JPH01183102A - Manufacture of superconducting oxide coil - Google Patents
Manufacture of superconducting oxide coilInfo
- Publication number
- JPH01183102A JPH01183102A JP817888A JP817888A JPH01183102A JP H01183102 A JPH01183102 A JP H01183102A JP 817888 A JP817888 A JP 817888A JP 817888 A JP817888 A JP 817888A JP H01183102 A JPH01183102 A JP H01183102A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- superconducting oxide
- wire rod
- wire
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000843 powder Substances 0.000 claims abstract description 12
- 238000005096 rolling process Methods 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 abstract description 2
- 238000005520 cutting process Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000007789 sealing Methods 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 238000005491 wire drawing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- KJYQVRBDBPBZTD-UHFFFAOYSA-N methanol;nitric acid Chemical compound OC.O[N+]([O-])=O KJYQVRBDBPBZTD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、超電導マグネット等に使用される超電導コイ
ルを製造する超電導酸化物コイルの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a superconducting oxide coil for manufacturing a superconducting coil used in a superconducting magnet or the like.
[従来の技術]
従来、超電導酸化物を使用した超電導コイルの製造方法
として、銀製バイブ中にYBa2 Cu30フーδ等の
超電導酸化物の粉体を充填し封入した後、伸線機又はス
ウェジング機を使用して、縮径伸線するものがある。こ
の縮径伸線の過程で同時に銀パイプ中に充填封入された
超電導酸化物の粉体が圧縮され密度が上昇し、粉体同士
の結合が向上する。次いで、この伸線後の線材を所定径
のマンドレルに巻き付け、所定径のコイルに成形する。[Prior Art] Conventionally, as a method for manufacturing a superconducting coil using a superconducting oxide, powder of a superconducting oxide such as YBa2 Cu30 fu δ is filled and sealed in a silver vibrator, and then a wire drawing machine or a swaging machine is used. There is a wire drawing method used to reduce the diameter. During this diameter-reducing wire drawing process, the superconducting oxide powder filled and sealed in the silver pipe is simultaneously compressed, increasing its density and improving the bond between the powders. Next, the drawn wire is wound around a mandrel of a predetermined diameter and formed into a coil of a predetermined diameter.
[発明が解決しようとする課題]
しかしながら、縮径伸線されて密度が上昇した銀シース
被覆の超電導酸化物線材をマンドレルに巻き付け、所定
径のコイルに成形すると、コイルの外周側では引張力が
作用し、延性が低いセラミックス酸化物の圧粉成形体に
亀裂が入ってしまう。[Problem to be solved by the invention] However, when a silver sheath-coated superconducting oxide wire that has been drawn to reduce its diameter and has an increased density is wound around a mandrel and formed into a coil of a predetermined diameter, a tensile force is generated on the outer periphery of the coil. This causes cracks to form in the powder compact of ceramic oxide, which has low ductility.
このため、超電導性を示すパスが切断されてしまい、結
果的に臨界電流密度が低下するという問題点を有する。For this reason, there is a problem in that a path exhibiting superconductivity is cut off, resulting in a decrease in critical current density.
本発明はかかる問題点に鑑みてなされたものであって、
臨界電流密度が高い超電導酸化物のコイルを製造するこ
とができる超電導酸化物コイルの製造方法を提供するこ
とを目的とする。The present invention has been made in view of such problems, and includes:
An object of the present invention is to provide a method for manufacturing a superconducting oxide coil that can manufacture a superconducting oxide coil having a high critical current density.
[課題を解決するための手段]
本発明に係る超電導酸化物コイルの製造方法は、超電導
酸化物の粉体を金属又は合金製パイプ中に充填して封入
する工程と、伸線又は圧延して線材を得る工程と、周速
度が相互に異なる1対の溝付ロールにより(100(d
/2D)+3)%以上の減面率で圧下を加えつつ前記線
材をコイル状に成形する工程とを有することを特徴とす
る。[Means for Solving the Problems] The method for manufacturing a superconducting oxide coil according to the present invention includes a step of filling and enclosing superconducting oxide powder in a metal or alloy pipe, and a step of drawing or rolling it. In the process of obtaining the wire rod, a pair of grooved rolls with mutually different circumferential speeds (100 (d
/2D)+3)% or more of reduction in area while forming the wire into a coil shape.
[作用]
本発明においては、所定の減面率で圧下を加えつつ、線
材をコイル状に成形するから、線材には圧延による変形
歪みと曲げ変形による曲げ歪みとが同時に加えられる。[Function] In the present invention, the wire rod is formed into a coil shape while applying reduction at a predetermined area reduction rate, so that deformation strain due to rolling and bending strain due to bending deformation are simultaneously applied to the wire rod.
