Fe) tube with an outer diameter of 6 mm and an inner diameter of 4 mm. Then, a composite filled with a mixed powder prepared by adding 5 atomic% of SiC fine powder (grain size of about 20 nm) to boron powder was formed (FIG. 2B).
This composite can be processed without intermediate annealing, and finally formed into a composite tape having a thickness of about 0.6 mm and a width of about 4 mm by groove rolling and rolling. The composite tape was heat-treated at 700 ° C. for 1 hour in an argon gas atmosphere. The obtained sample was subjected to an energization test up to 200 A in liquid helium, but the superconducting state was maintained up to 200 A, and no transition to the normal state occurred.

外径4mm、内径3mmのマグネシウムーリチウム(Mg−Li)合金(Li含有量:約35原子%)の管に外径3mmの純鉄棒を挿入した複合体を平ロールで厚さ500μmのテープ状に加工した。このテープを、ボロン粉末と5原子%のSiC微粉末(粒サイズ20nm)をエタノール溶液に混ぜた縣濁液に浸漬して乾燥し、さらにアルゴン雰囲気中で700℃、1時間の熱処理を行った。得られた試料について液体ヘリウム中で通電試験を行った結果、180Aの臨界電流値Icが得られた。     Tape-like composite with a flat roll and a thickness of 500 μm in the form of a composite in which a pure iron rod with an outer diameter of 3 mm is inserted into a magnesium-lithium (Mg—Li) alloy tube (Li content: about 35 atomic%) with an outer diameter of 4 mm and an inner diameter of 3 mm It was processed into. This tape was dipped in a suspension obtained by mixing boron powder and 5 atomic% SiC fine powder (grain size 20 nm) in an ethanol solution and dried, and further subjected to heat treatment at 700 ° C. for 1 hour in an argon atmosphere. . As a result of conducting an energization test on the obtained sample in liquid helium, a critical current value Ic of 180 A was obtained.

マグネシウム(Mg)―リチウム(Li)系の平衡状態図Equilibrium diagram of magnesium (Mg) -lithium (Li) system 本発明の原理を利用したMgB線材の製造工程。Mg−Li合金をPIT法の被覆材の構成物として組み込んだ場合。(a)はMg−Li合金を中間層として組み込んだ場合、(b)はMg−Li合金を最内層として組み込んだ場合である。Manufacturing process of the MgB 2 wire material utilizing the principles of the present invention. When a Mg-Li alloy is incorporated as a constituent of a PIT coating material. (A) is a case where a Mg—Li alloy is incorporated as an intermediate layer, and (b) is a case where a Mg—Li alloy is incorporated as an innermost layer. 本発明の原理を利用したMgB線材の製造工程。Mg−Li合金を塗布法の基材の構成物として組み込んだ場合。Manufacturing process of the MgB 2 wire material utilizing the principles of the present invention. When the Mg-Li alloy is incorporated as a constituent of the base material for the coating method.

Claims (7)