このため、曲げ変形により圧粉体に亀裂が発生しようと
しても、圧延変形により超電導酸化物の粉体が移動して
補充されるので、亀裂が発生することなく線材を曲げ変
形させることができる。Therefore, even if a crack is generated in the green compact due to bending deformation, the superconducting oxide powder is moved and replenished by rolling deformation, so that the wire can be bent and deformed without cracking.
し実施例コ
以下、本発明の実施例について添付の図面を参照して具
体的に説明する。第1図は本発明の実施例方法を示す正
面図であり、第2図は第1図の矢印1方向から見た側面
図である。Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a front view showing an embodiment of the method of the present invention, and FIG. 2 is a side view seen from the direction of arrow 1 in FIG.
1対の溝付ロール2,3がその回転軸6を水平にして設
置されている。溝付ロール2は溝付ロール3よりも直径
が大きく、この溝付ロール2.3は両者間に適長間隔を
おき、回転軸6を相互に平行にして対向設置されており
、同一の回転速度(rpm)で回転駆動されるようにな
っている。従って、溝付ロール2の周速度は溝付ロール
3の周速度よりも大きい。A pair of grooved rolls 2 and 3 are installed with their rotating shafts 6 horizontal. The grooved roll 2 has a larger diameter than the grooved roll 3, and the grooved rolls 2.3 are placed opposite each other with an appropriate distance between them, with their rotating shafts 6 parallel to each other, and rotate at the same time. It is designed to be rotationally driven at a speed (rpm). Therefore, the circumferential speed of the grooved roll 2 is greater than the circumferential speed of the grooved roll 3.
このような溝付ロール2,3間には、金属シース被覆さ
れた超電導酸化物の線材4が送給される。A superconducting oxide wire 4 coated with a metal sheath is fed between the grooved rolls 2 and 3.
この線材4は、例えば、銀製パイプ中に超電導酸化物の
粉体を充填して封入し、次いで、伸線加工して縮径させ
たものである。この縮径により、内部の超電導酸化物の
粉体は圧縮され、密度が上昇する。なお、伸線加工の替
わりに圧延により超電導酸化物粉体を圧縮してもよい。The wire 4 is, for example, a silver pipe filled with superconducting oxide powder and encapsulated, and then wire-drawn to reduce its diameter. This diameter reduction compresses the superconducting oxide powder inside, increasing its density. Note that the superconducting oxide powder may be compressed by rolling instead of wire drawing.
この線材4は溝付ロール2,3により圧延される。そう
すると、線材4は溝付ロール2,3により圧延されて縮
径すると共に、曲げ変形を受ける。This wire rod 4 is rolled by grooved rolls 2 and 3. Then, the wire rod 4 is rolled by the grooved rolls 2 and 3 to reduce its diameter and undergoes bending deformation.
溝付ロール2は溝付ロール3より大径であるので、同一
の回転数で軸6が回転すると、大径のロール2の方が周
速度が大きいので、線材4はロール2側にて大きな加工
変形を受け、逆に小径のロール3側においては小さな加
工変形を受ける。Since the grooved roll 2 has a larger diameter than the grooved roll 3, when the shaft 6 rotates at the same rotation speed, the peripheral speed of the larger diameter roll 2 is higher, so the wire 4 has a larger diameter on the roll 2 side. On the other hand, the small diameter roll 3 side undergoes small processing deformation.
このため、ロール2,3間から出た変形後の線材5は、
大径ロール2側で大きく伸ばされる圧延加工を受けてお
り、線材5は大径ロール2に転動された側が外周側とな
るコイル状に曲げられて成形される。Therefore, the deformed wire 5 that comes out from between the rolls 2 and 3 is
The wire rod 5 is subjected to a rolling process in which it is largely stretched on the large-diameter roll 2 side, and the wire 5 is bent and formed into a coil shape with the side rolled by the large-diameter roll 2 being the outer peripheral side.
このように、本実施例においては、線材4(又は5)は
、ロール2,3により圧延されつつコイル状に成形され
るため、圧延による変形歪みと曲げ変形による曲げ歪み
とが同時に加えられるので、曲げ変形により超電導酸化
物の圧粉体に亀裂が発生しようとしても、圧延変形によ
り超電導酸化物材料が移動して補充されるので、亀裂の
発生が未然に防止される。As described above, in this embodiment, the wire rod 4 (or 5) is formed into a coil shape while being rolled by the rolls 2 and 3, so that the deformation strain due to rolling and the bending strain due to bending deformation are applied at the same time. Even if cracks are to occur in the superconducting oxide compact due to bending deformation, the superconducting oxide material moves and is replenished by rolling deformation, so that cracks are prevented from occurring.