MgB超伝導線材であって、マグネシウム(Mg)−リチウム(Li)―ボロン(B)合金層と二硼化マグネシウム(MgB)超伝導層とが積層されてなることを特徴とするMgB超伝導線材 A MgB 2 superconducting wire, magnesium (Mg) - Lithium (Li) - boron (B) MgB 2 in which the alloy layer and the magnesium diboride (MgB 2) superconducting layer, characterized in that formed by stacking Superconducting wire 請求項2に記載のMgB超伝導線材において、ボロン(B)に対し、1〜10原子%のナノサイズ炭化珪素(SiC)が添加されてなることを特徴とするMgB超伝導線材。 In MgB 2 superconducting wire according to claim 2, boron (B) with respect to, MgB 2 superconducting wire, characterized in that 1 to 10 atomic% of nanosized silicon carbide (SiC) is added. 請求項1又は2に記載のMgB超伝導線材の製造方法であって、マグネシウム(Mg)−リチウム(Li)合金層と接触する形でボロン(B)層を積層してなる複合体を構成し、これを線状あるいはテープ状に加工した後、マグネシウム(Mg)とボロン(B)の拡散反応温度で熱処理することによって二硼化マグネシウム(MgB)超伝導層を生成させることを特徴とするMgB超伝導線材の製造法。 3. The method for producing a MgB 2 superconducting wire according to claim 1, wherein a composite is formed by laminating a boron (B) layer in contact with a magnesium (Mg) -lithium (Li) alloy layer. Then, after processing this into a linear or tape shape, a magnesium diboride (MgB 2 ) superconducting layer is formed by heat treatment at a diffusion reaction temperature of magnesium (Mg) and boron (B). A manufacturing method of MgB 2 superconducting wire. 請求項3のMgB線材の製造法において、Mg−Li合金の管を他の金属あるいは合金管の中に挿入した2重管を形成し、その内部にB粉末を封入することによって、マグネシウム(Mg)ーリチウム(Li)合金層と接触する形でボロン(B)層を積層したことを特徴とするMgB超伝導線材の製造法。 In the production process of the MgB 2 wire material according to claim 3, by the Mg-Li alloy tube to form a double tube inserted into the other metal or alloy tube, enclosing the B powder therein, magnesium ( A method for producing a MgB 2 superconducting wire, characterized in that a boron (B) layer is laminated in contact with an Mg) -lithium (Li) alloy layer. 請求項3のMgB線材の製造法において、金属あるいは合金管の中にその内径より小さい外形を有するMg−Li合金棒を挿入し、その周囲に形成された隙間にB粉末を充填することによって、マグネシウム(Mg)ーリチウム(Li)合金層と接触する形でボロン(B)層を積層したことを特徴とするMgB超伝導線材の製造法。 In the production process of the MgB 2 wire material according to claim 3, by filling a gap B powder inserting the Mg-Li alloy rod, which is formed around with small outer than the inner diameter thereof in the metal or alloy tube A method for producing a MgB 2 superconducting wire, wherein a boron (B) layer is laminated in contact with a magnesium (Mg) -lithium (Li) alloy layer. 請求項1又は2に記載のMgB超伝導線材の製造方法であって、予め線状あるいはテープ状に加工したマグネシウム(Mg)−リチウム(Li)合金層に、ボロン(B)層を接触させて形成し、マグネシウム(Mg)とボロン(B)の拡散反応温度で熱処理することによって二硼化マグネシウム(MgB)超伝導層を生成させることを特徴とするMgB超伝導線材の製造法。 3. The method for producing the MgB 2 superconducting wire according to claim 1, wherein the boron (B) layer is brought into contact with a magnesium (Mg) -lithium (Li) alloy layer which has been processed into a linear shape or a tape shape in advance. forming Te, preparation of MgB 2 superconducting wire, characterized in that to produce the magnesium diboride (MgB 2) superconducting layer by a heat treatment at a diffusion reaction temperature of magnesium (Mg) and boron (B). 請求項5のMgB線材の製造法において、Mg−Li合金管の中に他の金属あるいは棒を挿入した複合体を形成し、これを線状あるいはテープ状に加工したものを基材とし、その上に塗布法によりB層を形成させることを特徴とするMgB超伝導線材の製造法。 In the production process of the MgB 2 wire material of claim 5, to form a complex of inserting the other metal or bars in the Mg-Li alloy tube, a material obtained by processing it into a linear shape or a tape-like as a base material, A method for producing a MgB 2 superconducting wire, wherein a B layer is formed thereon by a coating method.
JP2006243793A 2006-09-08 2006-09-08 Mgb2 superconducting wire rod and its manufacturing method Pending JP2008066168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243793A JP2008066168A (en) 2006-09-08 2006-09-08 Mgb2 superconducting wire rod and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243793A JP2008066168A (en) 2006-09-08 2006-09-08 Mgb2 superconducting wire rod and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008066168A true JP2008066168A (en) 2008-03-21

Family

ID=39288687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243793A Pending JP2008066168A (en) 2006-09-08 2006-09-08 Mgb2 superconducting wire rod and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008066168A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169735A1 (en) * 2008-09-30 2010-03-31 Brucker EAS GmbH Superconductive compound, precursor product of a superconductive compound and method for producing same
JP2011014304A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Superconducting wire rod
JP2012074244A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Manufacturing method of superconducting wire rod, and wire rod
JP2012178226A (en) * 2011-02-25 2012-09-13 Hitachi Ltd MgB2 SUPERCONDUCTING WIRE ROD
WO2015049776A1 (en) * 2013-10-04 2015-04-09 株式会社日立製作所 MgB2 SUPERCONDUCTING WIRE ROD, SUPERCONDUCTING CONNECTION STRUCTURE, SUPERCONDUCTING MAGNET USING MgB2 SUPERCONDUCTING WIRE ROD, AND SUPERCONDUCTING CABLE USING MgB2 SUPERCONDUCTING WIRE ROD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169735A1 (en) * 2008-09-30 2010-03-31 Brucker EAS GmbH Superconductive compound, precursor product of a superconductive compound and method for producing same
US8318639B2 (en) 2008-09-30 2012-11-27 Bruker Eas Gmbh Superconducting composite, preliminary product of superconducting composite and method for producing same
JP2011014304A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Superconducting wire rod
JP2012074244A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Manufacturing method of superconducting wire rod, and wire rod
JP2012178226A (en) * 2011-02-25 2012-09-13 Hitachi Ltd MgB2 SUPERCONDUCTING WIRE ROD
WO2015049776A1 (en) * 2013-10-04 2015-04-09 株式会社日立製作所 MgB2 SUPERCONDUCTING WIRE ROD, SUPERCONDUCTING CONNECTION STRUCTURE, SUPERCONDUCTING MAGNET USING MgB2 SUPERCONDUCTING WIRE ROD, AND SUPERCONDUCTING CABLE USING MgB2 SUPERCONDUCTING WIRE ROD

Similar Documents

Publication Publication Date Title
Hur et al. Fabrication of high-performance MgB2 wires by an internal Mg diffusion process
JP5229868B2 (en) Method for manufacturing MgB2 superconducting wire
US20050163644A1 (en) Processing of magnesium-boride superconductor wires
US5063200A (en) Ceramic superconductor article
WO2002055435A1 (en) Intermetallic compound superconductor and alloy superconductor, and method for their preparation
JP2008210600A (en) Rare earth system tape-shape oxide superconductor and composite substrate used for it
JP4316070B2 (en) High strength oriented polycrystalline metal substrate and oxide superconducting wire
Kumakura et al. Superconducting Properties of Diffusion-Processed Multifilamentary ${\rm MgB} _ {2} $ Wires
JP2008066168A (en) Mgb2 superconducting wire rod and its manufacturing method
JP2007095367A (en) Manufacturing method of magnesium diboroide superconductive wire rod
JP4799979B2 (en) Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system
US7213325B2 (en) Method of manufacturing Fe-sheathed MgB2 wires and solenoids
JPH04310597A (en) Method of manufacturing article made of metallic body having superconductor layer
JP5492159B2 (en) High temperature superconducting wire
KR101489802B1 (en) Fe-BASED SUPERCONDUCTING MATERIAL, AND PREPARING METHOD OF THE SAME
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
JP6208897B2 (en) Magnesium diboride superconducting thin film wire and manufacturing method thereof
JP3716304B2 (en) Manufacturing method of Nb3Ga extra fine multi-core superconducting wire
Miryala Development of MgB2 Superconducting Super-Magnets: Its Utilization towards Sustainable Development Goals
JP4193194B2 (en) Method for producing Nb3Sn superconducting wire
JP2003331670A (en) CREATING METHOD FOR MgB2 SUPERCONDUCTING WIRE
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JP3536920B2 (en) Alloy superconductor and method of manufacturing the same