なお、ロール2,3の厚さ(ロール軸方向の長さ)は線
材4の直径に近く、半円状溝部以外の部分の厚さが厚く
ない方が好ましい。線材4はロール2,3の回転軸に直
交する面内で、つまり噛み込まれたロール2,3から直
進する方向に出て、コイル状に湾曲しようとする。この
場合に、ロール2.3の厚さが厚い場合は、この線材4
に対してロール2,3の厚さ分をかわす方向に、つまり
、ロール2,3の軸方向に力が印加される。その結果、
若干の曲げ応力が線材4に印加されることになり、好ま
しくないからである。一方、例えば、入口側の線材4の
入射方向をずらせて、予めロール厚さをかわせる曲げを
伴う加工を施すと、コイルのピッチが長くなるので、マ
グネット等の用途においては磁気効率が悪くなるため好
ましくない。In addition, it is preferable that the thickness of the rolls 2 and 3 (length in the roll axis direction) be close to the diameter of the wire rod 4, and that the thickness of the portion other than the semicircular groove portion is not thick. The wire 4 comes out in a plane perpendicular to the rotational axes of the rolls 2 and 3, that is, in a straight direction from the caught rolls 2 and 3, and tries to curve into a coil shape. In this case, if the roll 2.3 is thick, this wire 4
A force is applied in a direction equal to the thickness of the rolls 2 and 3, that is, in the axial direction of the rolls 2 and 3. the result,
This is because some bending stress will be applied to the wire 4, which is not preferable. On the other hand, for example, if the incident direction of the wire 4 on the inlet side is shifted and a process is performed that involves bending to change the roll thickness in advance, the pitch of the coil will become longer, resulting in poor magnetic efficiency in applications such as magnets. Undesirable.
この線材4をコイルに成形する際に、
(100(d/2D)+3)%以上の減面率で線材4を
縮径する。但し、Dはロール2.3を出た線材5の中心
軸により規定されるコイル直径、dは線材5において超
電導酸化物が占める部分の直径である。When forming the wire 4 into a coil, the wire 4 is reduced in diameter by an area reduction rate of (100(d/2D)+3)% or more. However, D is the coil diameter defined by the central axis of the wire 5 exiting the roll 2.3, and d is the diameter of the portion of the wire 5 occupied by the superconducting oxide.
コイルに成形する際には、線材らの中心軸に対して外側
部分には引張力が作用し、この歪み(%)は(100X
(d/2D)lと現わされる。When forming into a coil, tensile force is applied to the outer part of the wire with respect to its central axis, and this strain (%) is (100X
It is expressed as (d/2D)l.
そこで、減面率の大きさを(100X(d/2D)+α
)と現わし、D、d、αの値を種々設定して減面率と臨
界電流密度との関係を調査したところ、下記第1表に示
すように、αが3以上の減面率の場合に、臨界電流密度
の向上率が極めて高かった。Therefore, the size of the area reduction rate is (100X(d/2D)+α
), and investigated the relationship between area reduction rate and critical current density by setting various values of D, d, and α. In this case, the improvement rate of critical current density was extremely high.
第 1 表(その1)
第 1 表(その2)
つまり、減面率が(,100X (d/2D)+3)%
以上の場合に著しい臨界電流密度の向上が認められた。Table 1 (Part 1) Table 1 (Part 2) In other words, the area reduction rate is (,100X (d/2D) + 3)%
In the above cases, a significant improvement in critical current density was observed.
但し、臨界電流密度の向上率とは、従来例の場合(シー
ス被覆した線材をマンドレルに巻き付けた場合)の臨界
電流密度を1とし、従来例の場合に対する臨界電流密度
の比で現わしたものである。なお、αを3を超えて大き
くしても、臨界電流密度はそれ程上昇しない。従って、
減面率は(100X (d/2D)’+3)%にするこ
とが好ましい。However, the improvement rate of critical current density is expressed as the ratio of the critical current density to that of the conventional example, assuming that the critical current density of the conventional example (when a sheathed wire is wound around a mandrel) is 1. It is. Note that even if α is increased beyond 3, the critical current density does not increase significantly. Therefore,
The area reduction rate is preferably (100X (d/2D)'+3)%.
次に、本発明の実施例方法により実際に超電導酸化物コ
イルを製造した結果について説明する。Next, the results of actually manufacturing a superconducting oxide coil using the example method of the present invention will be explained.
内径が10關、外径が12mmの銀パイプに、YBa2
Cug 07− aの組成を有し、平均粒径が約1μ
mの超電導酸化物粉末を充填封入した。A silver pipe with an inner diameter of 10 mm and an outer diameter of 12 mm, YBa2
It has a composition of Cug 07-a and an average particle size of about 1μ.
m superconducting oxide powder was filled and sealed.
そして、銀パイプを、スウェジング機により、10.8
順、9.7玉、8,7鰭、7.8龍、7.0龍、6.3
龍、5.7mm、5 、1 mm、4,6龍、 4.1
5mm、 3.72mm、 3.35mmの直径に順次
伸線加工した後、一方向に0.40mmだけ圧延し、長
径が3.40mm、短径が2.95mmの断面楕円形に
した。次いで、半径が1.5龍の半円溝がついた1対の
溝付ロール(大径ロールの直径が150關、小径ロール
の直径が100m+n)を使用して、40 rpmの回
転数で長径側を圧下するようにして圧延したところ、断
面直径が3關、コイル径が75mmのコイルに成形され
た。このコイルのピッチは5龍であった。Then, the silver pipe was swaged using a swaging machine.
Order, 9.7 balls, 8.7 fins, 7.8 dragons, 7.0 dragons, 6.3
Dragon, 5.7mm, 5, 1mm, 4,6 Dragon, 4.1
After wire drawing to diameters of 5 mm, 3.72 mm, and 3.35 mm was performed sequentially, the wire was rolled by 0.40 mm in one direction to form an oval cross-section with a major axis of 3.40 mm and a minor axis of 2.95 mm. Next, using a pair of grooved rolls with a semicircular groove with a radius of 1.5 mm (the diameter of the large diameter roll is 150 mm, and the diameter of the small diameter roll is 100 m + n), the long diameter was cut at a rotation speed of 40 rpm. When it was rolled by rolling down the side, it was formed into a coil with a cross-sectional diameter of 3 mm and a coil diameter of 75 mm. The pitch of this coil was 5 dragons.
成形されたコイルの銀シースを250g/Jlの硝酸を
含有する硝酸メタノール溶液により溶解した後、酸素ガ
ス気流(0,2J)/分)中で900℃に10時間加熱
して焼結した。焼結後のコイル 、について液体窒素中
で臨界電流密度を測定したところ、8000 A /
crAと高い値が得られた。一方、所定線径に加工した
後、コイルに成形したものは、銀シースを溶解した時点
でコイル形状を保つことができなかった。The silver sheath of the formed coil was dissolved in a nitric acid-methanol solution containing 250 g/Jl of nitric acid, and then heated to 900° C. for 10 hours in an oxygen gas flow (0.2 J/min) to sinter it. When the critical current density of the sintered coil was measured in liquid nitrogen, it was 8000 A /
A high value of crA was obtained. On the other hand, when the wire was processed to a predetermined diameter and then formed into a coil, the coil shape could not be maintained when the silver sheath was melted.
なお、上記実施例においては、溝付ロールの直径を異な
らせることにより、異なる周速度を得ているが、本発明
においてはこれに限らず、同一径のロールを使用し、回
転数を異ならせることにより周速度を変更してもよい。In the above embodiment, different circumferential speeds are obtained by varying the diameters of the grooved rolls, but the present invention is not limited to this, and rolls with the same diameter are used and the rotational speeds are varied. The circumferential speed may be changed accordingly.
この場合も、上記実施例と同様の効果が得られる。In this case as well, the same effects as in the above embodiment can be obtained.
[発明の効果]
以上説明したように、本発明によれば、周速が異なる溝
付ロールにより(100X (d/2D)+3)%以上
の減面率を加えつつ線材を圧延成形するから、これによ
り成形後にコイル外周側部分の超電導酸化物に亀裂が入
ることはなく、超電導性を有するパスの切断が回避され
、臨界電流密度を向上させることができる。[Effects of the Invention] As explained above, according to the present invention, the wire rod is rolled and formed while applying an area reduction rate of (100X (d/2D) + 3)% or more using grooved rolls having different circumferential speeds. This prevents cracks from forming in the superconducting oxide on the outer circumferential side of the coil after molding, avoids cutting of superconducting paths, and improves critical current density.
第1図は本発明の実施例方法を示す正面図、第2図は第
1図の矢印1方向から見た側面図である。
2.3;溝付ロール、4,5;線材FIG. 1 is a front view showing an embodiment of the method of the present invention, and FIG. 2 is a side view seen from the direction of the arrow 1 in FIG. 2.3; Grooved roll, 4,5; Wire rod
Claims (1)
充填して封入する工程と、伸線又は圧延して線材を得る
工程と、周速度が相互に異なる1対の溝付ロールにより
{100(d/2D)+3}%以上の減面率で圧下を加
えつつ前記線材をコイル状に成形する工程とを有するこ
とを特徴とする超電導酸化物コイルの製造方法。 但し、D;線材の中心軸により規定されるコイル直径、 d;線材における超電導酸化物が占める部 分の直径。(1) A process of filling and enclosing superconducting oxide powder into a metal or alloy pipe, a process of drawing or rolling to obtain a wire rod, and a pair of grooved rolls with mutually different circumferential speeds. A method for manufacturing a superconducting oxide coil, comprising the step of forming the wire into a coil shape while applying rolling reduction with an area reduction rate of {100(d/2D)+3}% or more. However, D: the coil diameter defined by the central axis of the wire; d: the diameter of the portion of the wire occupied by the superconducting oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP817888A JPH01183102A (en) | 1988-01-18 | 1988-01-18 | Manufacture of superconducting oxide coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP817888A JPH01183102A (en) | 1988-01-18 | 1988-01-18 | Manufacture of superconducting oxide coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01183102A true JPH01183102A (en) | 1989-07-20 |
Family
ID=11686060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP817888A Pending JPH01183102A (en) | 1988-01-18 | 1988-01-18 | Manufacture of superconducting oxide coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01183102A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2259032A (en) * | 1991-08-23 | 1993-03-03 | Mitsubishi Materials Corp | Making superconductive wire |
WO1995008830A1 (en) * | 1993-09-23 | 1995-03-30 | Igc/Advanced Superconductors, Inc. | Improved superconductor coil and method of manufacture |
US5434130A (en) * | 1991-03-20 | 1995-07-18 | Sumitomo Electric Industries, Ltd. | Method of preparing oxide superconducting wire |
-
1988
- 1988-01-18 JP JP817888A patent/JPH01183102A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5434130A (en) * | 1991-03-20 | 1995-07-18 | Sumitomo Electric Industries, Ltd. | Method of preparing oxide superconducting wire |
GB2259032A (en) * | 1991-08-23 | 1993-03-03 | Mitsubishi Materials Corp | Making superconductive wire |
US5360784A (en) * | 1991-08-23 | 1994-11-01 | Mitsubishi Materials Corporation | Method for manufacturing an oxide superconducting tape |
WO1995008830A1 (en) * | 1993-09-23 | 1995-03-30 | Igc/Advanced Superconductors, Inc. | Improved superconductor coil and method of manufacture |
US5434129A (en) * | 1993-09-23 | 1995-07-18 | Advanced Superconductors, Inc. | Method for manufacturing high tc superconductor coils |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01183102A (en) | Manufacture of superconducting oxide coil | |
US3848319A (en) | Procedure for fabricating ultra-small gold wire | |
US6289576B1 (en) | Method for drawing elongated superconductive wires | |
JP2002216556A (en) | Manufacturing method for oxide superconductive wire material | |
JP4011358B2 (en) | Superconducting wire manufacturing method | |
JPH0479109A (en) | Manufacture of oxide superconducting wire | |
JP2993986B2 (en) | Manufacturing method of aluminum stabilized superconducting wire | |
JP3428771B2 (en) | Nb3Sn compound superconducting wire | |
JPH0353902A (en) | Manufacture of oxide superconductive coil | |
JPH0492316A (en) | Manufacture of compound linear material | |
JPH0246939A (en) | Manufacture of conjugated wire material | |
JPH0530524B2 (en) | ||
JPS5875874A (en) | Nb3sn series superconductive material and manufacture thereof | |
JPH04141916A (en) | Manufacture of nb3sn compound superconducting wire | |
JPH04298917A (en) | Manufacture of compound superconductor | |
RU2107345C1 (en) | Manufacturing process for nuclear reactor core parts (options) | |
JP4595813B2 (en) | Oxide superconducting wire, manufacturing method thereof and superconducting equipment | |
JPH04106810A (en) | Nb-ti alloy superconducting wire and manufacture thereof | |
JPH05190034A (en) | Manufacture of superconductive wire | |
JPH07249328A (en) | Oxide superconductive wire and manufacture thereof | |
JPH0381915A (en) | Manufacture of composite superconductive material | |
JPS6233688B2 (en) | ||
JPH0362416A (en) | Oxide superconducting wire | |
JPH0512939A (en) | Manufacture of aluminum composite superconducting wire | |
JPH026086A (en) | Production of noble metal-clad titanium wire |